

# SJB Institute of Technology

(Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi.)



# Department of Computer Science and Engineering

# Course Outcomes and CO-PO-PSO Articulation Matrix

### Batch 2015-19

#### Semester-I/II

| Subject:        | Progra | ammir  | ig in C   | & Dat    | a Stru   | ctures  |        |          |         | Subje    | ect Co           | de:15P | CD13 | /23   |     |
|-----------------|--------|--------|-----------|----------|----------|---------|--------|----------|---------|----------|------------------|--------|------|-------|-----|
|                 |        |        |           |          |          | Cour    | rse Ou | teome    | S       | 1        |                  |        |      |       |     |
| CO-1            | Achie  | ve kno | wledge    | of desig | gn and o | develop | ment o | of C pro | blem so | lving sk | ills.            | T      |      |       |     |
| CO-2            |        |        | ous syst  |          |          |         |        |          |         | . 9      |                  |        |      |       |     |
| CO-3            |        |        | basic pr  |          |          |         |        |          |         | -        |                  |        |      |       |     |
| CO-4            |        |        | levelopr  |          |          |         |        |          |         |          |                  |        |      |       |     |
| CO-5            |        |        | ization d |          |          |         |        |          |         |          |                  |        |      |       | *** |
|                 |        |        |           |          |          | CO-PO   |        |          | THE CO. |          |                  |        |      | 7 (7) |     |
| COs             |        |        |           |          |          | P       | Os     |          |         |          |                  |        |      | PSOs  |     |
| CO3             | 1      | 2      | 3         | 4        | 5        | 6       | 7      | 8        | 9       | 10       | 11               | 12     | 1    | 2     | 3   |
| CO <sub>1</sub> | 2      |        | 2         |          |          |         |        |          |         |          |                  | 2      | 2    |       |     |
| CO <sub>2</sub> | 2      |        | 2         |          |          |         |        |          |         |          |                  |        | 2    |       |     |
| CO <sub>3</sub> | 2      |        | 1         |          |          |         |        |          |         |          |                  | -      | 2    |       |     |
| CO4             | 2      |        | 2         |          |          |         |        |          | 20 72 7 |          | ( )- <del></del> | -      | 2    |       |     |
| CO5             | 3      |        | 2         |          |          |         |        |          |         |          |                  | 1      | 2    |       |     |
| Average         | 2.2    |        | 1.8       |          |          |         |        |          |         |          |                  | 1.5    | 2    |       |     |

| Subject: | Comp  | uter Pi  | rogran          | nming   | Labor       | atory   |          | -                                     |         | Subj     | ect Co | de:15C       | PL16/ | 26          | ** * |
|----------|-------|----------|-----------------|---------|-------------|---------|----------|---------------------------------------|---------|----------|--------|--------------|-------|-------------|------|
|          |       |          | 204-630 (08-04- |         | 2332 10 533 | Cou     | rse Ou   | tcome                                 | S       | •        | 4      |              |       | -           |      |
| CO-1     | Const | ruct a p | rogram          | nming s | olution     | to the  | given p  | oblem                                 | using C |          |        |              |       |             |      |
| CO-2     | Ident | ify and  | correct         | the syn | tax and     | llogica | l errors | in C pro                              | ograms  |          |        |              |       | - 3 - 1     |      |
| CO-3     |       |          |                 |         |             |         |          |                                       |         | tructure | 25     |              |       | -           | 2.72 |
|          |       |          |                 |         |             |         | )-PSO    |                                       |         | * -      |        | F-15 5.75 FF | -     |             |      |
| COs      |       |          |                 |         |             | P       | Os       |                                       |         | n l      |        |              |       | <b>PSOs</b> |      |
| COS      | 1     | 2        | 3               | 4       | 5           | 6       | 7        | 8                                     | 9       | 10       | 11     | 12           | 1     | 2           | 3    |
| CO1      | 3     |          |                 |         |             |         |          |                                       |         |          |        |              | 2     |             |      |
| CO2      |       | 2        |                 |         |             |         |          |                                       |         |          |        |              | 2     |             |      |
| CO3      |       | 2        |                 |         |             |         |          |                                       |         |          |        |              | 2     |             |      |
| Average  | 3     | 2        |                 |         |             |         |          | · · · · · · · · · · · · · · · · · · · |         |          |        |              | 2     |             |      |

