FIRST Semester B. E. Degree Semester End Examination (SEE), Jan/ Feb 2024

Physics of Condensed Matter (Model Question Paper - 1)

[Time: 3 Hours]					[Maximum Marks: 100]		100]				
			Instructions to s i. Answer FIVE FULL Quest ii. Use BLACK ball point pen iii. Assume missing data, if an	tions as per choice. 1 for text, figure, table, etc.							
			Module-1		Marks	CO	RBT Level				
1.	a)		e function then Setup the time-in 's wave equation	dependent one-dimensional	[08 Marks]	CO1	L2				
	b)	-	in's law and Rayleigh Jean's	law from Plank's law of	[07 Marks]	CO1	L2				
	c)	In a measurement of position and momentum that involved an [05 Marks] CO1 L3 uncertainty of 0.003 %, the speed of an electron was found to be 800m/s. Calculate the corresponding uncertainty that arises in determining its position.									
OR											
2.	a)		pression for Eigen function and H n a one -dimensional infinite pote	[08 Marks]	CO1	L3					
	b)		senberg's uncertainty principle ar within the nucleus of an atom.	nd show that a free electron	[07 Marks]	CO1	L2				
	c)		the momentum of the particle an with an electron with a kinetic energy		[05 Marks]	CO1	L2				
3.	a)		Module-2 ni factor and explain the variation mperature and energy.	n of Fermi factor with	[08 Marks]	CO2	L2				
	b)		expression of hole and electron c for and derive the expression for H for.		[07 Marks]	CO2	L2				
	c)		efficient of a material is -3.68x10 ⁻ ers? Also calculate the carrier con		[05 Marks]	CO2	L2				
4.	a)		effect? Obtain the expression for in terms of Hall coefficient		[08 Marks]	CO2	L2				
	b)		successes of quantum free electro	on theory.	[07 Marks]	CO2	L1				

	c)	Calculate the probability of an electron occupying an energy level 0.02eV above the Fermi level at 200k and 400k.	[05 Marks]		HI12B L3			
5.	a)	Module-3 Define spontaneous emission and stimulated emission. Derive the expression for energy density of radiation at equilibrium in terms of Einstein's coefficients.	[08 Marks]	CO3	L2			
	b)	Describe different types of optical fibers with neat diagrams	[07 Marks]	CO3	L1			
	c)	Find the attenuation in an optical fiber of length 500m when alight signal of power 100mW emerges out of the fiber with a power of 90mW.	[05 Marks]	CO3	L3			
OR								
6.	a)	Define numerical aperture and derive the expression for numerical aperture of an optical fiber and mention the condition for ray propagation in optical fiber.	[08 Marks]	CO3	L3			
	b)	Explain the construction and working of a semiconductor Laser	[07 Marks]	CO3	L2			
	c)	The average output power of laser source emitting a laser beam of wavelength 632.8nm. Find the number of photons emitted per second by the laser source	[05 Marks]	CO3	L3			
		Module-4						
7.	a)	State and explain Gauss divergence theorem and Mention the Stoke's theorem.	[08 Marks]	CO2	L3			
	b)	What is displacement current, derive the expression for displacement current.	[07 Marks]	CO2	L3			
	c)	The dielectric constant of He gas at N.T.P. is 1.0000684. Calculate the electronic polarizability of the gas containing 2.7×10^{25} atoms/m ³ . OR	[05 Marks]	CO2	L3			
8.	a)	Derive wave equation in terms of electric field using Maxwell's equation for free space.	[08 Marks]	CO2	L3			
	b)	Define Internal field and derive Clausius – mossotti relation.	[07 Marks]	CO2	L1			
	c)	Find constant C, such that $\vec{A} = (x+ay)\hat{a}_x + (y+bz)\hat{a}_y + (x+cz)\hat{a}_z$ is solenoid	[05 Marks]	CO2	L2			
9.	a)	Module-5 Explain construction and working of SEM	[08 Marks]	CO4	L2			
	b)	Mention any three properties and any four applications of carbon nano	[07 Marks]					
	c)	tubes. Explain experimental determination of responsivity of photodiode.	[05 Marks]	CO5	L2			
		OR						
10.	a) b)	Explain construction and working of TEM Describe the synthesis of carbon nanotubes by Arc discharge method	[08 Marks] [07 Marks]					

c) In an optical fibre experiment the Laser light propagating through optical fibre cable of 1.5m, made a spot diameter of 8mm on the screen. The distance between the end of the optical fibre cable and the screen is 0.031 m. calculate angle of contact and numerical aperture of given optical fibre?

[05 Marks] CO5 L3
