

Module-1

1. a) State and explain Faraday's 1st and 2nd law of electromagnetic Induction and derive the equation for induced emf
2. b) Find the currents in all the resistors shown in fig

[08 Marks] CO2 L3
3. c) A coil consists of 600 turns and a current of 10 A in the coil gives rise to a magnetic flux of 1 mWb . Calculate (1) self inductance (2) induced emf (3) [06 Marks] CO1 energy stored when the current is reversed in 0.01 seconds.

OR
2. a)

State and Explain Kirchoff's law
2. b) A resistance of 10Ω is connected in series with two resistances each of 15 Ω arranged in parallel. What resistance must be shunted across this parallel combination so that the total current taken shall be 1.5 A with 20 V applied
2. c) A coil A of 1200 turns and another coil B of 800 turns lie near each other so that 60% of the flux produced in one links with the other. It is found that a current of 5 A in coil A , produces of flux of 0.25 mwb , while the same current in coil B produces a flux of 0.15 mwb . Determine the mutual inductance and coefficient of coupling between the coils.

Module-2

3. a) Define average and RMS values of sinusoidal voltage. Also derive the respective expressions.
4. b) Show that the current through purely capacitive circuit leads the applied voltage by 90° and average power consumed is zero. Draw the wave shapes of current, voltage and power.
5. c) A pure resistance of 50 ohms is in series with a pure capacitance of 100 microfarads. The series combination is connected across $100-\mathrm{V}, 50-\mathrm{Hz}$ supply.
Find (a) the impedance (b) current (c) power factor (d) voltage across resistor

OR

4. a) With the help of circuit diagram and phasor diagram, find the phase angle, impedance and power in case of R-C series circuit.
5. b) Three coils having resistance of 10Ω and inductance of 0.02 H are connected in star across $440 \mathrm{~V}, 50 \mathrm{~Hz}$ three phase supply. Calculate the line current, power factor and total power consumed.
6. c) An expression for alternating voltage is given by $\mathrm{V}=140 \sin 314 \mathrm{t}$. Find (i) RMS value, (ii) average value, (iii) Form factor

Module-3

5. a) Derive the emf equation of a transformer and hence obtain the voltage and current transformation ratios.
6. b) With a neat circuit diagram and phasor diagram, prove that two wattmeters are sufficient to measure 3ϕ power.
7. c) A three phase load of three equal impedances connected in delta across balanced $440 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, takes a current of 10 A at 0.7 lagging power factor. Calculate (i) The phase current (ii) Total power (iii) Total VAR OR
8. a) Obtain the relationship between line and phase values of voltage and current in a balanced 3 phase delta connected system.
9. b) Explain the various losses in a transformer and how to minimize them?
10. c) A transformer is rated at 100 kVA . At full load its copper loss is 1200 W and its iron loss is 960 W . Calculate: i) the efficiency at full load, UPF ii) the efficiency at half load, 0.8 p.f.

Module-4

7. a) With a neat diagram explain the construction of 3-Phase Induction Motor
8. b) Derive the Torque Equation of DC Motor.
9. c) An 8 pole 3 phase alternator runs at 750 RPM and supplies power to 6 pole 3 phase induction motor which runs at 970 RPM. What is the slip of the induction motor?

OR

8. a) Explain the concept of Rotating Magnetic Field in a 3-Phase Induction motor with neat vector diagrams.
9. b) Explain the significance of Back EMF in DC Motor.
10. c) A $200 \mathrm{~V}, 4$ Pole, lap wound DC shunt motor has 800 conductors on its armature. The resistance of the armature winding is 0.5Ω and that of the
[08 Marks] CO2
shunt field winding is 200Ω. The motor takes 21 A and flux /pole is 30 mWb . Find speed and gross torque developed in the motor.

Module-5

9. a) With neat circuit diagram and switching table explain two way and three way control of load
10. b) What is electric shock? Give the list of preventive measures against the shock.
In a 4BHK flat, total 8persons are residing. The average consumption of electricity per day for this flat is as follows:

No	Appliance(s)	Wattage	Hours
1	4 Geysers	1.5 kW	15 min
2	4 Air conditioners	1.8 kW	1hour
3	1 refrigerator	450 W	3 hours
4	1 induction heater	1500 W	30 min
5	8 LED tube lights	20 W	6 hours
6	8 ceiling fans	100 W	2hours

If the tariff of electric supply company is as follows, estimate the total electricity bill for this flat for the month of March. i)Up to 100 units :Rs 4.00 per unit ii)From 101 to 200 units :Rs 5.00 per unit iii)From 200 to 400 units :Rs. 6.50 per unit iv)Above 400 units :Rs. 8.00 per unit

OR

10. a) What are the desirable characteristics of tariff and explain two part tariff.
11. b) What is earthing? Why earthing is required? With the help of sketch explain plate earthing.
[08 Marks] CO4
[04 Marks] CO4
12. c) A consumer has the following connected load: 10 lamps of 80 W each and two heaters of 1500 W each. His maximum demand is 1500 W . On the average, he uses 8 lamps for 5 hours a day and each heater for 3 hours a day. Each unit is 4 INR. Find his total load, monthly energy consumption and amount of bill.
