USN							
FIRST Semester B. E. Degree Semester End Examination (SEE), Jan/ Feb 2024							

Advanced Calculus

(Model Question Paper - 1)

[Time: 3 Hours]		Instructions to students:	[Maximum Marks: 100]
	i.	Answer FIVE FULL Questions as per choice. Ui. Use BLACK ball point pen for text, figure, table, etc.	

Module-1
Marks

1. a) Find the length of the perpendicular from the pole to the tangent.
b) Find the angle between the radius vector and the tangent and also find the slope of the tangent for the curve $\frac{2 a}{r}=(1-\cos \theta)$ at $\theta=\frac{2 \pi}{3}$
c) Find the radius of curvature for the curve $y=a x^{2}+b x+c$ at $x=$ $\frac{1}{2 a}\left[\sqrt{a^{2}-1}-b\right]$

OR
2. a) Show that the curve $r=a(1+\cos \theta)$ and $r^{2}=a^{2} \cos 2 \theta$ intersect orthogonally.
b) Find the pedal equation for the curve $r^{n}=a^{n} \cos n \theta$.

6
7
7

Module-2

3. a) Using Maclaurin's series, expand $\log (1+\sin x)$ in powers of x upto the term x^{4}.
b) If $u=\tan ^{-1}\left(\frac{y}{x}\right)$, verify that $\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}$
c) Find the extreme values of the function $x y(a-x-y)$.

OR
4. a) Expand $\log (\sec x)$ upto the term containing x^{6} using Maclaurin's series.

6
b) If $u=f(x-y, y-z, z-x)$ show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$

7
7

Module-3

5. a) Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$.

6
L2
CO3
b) Evaluate $\int_{0}^{1} \int_{x}^{1} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$. by changing the order of integration.

OR

6. a) Change the integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} y \sqrt{x^{2}+y^{2}} d y d x$ into polars and hence evaluate.
b) Show that $\int_{0}^{\infty} \sqrt{y} e^{-y^{2}} d y \times \int_{0}^{\infty} \frac{e^{-y^{2}}}{\sqrt{y}} d y=\frac{\pi}{2 \sqrt{2}}$ about the initial line.

Module-4

7. a) Solve $\left(y^{3}-3 x^{2} y\right) d x-\left(x^{3}-3 x y^{2}\right) d y=0$
b) Find the orthogonal trajectories of the family of astroids $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
c) Solve $x y\left(\frac{d y}{d x}\right)^{2}-\left(x^{2}+y^{2}\right) \frac{d y}{d x}+x y=0$

OR
8. a) Solve $\frac{d y}{d x}+\frac{x+3 y-4}{3 x+9 y-2}=0$.
b) A body in air at $25^{\circ} \mathrm{C}$ cools from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 1 minute. Find trhe temperature of the body at the end of 3 minutes.
c) Solve the equation $(p x-y)(p y+x)=a^{2} p$, by taking $X=x^{2}, Y=y^{2}$.

Module-5

9. a)

Determine the rank of the matrix

$$
\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

$$
x+y+z=9, x-2 y+3 z=8,2 x+y-z=3
$$

c) Find the largest eigen value and the corresponding eigen vector of the matrix
$A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ by power method, use $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as initial vector.
OR
10. a)

Reduce the matrix into its normal form and hence find its rank $\left[\begin{array}{cccc}4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4\end{array}\right]$.
b) For what values of λ and μ the system of equations $2 x+3 y+5 z=9, \quad 7 x+3 y-$
$2 z=8,2 x+3 y+\lambda z=\mu$ has (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.
c) Solve the system of equations by Gauss-Seidel method
$20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25$.

7
cos