#### Semester-III

| Subject: | Engineering Mathematics-III                                                                              | Subject Code: 15MAT31                     |
|----------|----------------------------------------------------------------------------------------------------------|-------------------------------------------|
|          | Course Outcomes                                                                                          |                                           |
| CO1      | Know the use of periodic signals and Fourier ser communication.                                          | ies to analyze circuits and systems       |
| CO2      | Explain the general linear system theory for continous - ti using the Fourier transform and z-transform. | ime signals and digital signal processing |
| CO3      | Employ appropriate numerical methods to solve algebraic                                                  | and transcedental equations.              |
|          | Annly Green's theorem Divergence theorem and Stokes                                                      | theorem in various applications in the    |

|                 |   |    |   |   | ( | CO-PC | )-PSO | Mapp | ing | ital cir | cuits. |    |   |      |   |
|-----------------|---|----|---|---|---|-------|-------|------|-----|----------|--------|----|---|------|---|
| COs             |   | Į. | , | r |   |       | Os    |      | 9   |          |        |    |   | PSOs |   |
|                 | 1 | 2  | 3 | 4 | 5 | 6     | 7     | 8    | 9   | 10       | 11     | 12 | 1 | 2    | 3 |
| CO1             | 3 | 2  |   |   |   |       |       |      |     | 0.0000   |        |    |   |      |   |
| CO <sub>2</sub> | 3 | 2  |   |   |   |       |       |      |     |          |        |    |   |      |   |
| CO3             | 3 | 2  |   |   |   | -     |       |      |     |          |        |    |   |      | _ |
| CO4             | 3 | 2  |   |   |   |       |       |      | -   |          | -      |    |   |      |   |
| CO5             | 3 | 2  |   |   |   |       |       |      |     |          |        |    |   |      |   |
| Average         | 3 | 2  |   |   | - |       |       |      |     |          |        |    |   |      |   |

