						2.	3MAT	TIC				
US	SN											
	FIRST Semester B. E. Degree Semester End Examination (SEE), Jan/ Feb 2024											
					Calculus and Linear Algebra							
	(Model Question Paper - 1)											
[Tin	me: 3	Hours]	[Maximum Marks: 100]									
			i. ii.	1	Instructions to students: Answer FIVE FULL Questions as per choice. Use BLACK ball point pen for text, figure, table, etc.							
					Module-1	Marks	СО	RBT Level				
1.	a)	Find the ar	ngle betw	veen	radius vector and tangent at the point on the curve.	6	L2	CO1				
	b)	Find the ar	ngle betw	the radius vector and the tangent and also find the slope of								
		the tangen	t for the	7	L2	CO1						
	c)	Find the ra	adius of c	7	L2	CO1						
2.	a)	Show that	the curve	6	L2	CO1						
	b)	Find the po	edal equa	7	L2	CO1						
	c)	Evaluate l	7	L2	CO1							
					Module-2							
3.	a)	Using Mad	claurin's	serie	s, prove that $\sqrt{1+\sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} \dots$	6	L2	CO2				
	b)	If $z = e^x$	xsin y+	yco	(s y), prove that $u_{xx} + u_{yy} = 0$	7	L2	CO2				
	c)	Find the ex	xtreme va	alues	of the function $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$	7	L2	CO2				
4.	a)	Expand ta		the p	owers of $(x-1)$ upto the terms containing fourth degree.	6	L2	CO2				
	b)	If $u = f\left(\frac{1}{2}\right)$	$\frac{x}{y}, \frac{y}{z}, \frac{z}{x}$	$\right)$, sh	ow that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$	7	L2	CO2				
	c)	If $u = \frac{yz}{x}$	$v = \frac{xz}{y}$	·, w	$= \frac{xy}{z}, \text{ find } \frac{\partial(u,v,w)}{\partial(x,y,z)}.$ Module-3	7	L2	CO2				
5.	a)	$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} \left(x - \frac{1}{2} \right) dx$	+y+z	dydx	dz	6	L2	CO3				

77	N / A	. 771	1	$\boldsymbol{\Gamma}$
<i>7.</i> 3		\T 1		

Evaluate
$$\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$$
 by changing the order of integration. 7 L2 CO3

OR

Change the integral
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} dy dx$$
 into polars and hence evaluate.

Show that
$$\int_{0}^{\infty} \sqrt{y} e^{-y^2} dy \times \int_{0}^{\infty} \frac{e^{-y^2}}{\sqrt{y}} dy = \frac{\pi}{2\sqrt{2}}$$
 7 L2 CO3

c) Find by double integration the area enclosed by the curve
$$r = a(1 + \cos \theta)$$
 between $\theta = 0$ and $\theta = \pi$.

Module-4

7. a) Solve
$$\frac{dy}{dx} - \frac{1}{2} \left(1 + \frac{1}{x} \right) y + \frac{3y^3}{x} = 0$$
 6 L2 CO4

Solve
$$xy\left(\frac{dy}{dx}\right)^2 - \left(x^2 + y^2\right)\frac{dy}{dx} + xy = 0$$
7 L2 CO4

c) A body in air at
$$25^{\circ}$$
 C cools from 100° C to 75° C in 1 minute. Find the temperature of the body at the end of 3 minutes.

OR

8. a) Solve
$$(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$$
.

Find the orthogonal trajectories of the family of curves
$$\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1$$
, where 7 L2 CO4 λ is the parameter.

Solve the equation
$$(px - y)(py + x) = a^2 p$$
, by taking $X = x^2$, $Y = y^2$.

9. a) Determine the rank of the matrix
$$\begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$
 6 L2 CO5

b) Solve the system of equations by Gauss elimination method
$$2x+y+4z=12,4x+11y-z=33,8x-3y+2z=20.$$

c) Find the largest eigen value and the corresponding eigen vector of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 by power method, use $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as initial vector, take five $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as initial vector, take five

iterations.

OR

10. a) Reduce the matrix into its normal form and hence find its rank

Itcu	ucc	tiic	munix	11110	103	norman	101111	unu	Herice	IIIIG	103	Tallix			
[2	3	-1	-1												
1	-1	-2	-4												
3	1	3	-2										6	L2	CO5
6	3	0	-7												

- b) Solve the system of equations by Gauss-Seidel method 20x + y 2z = 17, 3x + 20y z = -18, 2x 3y + 20z = 25.
- For what values of λ and μ the system of equations $x+y+z=6, x+2y+3z=10, x+2y+\lambda z=\mu$. has (i) no solution, (ii) a 7 L2 CO5 unique solution and (iii) an infinite number of solutions.
