USN							
FIRST Semester B. E. Degree Semester End Examination (SEE), Jan/ Feb 2024							

Calculus, Differential Equations and Linear Algebra

(Model Question Paper - 1)
$\left.\begin{array}{|l|c|c|}\hline \text { [Time: 3 Hours] } & & \text { Instructions to students: }\end{array}\right]$

Module-1

1. a) With usual notation, prove that $\frac{1}{p^{2}}=\frac{1}{r^{2}}+\frac{1}{r^{2}}\left(\frac{d r}{d \theta}\right)^{2}$
b) Using Maclaurin's expansion series prove that

$\sqrt{1+\sin 2 x}=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}---$	7	L2	CO1	
Find the radius of curvature of the curve $x^{3}+y^{3}=3 a x y$	at the point $(3 \mathrm{a} / 2,3 \mathrm{a} / 2)$	7	L2	CO1

2. a) Obtain the pedal equation of the curve $r=a(1-\cos \theta)$ and hence show that

$$
\rho=(2 / 3) \sqrt{2 a r}
$$

6
L2 CO1
b) $x+y+z=u, y+z=v, z=u v w$, find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$
$7 \quad$ L2 \quad CO1
c) Examine the following function for extreme values of the function

$$
f(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}
$$

Module-2

3. a)

Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$
6
L2
CO2
b)

Evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} x y d y d x$ by changing the order of integration
c) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$

CO 2

OR

4. a)

Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d y d x$ by changing in to polar coordinates
b) Find the area between the parabolas $y^{2}=4 a x \& x^{2}=4 a y$
c)

Prove that $\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi / 2} \sqrt{\sin \theta} \cdot d \theta=\pi$
Module-3
5. a) Show that $\vec{F}=\left(6 x y+z^{3}\right) I+\left(3 x^{2}-z\right) J-\left(3 x z^{2}-y\right) K$ is irrotational, find ϕ such that $F=\nabla \phi$.
b) Find the angle between surfaces $x^{2}+y^{2}+z^{2}=9 \& x^{2}+y^{2}-3=x$ at $(2,-1,2)$
c) Find the scale factors of cylindrical system

OR

6. a) Find $\operatorname{Curl}(\operatorname{Curl} \vec{F})$ where $\vec{F}=x y \hat{\imath}+y^{2} z \hat{\jmath}+z^{2} y \hat{k}$
b) Find the directional derivatives of $\phi=x^{2} y z+4 x z^{2}$ at $(-1,-2,-1)$ in the direction of the vector $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
c) Prove that cylindrical system is orthogonal.

Module-4

7. a) Solve $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$
b) Given $y=k e^{-2 x}+3 x$, find the member of its orthogonal trajectories passing through the point $(0,3)$
c) Solve $\left(D^{2}+2 D+4\right) y=2 x^{2}+3 e^{-x}$

OR
8. a) Solve $\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0$
b) Solve $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$ given $y=0, y^{\prime}=3$ for $x=0$

Module-5

9. a) Reduce the matrix into its normal form and hence find its rank

$$
A=\left[\begin{array}{cccc}
1 & 2 & 4 & 3 \\
2 & 4 & 6 & 8 \\
4 & 8 & 12 & 16 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

$\mathrm{y}-\mathrm{z}=0, \quad \mathrm{x}+\mathrm{y}+\mathrm{z}=9$.
c) Find the largest eigen value and the corresponding eigen vector of the matrix

A $=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$ by power method, use $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ as initial vector, take five iterations.
10. a)
Find the rank of the matrix $\left[\begin{array}{ccccc}91 & 92 & 93 & 94 & 95 \\ 92 & 93 & 94 & 95 & 96 \\ 93 & 94 & 95 & 96 & 97 \\ 94 & 95 & 96 & 97 & 98 \\ 95 & 96 & 97 & 98 & 99\end{array}\right]$

6
b) For what values of λ and μ the system of equations $2 x+3 y+5 z=9, \quad 7 x+3 y-$
$2 \mathrm{z}=8,2 \mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$ has (i) no solution, (ii) a unique solution and (iii) an 7 L2 \quad CO5 infinite number of solutions.
c) Solve the following system of equations by Gauss-Elimination method:

$$
x+y+z=8 ;-x-y+2 z=-4 ; 3 x+5 y-7 z=14
$$

7 CO5