| Subject:                                        | Analog                            | and Di                                                    | igital El          | ectroni            | cs                |                     |                             |                              |                      | Subj                            | ect Co               | de:150           | CS32      |           | -     |
|-------------------------------------------------|-----------------------------------|-----------------------------------------------------------|--------------------|--------------------|-------------------|---------------------|-----------------------------|------------------------------|----------------------|---------------------------------|----------------------|------------------|-----------|-----------|-------|
|                                                 |                                   |                                                           |                    |                    |                   |                     |                             | itcome                       |                      | -                               |                      |                  |           |           |       |
| CO-1                                            | Defin                             | e and e                                                   | explain            | the cur            | rent vo           | tage ch             | aracte                      | ristics o                    | fsemic               | onducto                         | r and a              | nalog d          | evices    |           |       |
| CO-2                                            | Dem                               | onstrati                                                  | e the co           | mbinat             | tional a          | nd sequ             | ential                      | ogic cir                     | cuits by             | using v                         | arious               | logical b        | olocks    |           | -     |
| CO-3                                            | Desig                             | n and (                                                   | Compar             | e vario            | us digita         | al data             | commu                       | nication                     | n efficie            | ency usi                        | ng Data              | Proces           | sing Ci   | rcuits    |       |
| CO-4                                            | Apply                             | / variou<br>cations                                       | is meth            | ods to             | get mo            | re effic            | ient th                     | roughpi                      | ut in sy             | nchrono                         | ous cou              | nters a          | nd seq    | uential ( | circu |
| CO-5                                            | Evalu                             | ate and                                                   | develo             | p an ui            | ndersta           | nding t             | he cond                     | ept AD                       | C, DAC               | blocks r                        | eauire               | d for dat        | ta conv   | ersion    |       |
|                                                 |                                   |                                                           |                    |                    |                   | CO-PO               | )-PSO                       | Mapp                         | ing                  |                                 |                      |                  | ta com    | (C131011. |       |
| COs                                             |                                   |                                                           |                    |                    |                   |                     | Os                          |                              | -0                   |                                 |                      |                  |           | PSOs      | -     |
| COS                                             | 1                                 | 2                                                         | 3                  | 4                  | 5                 | 6                   | T 7                         | 8                            | 9                    | 10                              | 11                   | 12               | 1         | 2         | 3     |
| CO1                                             | 2                                 | 1                                                         |                    | 1                  |                   | 1                   |                             |                              |                      |                                 | - 11                 | 12               | 1         |           |       |
| CO2                                             | 2                                 |                                                           | 1                  |                    |                   |                     |                             | -                            |                      |                                 |                      |                  |           | 2         |       |
| CO3                                             |                                   | 2                                                         |                    |                    | -                 |                     |                             | -                            |                      | -                               |                      |                  | 1         | 2         |       |
| CO4                                             |                                   | -                                                         | 1                  |                    |                   | -                   |                             | <u> </u>                     |                      | -                               |                      |                  |           | 1         |       |
| CO5                                             |                                   | 2                                                         | 1                  | -                  | -                 |                     | -                           |                              |                      | -                               |                      |                  |           | 1         | _     |
| verage                                          | 2                                 | 1.6                                                       | 1                  |                    | -                 |                     | -                           |                              |                      |                                 |                      |                  | 1         | 1.5       | 2     |
| Subject:                                        | Jala 3                            | uctur                                                     | CS                 |                    |                   | Com                 | rea Au                      | taama                        | 2                    | Subje                           | ect Co               | de:15C           | S33       |           |       |
| CO-1                                            | ۸ اد ا د ۱                        |                                                           |                    |                    |                   |                     |                             | tcome                        |                      |                                 |                      |                  |           |           |       |
| CO-2                                            | Analy                             | o unae                                                    | domon              | rundam             | entais<br>bootes  | of Clan             | guage a                     | and def                      | inition              | of data :                       | structu              | res              |           |           |       |
|                                                 | Allaly                            | se and                                                    | . uemon            | usina li           | ne stac           | ks, quei            | ies ope                     | rations                      | and its              | applica                         | tions                |                  |           |           |       |
| CO-3                                            |                                   | o data c                                                  | TOPOGO             |                    | nkea n            | its cond            | ents ar                     |                              |                      |                                 |                      |                  |           |           |       |
| CO-4                                            | Const                             | e data s                                                  | storage            | ctructi            | troc an           | dnorfo              | cpts ui                     | id demo                      | onstrate             | e its app                       | lication             | ns.              | 200 AND 1 |           |       |
| CO-3                                            | Const                             | e data s<br>ruct tre                                      | es data            | structi            | ires an           | d perfo             | rm ope                      | id demo                      | onstrate<br>such as  | e its app                       | licatior<br>als, sea | ns.<br>Irching a | and exp   | oression  |       |
|                                                 | Const<br>evalua                   | e data s<br>ruct tre<br>ation                             | es data            | structi            | ures an           | d perfo             | rm ope                      | rations                      | such as              | e its app<br>travers            | als, sea             | rching a         |           |           |       |
| CO-4                                            | Const<br>evalua<br>Use g          | e data s<br>ruct tre<br>ation                             | es data<br>sed dat | structi            | ures an           | d perfo             | rm ope                      | rations                      | such as              | e its app<br>travers            | als, sea             | rching a         |           | oression  |       |
| CO-4                                            | Const<br>evalua<br>Use g          | e data s<br>ruct tre<br>ation<br>raph ba                  | es data<br>sed dat | structi            | ures an           | d perfo             | rm ope                      | rations                      | such as<br>orting, s | e its app<br>travers            | als, sea             | rching a         |           |           |       |
| CO-4<br>CO-5                                    | Const<br>evalua<br>Use g          | e data s<br>ruct tre<br>ation<br>raph ba                  | es data<br>sed dat | structi            | ures an           | d performack  CO-PC | rm ope                      | rations<br>oring, so         | such as<br>orting, s | e its app<br>travers            | als, sea             | rching a         |           | and file  |       |
| CO-4                                            | Const<br>evalua<br>Use g          | e data s<br>ruct tre<br>ation<br>raph ba                  | es data<br>sed dat | structi            | ures an           | d performack  CO-PC | rm ope  n for sto  -PSO     | rations<br>oring, so         | such as<br>orting, s | e its app<br>travers<br>earchin | als, sea             | rching a         | ınderst   | and file  |       |
| CO-4<br>CO-5                                    | Const<br>evalua<br>Use g<br>handl | e data s<br>ruct tre<br>ation<br>raph ba<br>ing basi      | es data            | structi<br>a struc | tures an          | d performach CO-PC  | rm ope  n for sto  -PSO Os  | rations<br>oring, so<br>Mapp | such as<br>orting, s | e its app<br>travers            | als, sea             | rching a         | inderst   | and file  |       |
| CO-4<br>CO-5                                    | Const<br>evalua<br>Use g<br>handl | e data s<br>ruct tre<br>ation<br>raph ba<br>ing basi      | es data            | structi<br>a struc | tures an          | d performach CO-PC  | rm ope  n for sto  -PSO Os  | rations<br>oring, so<br>Mapp | such as<br>orting, s | e its app<br>travers<br>earchin | als, sea             | rching a         | ınderst   | and file  |       |
| CO-4<br>CO-5<br>COs                             | Const<br>evalua<br>Use g<br>handl | e data s<br>ruct tre<br>ation<br>raph ba<br>ing basi<br>2 | es data            | structi<br>a struc | tures an          | d performach CO-PC  | rm ope  n for sto  -PSO Os  | rations<br>oring, so<br>Mapp | such as<br>orting, s | e its app<br>travers<br>earchin | als, sea             | rching a         | inderst   | and file  |       |
| CO-4 CO-5 COs CO1 CO2                           | Const<br>evalua<br>Use g<br>handl | e data s<br>ruct tre<br>ation<br>raph ba<br>ing basi<br>2 | es data            | structi<br>a struc | tures and         | d performach CO-PC  | rm ope n for sto  -PSO Os 7 | rations<br>oring, so<br>Mapp | such as<br>orting, s | e its app<br>travers<br>earchin | als, sea             | rching a         | inderst   | PSOs 2    |       |
| CO-4<br>CO-5<br>COs<br>CO1<br>CO2<br>CO3        | Const<br>evalua<br>Use g<br>handl | e data s<br>ruct tre<br>ation<br>raph ba<br>ing basi<br>2 | es data            | structi<br>a struc | tures and tures a | d performach CO-PC  | rm ope n for sto  -PSO Os 7 | rations<br>oring, so<br>Mapp | such as<br>orting, s | e its app<br>travers<br>earchin | als, sea             | rching a         | inderst   | and file  |       |
| CO-4<br>CO-5<br>COs<br>CO1<br>CO2<br>CO3<br>CO4 | Const<br>evalua<br>Use g<br>handl | e data s<br>ruct tre<br>ation<br>raph ba<br>ing basi<br>2 | sed data           | structi<br>a struc | tures and tures a | d performach CO-PC  | rm ope n for sto O-PSO Os 7 | rations<br>oring, so<br>Mapp | such as<br>orting, s | e its app<br>travers<br>earchin | als, sea             | rching a         | inderst   | PSOs 2    |       |

