
5. a) A force of 500 N acts on a body resting on an inclined plane as shown in Fig.5.a. Resolve the force into its
i) X and Y components
ii) components along parallel and perpendicular directions to the inclined plane.

07 L3, L4 CO2

Fig. 5.a
b) Two forces are acting on a structure at a point O as shown in Fig.5.b. Determine the resultant force acting on the structure.

Fig. 5.b
A cable passes over the top of a boom of a crane and carries a crate weighing 200 kN at one end as shown in Fig.5.c Determine the force to be applied in the other end of the cable such that the resultant force passes through the center line of the boom. Also determine the resultant force on the boom.

Fig. 5.c

OR

6. a) Determine the magnitude, direction and position of the resultant of the force system with

L3, L4
CO 2
respect to the point D shown in Fig.6.a
Fig. 6.a
b) Determine the magnitude, direction and position of the resultant of the force system with

respect to the point O shown in Fig.6.b.
Fig. 6.b
Module 4
7. a) Explain different types of beams with neat sketches.
b) Determine the support reactions for the simply supported beam shown in Fig.7.a

L3, L4
CO 3

Fig.7.a
8. a) State and prove Lami's Theorem.
b) Determine the tensions in various segments of the cable shown in Fig.8.b. Also determine the magnitudes of the weights W_{1} and W_{2} to keep portion BC in level position.

Fig. 8.b

Module 5
9. a) Locate the Centroid of a Triangle from first principle.
b) Locate the centroid of the composite area shown in Fig.9.b with respect to the given

Fig. 9.b
OR
10. a) State and prove Parallel Axis Theorem as applied to Moment of Inertia
b) Find the Polar radius of gyration for the composite section along Horizontal axis as shown in Fig.10.b

Fig.10.b

