USN							
FIRST Semester B. E. Degree Semester End Examination (SEE), Jan/ Feb 2024							

Fundamentals of Infinite series, Calculus \& Linear Algebra
(Model Question Paper - 1)

1. a)

Test the convergence of the series $\sum_{n=1}^{\infty} \sqrt{\frac{3^{n}-1}{2^{n}+1}}$.
6
L2
CO1
b) Discuss the convergence of the series $\frac{1}{\log 2}-\frac{1}{\log 3}+\frac{1}{\log 4}-\frac{1}{\log 5}+\ldots$ by using
$7 \quad$ L2
CO1
Alternative series.
c) Expand $\tan ^{-1} \mathrm{x}$ in powers of $(\mathrm{x}-1)$ up to the term containing fourth degree.

7
L2
CO1
OR
2. a)

Find the values of x for the series convergence: $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \infty$.
b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$ by using D' Alembert ratio test.
c) Expand $\log (1+x)$ by Maclaurin's series upto the term containing x^{4}.

Module-2

3. a) With usual notation, prove that $\tan \phi=r \frac{d \theta}{d r}$.

6 L2
CO 2
b) Find the pedal equation for the curve $r^{n}=a^{n}(\sin n \theta+\cos n \theta)$.

7
L2
CO2
c) Show that the radius of curvature at any point of the cardioid $r=a(1-\cos \theta)$ varies as \sqrt{r}.

OR
4. a) Show that the curve $r=a(1+\cos \theta)$, and $r=b(1-\cos \theta)$ intersect at right angle.
b) Derive the expression for radius of curvature in the case of a Cartesian curve.
c) Evaluate i) $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{\frac{1}{3}}$
ii) $\lim _{x \rightarrow \frac{\pi}{2}}(\cos x)^{\frac{\pi}{2}-x}$
$7 \quad$ L2
CO2

Module-3

5. a) If $z=f(x+c t)+g(x-c t)$ prove that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$.

OR

6. a) If $u=f(x-y, y-z, z-x)$ then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
b) Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ using Taylor's theorem.
c) Find the extreme values of the function, $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.

Module-4

7. a) Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$.
b) Find the orthogonal trajectories of the family of confocal conics $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda}=1$, where λ is the parameter.
c) Show that the differential equation for the current i in an electrical current containing an inductance L and a resistance R in series and acted on by an electromotive force $E \sin (\omega t)$ satisfies the equation $L \frac{d i}{d t}+R i=E \sin (\omega t)$. Find the value of the current at any time t, if initially there is no current in the circuit.

OR

8. a) Solve $\left(1+2 x y \cos x^{2}-2 x y\right) d x+\left(\sin x^{2}-x^{2}\right) d y=0$.
b) A body originally at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ in 20 minutes, the temperature of the air being $40^{\circ} \mathrm{C}$. What will be temperature of the body after 40 minutes from the original?
c) Solve $(p x-y)(p y+x)=2 p$.

Module-5

9. a)

Determine the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$.
7

7

$$
x+4 y-z=-5, x+y-6 z=-12,3 x-y-z=4
$$

c) Find the largest eigen value and the corresponding eigen vector of the matrix

$$
\mathrm{A}=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2
\end{array}\right] \text { by power method, use }\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { as initial vector, take five iterations. }
$$

10. a) Reduce the matrix into its normal form and hence find its rank

$$
\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

b) For what values of λ and μ the system of equations $2 x+3 y+5 z=9, \quad 7 x+3 y-2 z$
$=8,2 x+3 y+\lambda z=\mu$ has (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.
c) Solve the system of equations by Gauss-Seidel method $x+y+54 z=110,27 x+6 y-z=85,6 x+15 y+2 z=72$.