| Subject                                   | : Comp                                | uter ()                        | rganiza                         | ition                      |          | ///        |           |             |          | Sub       | ject C    | ode:15   | CS34   |                    | ***   |
|-------------------------------------------|---------------------------------------|--------------------------------|---------------------------------|----------------------------|----------|------------|-----------|-------------|----------|-----------|-----------|----------|--------|--------------------|-------|
| CO-1                                      | Eval                                  | in tha                         | hacis -                         |                            |          | Cor        | irse O    | utcom       | es       |           | -100-     |          |        |                    |       |
| CO-2                                      | Expir                                 | ain the                        | basic or                        | ganıza                     | tion of  | a comp     | uter sys  | stem        |          |           |           |          |        |                    |       |
| CO-3                                      | Dem                                   | onstrat                        | o functi                        | tance o                    | of I/O o | rganizat   | ion and   | d intrrup   | ots in c | ompute    | rsyster   | m        |        |                    |       |
| CO-4                                      | Illust                                | rate ha                        | rdwiros                         | loning                     | main m   | emory a    | and imp   | oratno      | e of vit | ual men   | nory an   | nd secon | ndary  | storage            |       |
|                                           | syste                                 | ms                             | ruwirec                         | CONT                       | oi and r | nicro pr   | ogrami    | med coi     | ntrol. p | ipelinin  | g, embe   | edded a  | and ot | storage<br>her com | puti  |
| CO-5                                      |                                       |                                | analyze                         | simple                     | arithm   | etic and   | d logica  | Lupite      |          |           | -         |          |        |                    |       |
|                                           |                                       |                                |                                 |                            | diffill  | CO-Po      |           |             | vino     |           |           |          |        | _                  |       |
| CO                                        |                                       |                                |                                 |                            | -        |            | Os        | Mapl        | nng      |           |           |          | -I -   |                    |       |
| COs                                       | 1                                     | 2                              | 3                               | 4                          | 5        | 6          | 7         | 8           | 9        | 10        | 1 11      | 10       |        | PSO                | 1     |
| CO1                                       | 2                                     |                                |                                 |                            |          | 1          |           |             |          | 10        | 11        | 12       | 1      | 2                  |       |
| CO <sub>2</sub>                           | 2                                     |                                |                                 | -                          | 1        | -          | -         |             | -        |           |           |          | 2      |                    |       |
| CO3                                       | 2                                     |                                |                                 |                            | -        |            |           | -           |          | -         |           |          | 2      |                    |       |
| CO4                                       | 2                                     |                                | -                               | -                          |          |            |           | -           |          | -         |           |          | 2      |                    |       |
| CO5                                       | + -                                   | 2                              |                                 |                            | -        | -          |           |             |          |           |           |          | 2      |                    |       |
|                                           | + -                                   | 2                              | 2                               |                            | 1        |            |           | ļ           |          |           |           |          | 2      |                    |       |
| Average                                   | 2                                     | 2                              | 2                               |                            |          |            |           |             |          |           |           |          | 2      |                    | 1     |
|                                           |                                       |                                |                                 |                            |          |            |           |             |          |           |           | 1        | 1      | - 1                | 1     |
| Subject:                                  | Unix S                                | vstem 1                        | Program                         | nmino                      |          |            |           |             |          | 0.1.      |           |          |        |                    |       |
|                                           |                                       | , occini i                     | rogran                          | mming                      |          | C          |           |             |          | Subj      | ect Co    | de:150   | US35   |                    |       |
| CO-1                                      | Unde                                  | rstand                         | multi uc                        | oruni                      |          |            |           | tcome       |          |           |           |          |        |                    |       |
| CO-2                                      | Interr                                | ret uni                        | multi us                        | ande e                     | holl bas | its basi   | c reatui  | res and     | variatio | on        |           |          |        |                    |       |
| CO-3                                      | Desig                                 | n and d                        | evelon                          | chall a                    | nell bas | ics and    | shell e   | nvironn     | nents u  | sing into | erpretiv  | ve mani  | ner    |                    |       |
| CO-4                                      | Desig                                 | and d                          | evelon                          | univ fil                   | OlOun    | ming us    | ing filte | ers, com    | nmunic   | ation, sy | stem c    | alls and | d term | inologie           | S     |
| CO-5                                      | Write                                 | perl sc                        | evelop                          | uiiix iii                  | e 10 un  | ix proce   | sses an   | dawk        | orogran  | nming     |           |          |        |                    |       |
|                                           | Title                                 | perise                         | ipts                            |                            |          | CO DO      | Deo       | NA .        | -        |           |           |          |        |                    |       |
|                                           | 1                                     | Sept. 1997                     |                                 |                            |          | СО-РО      | -         | Mappi       | ing      |           |           |          | т      |                    |       |
