
5. a) Define spontaneous emission and stimulated emission. Derive the expression for energy density of radiation at equilibrium in terms of Einstein's coefficients.
b) Describe different types of optical fibers with neat diagrams
c) Find the attenuation in an optical fiber of length 500 m when alight signal of power 100 mW emerges out of the fiber with a power of 90 mW .

OR

6. a) Define numerical aperture and derive the expression for numerical aperture of an optical fiber and mention the condition for ray propagation in optical fiber.
b) Explain the construction and working of a semiconductor Laser
c) The average output power of laser source emitting a laser beam of wavelength 632.8 nm . Find the number of photons emitted per second by the laser source
Module-4
7. a) Discuss the Factors affecting acoustics of buildings and remedial measures.
b) Explain Cosine law and inverse square law.
c) The reverberation time is found to be 1.5 second for an empty hall and it is found to be 1 second when a curtain cloth of 20 m 2 is suspended at the center of the hall. If the dimensions of the hall are $10 \times 8 \times 6 \mathrm{~m} 3$ calculate the coefficient of absorption of the curtain cloth.

OR

8. a) Define Photometry and explain photometric quantities.
b) Elucidate the Impact of Noise in Multi-storied buildings.
c) For an empty assembly hall of size $20 \times 15 \times 10$ cubic meter with absorption coefficient 0.106 . Calculate reverberation time.

Module-5

9. a) Explain construction and working of SEM
b) Explain composite materials and its classification also mention any 4 applications
c) Explain experimental determination of wavelength using diffraction grating experiment

OR

10. a) Explain construction and working of TEM
b) Describe the synthesis of carbon nanotubes by Arc discharge method
c) In an optical fibre experiment the Laser light propagating through optical fibre cable of 1.5 m , made a spot diameter of 8 mm on the screen. The distance between the end of the optical fibre cable and the screen is 0.031 m . calculate angle of contact and numerical aperture of given optical fibre
