			2.	3MAT	11B
US	SN				
FIRST Semester B. E. Degree Semester End Examination (SEE), Jan/ Feb 2024					
Fundamentals of Infinite series, Calculus & Linear Algebra					
(Model Question Paper - 1)					
[Ti	me: 3	Hours]	[Maximum Marks: 100]		
		<u>Instructions to students</u> :			
		i. Answer FIVE FULL Questions as per choice.ii. Use BLACK ball point pen for text, figure, table,			
		Module-1	Marks	со	RBT Level
1.	a)	Test the convergence of the series $\sum_{n=1}^{\infty} \sqrt{\frac{3^n-1}{2^n+1}}$.	6	L2	CO1
	b)	Discuss the convergence of the series $\frac{1}{\log 2} - \frac{1}{\log 3} + \frac{1}{\log 4} - \frac{1}{\log 5} + \dots$ by using	7	L2	C01
	c)	Alternative series. Expand tan ⁻¹ x in powers of (x-1) up to the term containing fourth degree. OR	7	L2	CO1
2.	a)	Find the values of x for the series convergence: $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty$.	6	L2	C01
	b)	Test the convergence of the series $\sum_{n=1}^{\infty} rac{n!}{\left(n^n ight)^2}$ by using D' Alembert ratio test.	7	L2	CO1
	c)	Expand $\log(1+x)$ by Maclaurin's series upto the term containing x^4 .	7	L2	CO1
	Module-2				
3.	a)	With usual notation, prove that $tan \phi = r \frac{d\theta}{dr}$.	6	L2	CO2
	b)	Find the pedal equation for the curve $r^n = a^n(\sin n\theta + \cos n\theta)$.	7	L2	CO2
	c)	Show that the radius of curvature at any point of the cardioid $r = a(1 - \cos\theta)$	7	L2	CO2
		OR			
4.	a)	Show that the curve $r = a(1 + cos\theta)$, and $r = b(1 - cos\theta)$ intersect at right angle.	6	L2	CO2
	b)	Derive the expression for radius of curvature in the case of a Cartesian curve.	7	L2	CO2
	c)	Evaluate i) $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{3}}$ ii) $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\frac{\pi}{2} - x}$	7	L2	CO2

Module-3

23MAT11B

L2

L2

CO3

CO3

7

5. a) If
$$z = f(x + ct) + g(x - ct)$$
 prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$. 6 L2 CO3

b) If
$$u = \frac{yz}{x}$$
, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$, find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. 7 L2 CO3

c) If x, y, z are the angles of a triangle show that the maximum value of $\cos x \cdot \cos y \cdot \cos z$ is 1/8.

6. a) If
$$u = f(x - y, y - z, z - x)$$
 then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.$ 6 L2 CO3

b) Expand $x^2y + 3y - 2$ in powers of (x-1) and (y+2) using Taylor's theorem. 7 L2 CO3

c) Find the extreme values of the function, $f(x, y) = x^3 + y^3 - 3x - 12y + 20$. 7

Module-4

Solve $x \frac{dy}{dx} + y = x^3 y^6$. 7. a) 6 L2 CO4 b) Find the orthogonal trajectories of the family of confocal conics $\frac{x^2}{a^2} + \frac{y^2}{a^2+a^2} = 1$ 7 L2 CO4 , where λ is the parameter. Show that the differential equation for the current *i* in an electrical current c) containing an inductance L and a resistance R in series and acted on by an 7 L2 CO4 electromotive force $E \sin(\omega t)$ satisfies the equation $L \frac{di}{dt} + Ri = E \sin(\omega t)$. Find the value of the current at any time t, if initially there is no current in the circuit. OR 8. a) Solve $(1 + 2xycosx^2 - 2xy)dx + (sinx^2 - x^2)dy = 0.$ 6 L2 CO4 A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of b) the air being 40°C. What will be temperature of the body after 40 minutes from 7 L2 CO4 the original? Solve (px - y)(py + x) = 2p. c) 7 L2 CO4 Module-5 9. a) Determine the rank of the matrix 6 L2 CO5 b) Solve the system of equations by Gauss elimination method 7 L2 CO5 x + 4y - z = -5, x + y - 6z = -12, 3x - y - z = 4. Find the largest eigen value and the corresponding eigen vector of the matrix c) $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ by power method, use $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ as initial vector, take five iterations. 7 L2 CO5

OR

23MAT11B

10. a) Reduce the matrix into its normal form and hence find its rank 3 -1 2 -1 -1 -2 -41 6 L2 CO5 3 3 -2 1 -7 3 0 6 For what values of λ and μ the system of equations 2x+3y+5z = 9, b) 7x+3y-2z = 8, $2x+3y+\lambda z = \mu$ has (i) no solution, (ii) a unique solution and (iii) an infinite 7 L2 CO5 number of solutions. Solve the system of equations by Gauss-Seidel method **c**) L2 7 CO5 x+y+54z = 110, 27x+6y-z = 85, 6x+15y+2z = 72.