| COs                                       | 1                                     | 2                              | 3                               | 4                          |          |            | Os        |             | -        | F         | I         | 1 -      |        | PSOs               |       |
| CO1                                       | 3                                     |                                | 3                               | 4                          | 5        | 6          | 7         | 8           | 9        | 10        | 11        | 12       | 1      | 2                  |       |
| 300000000000000000000000000000000000000   |                                       |                                |                                 |                            |          |            |           | _           | -        |           |           |          | 2      |                    |       |
| CO2                                       | 3                                     |                                |                                 |                            |          |            |           |             |          |           |           |          |        |                    |       |
| CO3                                       |                                       |                                | 2                               |                            |          |            |           |             |          |           |           |          |        | -                  |       |
| CO4                                       |                                       |                                | 2                               |                            |          |            |           |             |          |           | -         |          |        |                    |       |
| CO5                                       |                                       |                                |                                 | 1                          |          |            |           |             |          |           |           |          |        | 2                  | -     |
| verage                                    | 3                                     |                                | 2                               | 1                          |          |            |           | -           |          |           |           |          | 2      | 2                  | -     |
|                                           |                                       |                                |                                 |                            |          |            | 1         | 1           | -        | lI        |           |          | 4      | 1 2                | 1     |
|                                           |                                       |                                |                                 |                            |          |            | -         |             |          |           |           |          |        |                    |       |
| ubject: 1                                 | Discrete                              | Mathe                          | matica                          | l Struc                    | tures    |            |           |             |          | Subje     | ect Coc   | de:15C   | S36    | -                  |       |
|                                           |                                       |                                |                                 |                            |          |            |           | comes       |          |           |           |          | -      | -                  |       |
| CO-1                                      | Verify                                | the cor                        | rectnes                         | s of an                    | argum    | ent usin   | g prop    | ositiona    | l and p  | redicate  | e logic a | and trut | th tab | les.               |       |
| co o                                      | Demoi                                 | istrate                        | the abil                        | ity to s                   | olve pr  | oblems     | using c   | ounting     | g techn  | iques ar  | nd com    | binator  | ics in | the cont           | ext o |
| CO-2                                      | discret                               | e propa                        | ability.                        |                            |          |            |           |             |          |           |           |          |        |                    |       |
| CO-2                                      |                                       |                                | ns involv                       | ving re                    | currenc  | e relatio  | ons and   | l genera    | ating fu | nctions   |           |          |        |                    |       |
| CO-2                                      | Solve p                               | robien                         |                                 |                            |          | proof      | by cont   | rapositi    | ion, pro | oof by co | ontradi   | ction, p | roof l | y cases,           | and   |
|                                           | Solve p<br>Constr                     | uct pro                        | ofs usin                        | g dired                    | t proof  | , p. co. i |           |             |          |           |           |          |        |                    |       |
| CO-3                                      | Solve p<br>Constr<br>mathe            | uct pro<br>matical             | ofs usin<br>inducti             | g dired<br>on.             |          |            |           |             |          |           |           |          |        |                    |       |
| CO-3                                      | Solve p<br>Constr<br>mathe            | uct pro<br>matical             | ofs usin                        | g dired<br>on.             | phs an   | d trees    |           |             |          |           |           |          |        |                    |       |
| CO-3                                      | Solve p<br>Constr<br>mathe            | uct pro<br>matical             | ofs usin<br>inducti             | g dired<br>on.             | phs an   | d trees    | -PSO I    | Mappi       | ng       |           |           |          |        |                    |       |
| CO-3<br>CO-4<br>CO-5                      | Solve p<br>Constr<br>mathe<br>Explain | uct pro<br>matical<br>I and di | ofs usin<br>inducti<br>fferenti | g dired<br>on.<br>iate gra | phs an   | d trees    | -PSO I    | Mappi       | ng       |           |           |          |        | PSOs               |       |
| CO-3<br>CO-4<br>CO-5                      | Solve p<br>Constr<br>mathe<br>Explain | uct pro<br>matical             | ofs usin<br>inducti             | g dired<br>on.             | phs an   | d trees    | -PSO I    | Mappii<br>8 | ng<br>9  | 10        | 11        | 12       | 1      | PSOs<br>2          | 3     |
| CO-3<br>CO-4<br>CO-5<br>COs               | Solve p<br>Constr<br>mathe<br>Explain | uct pro<br>matical<br>I and di | ofs usin<br>inducti<br>fferenti | g dired<br>on.<br>iate gra | aphs an  | d trees    | -PSO I    |             | -        | 10        | 11        | 12       | 1      |                    | 3     |
| CO-3<br>CO-4<br>CO-5<br>COs               | Solve p<br>Constr<br>mathe<br>Explain | uct pro<br>matical<br>I and di | ofs usin<br>inducti<br>fferenti | g dired<br>on.<br>iate gra | aphs an  | d trees    | -PSO I    |             | -        | 10        | 11        | 12       | 1      |                    | 3     |
| CO-3<br>CO-4<br>CO-5                      | Solve p<br>Constr<br>mathe<br>Explain | uct pro<br>matical<br>i and di | ofs usin<br>inducti<br>fferenti | g dired<br>on.<br>iate gra | aphs an  | d trees    | -PSO I    |             | -        | 10        | 11        | 12       | 1      |                    | 3     |
| CO-3<br>CO-4<br>CO-5<br>COs<br>CO1<br>CO2 | Solve p<br>Constr<br>mathe<br>Explain | uct pro<br>matical<br>i and di | ofs usin<br>inducti<br>fferenti | g dired<br>on.<br>iate gra | aphs an  | d trees    | -PSO I    |             | -        | 10        | 11        | 12       | 1      |                    | 3     |

| Subject:   | Analog         | Digital              | Electro                     | nics La             | b                  |                   |                   |            |          | Subj                | ect Co              | de:150              | CSL37           |                   |          |
|------------|----------------|----------------------|-----------------------------|---------------------|--------------------|-------------------|-------------------|------------|----------|---------------------|---------------------|---------------------|-----------------|-------------------|----------|
|            | 7              |                      |                             |                     |                    |                   |                   | ıtcome     |          |                     |                     |                     |                 |                   |          |
| CO-1       | Design of ele  | n differ<br>ectronic | ent typ                     | es of w             | riting a           | nd insr           | uments            | conne      | ctions a | ind to e            | vluate              | perform             | iance c         | haracte           | eristi   |
| CO-2       | Choo<br>opera  | se testi<br>ation di | ng and<br>fferent           | exoerii<br>operati  | mental<br>ng cond  | proced<br>ditions | lures o           | n differ   | ent typ  | es of el            | lectroni            | c circui            | ts and          | analyze           | the      |
| CO-3       | Ident          | ify the<br>come th   | overhe<br>ose pro           | eads in<br>blem     | practi             | cal exp           | perrime           | ents sin   | nulation | result              | s and               | develop             | o a ne          | ew desi           | ign      |
|            |                |                      |                             |                     | (                  | CO-PC             | )-PSO             | Mapp       | ing      |                     |                     |                     |                 |                   |          |
| COs        | 1              | 2                    | 3                           | 4                   | 5                  | P 6               | Os 7              | 8          | 9        | 1 10                | 11                  |                     |                 | PSOs              | T        |
| CO1        | 1 2            | 2                    |                             |                     |                    | - 0               | -'-               | 0          | 9        | 10                  | 11                  | 12                  | 1               | 2                 | 3        |
| CO2        | ļ              |                      | 1                           |                     |                    |                   |                   | -          |          |                     |                     |                     | 1               |                   | -        |
| CO3        |                |                      |                             |                     |                    |                   |                   | -          |          |                     |                     |                     |                 | 2                 |          |
| -          | 2              | 2                    | 1                           |                     | 1                  | -                 |                   |            |          |                     |                     |                     |                 |                   | 1        |
| Average    | Z              |                      | 11                          | l                   | 1_1_               |                   |                   |            |          |                     |                     |                     | 1               | 2                 | 1        |
|            |                |                      |                             |                     |                    |                   | - 112             |            |          |                     |                     |                     |                 |                   |          |
| Subject:   | Data St        | ructure              | s and a                     | pplicati            | ion lab            |                   |                   |            |          | Subje               | ect Co              | de:15C              | SL38            |                   |          |
|            | 1 22           |                      |                             |                     |                    |                   | rse Ou            | tcomes     | 3        |                     |                     |                     |                 |                   |          |
| COI        |                |                      | test of                     |                     |                    |                   |                   |            | W =      |                     |                     |                     |                 |                   |          |
| CO2        | Desig          | gn and               | test of                     | oscillat            | tor and            | ampli             | fier, an          | alyze t    | he circ  | uit perf            | forman              | ce.                 |                 |                   |          |
| CO3        | Use            | of unive             | ersal ga                    | ites and            |                    |                   |                   |            |          | nmetic              | operati             | ion.                |                 |                   |          |
|            | 1              |                      |                             |                     | (                  | CO-PO             | -PSO              | Mapp       | ing      |                     |                     |                     |                 |                   |          |
| COs        |                |                      | r                           |                     |                    | P                 | Os                |            |          |                     |                     |                     |                 | <b>PSOs</b>       |          |
|            | _1_            | 2                    | 3                           | 4                   | 5                  | 6                 | 7                 | 8          | 9        | 10                  | 11                  | 12                  | 1               | 2                 | 3        |
| CO1        |                | 2                    |                             |                     |                    |                   |                   |            |          |                     |                     |                     |                 | 2                 |          |
| CO2        |                |                      | 2                           |                     |                    |                   |                   |            |          |                     |                     |                     |                 | 2                 |          |
| CO3        |                | 2                    | 2                           |                     |                    |                   |                   |            |          |                     |                     |                     |                 | 2                 |          |
| Average    |                | 2                    | 2                           |                     |                    |                   |                   |            |          |                     |                     |                     |                 | 2                 |          |
| Subject: I | Engine         | ering N              | 1athem                      | atics-I             | V V                |                   | emesto            |            |          | Subje               | ect Cod             | le:15M              | IAT41           |                   |          |
| - 4        | C-1            | · · ·                | 1                           |                     |                    |                   |                   | tcomes     |          |                     |                     |                     |                 |                   |          |
| CO1        | and m          | ultiste              | na secc<br>p nume           | ona ora<br>erical n | inary o            | litterer<br>S.    | itial eq          | luations   | arisin   | g in flo            | w prob              | olems u             | sing s          | ingle st          | ер       |
| CO2        | Solve          | proble               | ms of q                     | luantun             | n mech             | anics             | employ            | ying Bo    | ssel's   | unction             | n relati            | ng to c             | yclind          | rical po          | olar     |
|            | coord          | inatesy              | stems                       | and Le              | grendr             | e's poly          | ynomia            | als relat  | ing to   | spheric             | cal pola            | ar coord            | linate          | svstem            | S        |
|            | Unde           | rstand 1             | the ana                     | lyticity            | ,poten             | tialfiel          | ds,resi           | dues ar    | id pole  | s of cor            | mplex               | potentia            | als in f        | field th          | eory     |
| CO3        | and e          | lectron              | nagneti                     | c theor             | y Desc             | ribe co           | onform            | al and     | bilinea  | r transf            | ormati              | on arisi            | ing in          | aerofoi           | 1        |
|            | theory         | fluid                | flow vi                     | sualiza             | ition ar           | nd ima            | ge pro            | cessing    |          |                     |                     |                     |                 |                   |          |
| CO4        | proba          | bility d             | ems on<br>listribu<br>andom | tions a             | nd stoc            | stribut<br>hastic | ions re<br>matrix | clating to | o digit  | al sign:<br>ith mul | al proc<br>tivariat | essing,<br>te corre | Deter<br>lation | mie joi<br>proble | nt<br>ms |
| CO5        | Draw<br>reject | the val              | lidity o<br>hypoth          | f the hy            | ypothe:<br>efinetr | ansitio           | n prob            | ability    | matrix   | samplir<br>of a M   | ng distr<br>arkov   | ibution<br>chain a  | in acc          | cepting<br>ve     | or       |
|            | proble         | 1115 101             | aicu i()                    | discre              |                    |                   |                   | n proce    |          |                     |                     |                     |                 |                   |          |
|            |                |                      |                             |                     |                    | -                 | -                 | Mappi      | ng       |                     |                     |                     |                 |                   |          |
| COs        |                | . 1                  | _ 1                         | . 1                 | _ 1                | PC                | JS                |            |          | т                   | т-                  |                     |                 | PSOs              |          |
|            |                | 2                    | 7                           | - 4                 | _                  | -                 | 7                 | 8          | 9        | 40                  | 4 4                 | 12                  | 100             | 1020              |          |

Average

CO1

| CO <sub>2</sub> | 3                    | 2                 |          |         |         |        |           |         |         | 1       | 1       | 1              | I        |      | 1 1 |
|-----------------|----------------------|-------------------|----------|---------|---------|--------|-----------|---------|---------|---------|---------|----------------|----------|------|-----|
| CO3             | 3                    | 2                 |          |         |         | -      |           |         |         |         |         |                |          | i    |     |
| CO4             | 3                    | 2                 |          |         | -       |        | -         |         |         | ļ       |         | -              |          | 1    | -   |
| CO5             | 3                    | 2                 |          | T       |         |        |           |         |         |         |         |                |          |      |     |
| Average         | 3                    | 2                 |          |         |         | -      | -         |         |         |         |         |                |          |      |     |
|                 |                      |                   |          | 1       |         |        |           |         |         | 1       | 1       |                |          |      |     |
| Subject: 5      | SOFTW                | ARE EN            | GINEE    | RING    |         | T T T  |           |         |         | Subj    | ect Co  | <b>de:</b> 150 | S42      |      |     |
|                 | 24 104.C2H (104.1 c) |                   |          |         |         | Cou    | rse Ou    | tcome   | S       |         | 100000  |                |          |      |     |
| CO-1            | Unde                 | rstand !          | Softwar  | e Engir | neering | metho  | ds, soft  | ware pr | ocess r | nodels. | ethical | and pro        | fession  | nal  |     |
| CO-2            | Analy                | ze vario          | ous syst | em mo   | dels in | design | and imp   | lemen   | tation  | ,       |         | arra pro       | 71035101 | iui  |     |
| CO-3            |                      |                   |          |         |         |        | ising vai |         |         | ethods  |         |                |          | -    |     |
| CO-4            |                      |                   |          |         |         |        | develo    |         | 0       |         |         |                |          |      | -   |
| CO-5            | Apply                | advand<br>are dev | ed soft  | ware d  | evelop  | ment m | ethods    | like Ag | ile and | Extrem  | e progr | amming         | for be   | tter |     |
|                 |                      |                   |          |         |         | CO-PC  | )-PSO     | Марр    | ing     |         |         |                |          |      |     |
| COs             |                      |                   |          |         |         | P      | Os        |         |         |         |         |                | -        | PSOs |     |
|                 | 1                    | 2                 | 3        | 4       | 5       | 6      | 7         | 8       | 9       | 10      | 11      | 12             | 1        | 2    | 3   |
| CO1             | 2                    | 2                 |          |         |         |        |           |         |         |         |         |                |          |      |     |
| CO2             |                      | 2                 |          |         |         |        |           |         |         |         |         |                |          |      |     |
| CO3             |                      | 2                 |          |         |         |        | 1         |         |         |         |         |                | 2        |      |     |
| CO4             |                      |                   | 2        |         | 2       |        |           |         |         |         |         |                |          |      |     |
| CO5             |                      |                   |          |         | 2       | -      |           |         |         |         |         |                | -        |      |     |
| Average         | 2                    | 2                 | 2        |         | 2       |        |           | -       |         |         |         |                | 2        |      |     |

| Subject:        | Design                 | and An   | alysis o             | f Algori             | ithms            |          |           |                |          | Subj     | ect Co    | de:15C    | S43        |           | -       |
|-----------------|------------------------|----------|----------------------|----------------------|------------------|----------|-----------|----------------|----------|----------|-----------|-----------|------------|-----------|---------|
|                 | Hillian - Clinical III |          |                      |                      |                  | Cou      | rse Ou    | tcome          | \$       |          |           | -         |            |           |         |
| CO-1            | Under<br>efficie       | stand th | ne basics<br>ing aym | of algo<br>ptotic no | rithm, motations | nethods  | for analy | yzing alg      | orithm   | and also | express   | ing the b | oumno      | daries of |         |
| CO-2            | Descri                 | be the r | nethod o             | of divide            | and co           | nquer ai | nd when   | to use         | such alg | orithms  |           |           |            |           |         |
| CO-3            |                        |          |                      |                      |                  |          |           |                |          |          | sign situ | ation ca  | lls for it |           | -       |
| CO-4            |                        |          | tracking             |                      |                  |          |           |                |          |          |           | -         |            |           | -       |
| CO-5            |                        |          | ent class            |                      |                  |          |           |                | ard      |          |           |           |            |           |         |
|                 |                        |          |                      |                      | (                | CO-PC    | -PSO      | Mapp           | ing      |          |           | -         | -          |           | ******* |
| COs             |                        |          |                      |                      |                  | P        | Os        | E <del>-</del> |          |          |           |           |            | PSOs      |         |
| COS             | 1                      | 2        | 3                    | 4                    | 5                | 6        | 7         | 8              | 9        | 10       | 11        | 12        | 1          | 2         | 3       |
| CO1             | 2                      | 2        |                      |                      |                  |          |           |                |          |          |           |           | 1          |           |         |
| CO <sub>2</sub> | 2                      | 2        |                      |                      |                  |          |           |                |          |          |           |           | 1          |           |         |
| CO3             | 2                      | 2        |                      |                      |                  |          |           |                |          |          |           |           | 1          |           |         |
| CO4             | 2                      | 2        |                      |                      |                  |          |           | -              |          |          |           |           | 1          |           |         |
| CO5             | 2                      | 2        |                      |                      |                  |          |           |                |          |          |           | 100       | 1          |           | ()      |
| Average         | 2                      | 2        |                      |                      |                  | -        |           |                |          |          |           |           | 1          | +         |         |

| ubject: | MICROPROCESSOR AND MICROCONTROLLERS                     | Subject Code: 15CS44 |   |
|---------|---------------------------------------------------------|----------------------|---|
|         | Course Outcome                                          | es                   | - |
| CO-1    | Describe the architecture of 8086 and ARM               |                      | 1 |
| CO-2    | Illustrate the various addressing modes of 8086 and its | operation            | 1 |
| CO-3    | Apply the concepts of 8086 in programming               |                      |   |
| CO-4    | Demonstrate the 8086 Interuppts and its Programming     |                      | 1 |
| CO-5    | Explain the concepts of ARM Interfacing and its Applica | ation                | 1 |

| COs             |     |   | , | , |   | P | Os |   |   |    |    |    |   | PSOs |   |
|-----------------|-----|---|---|---|---|---|----|---|---|----|----|----|---|------|---|
|                 | 1   | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9 | 10 | 11 | 12 | 1 | 2    | 3 |
| COI             | 2   |   |   |   |   |   |    |   |   |    |    |    | 1 |      | _ |
| CO <sub>2</sub> | 2   | 2 |   |   |   |   |    |   | - |    |    |    | 1 |      |   |
| CO3             |     | 2 | 3 |   |   |   |    |   |   |    |    |    |   | 2    |   |
| CO4             |     | 2 | 3 |   |   |   |    | - |   |    |    |    |   | 1    | - |
| CO5             | 1   | 2 |   |   |   |   |    |   |   |    |    |    | 1 | т_   |   |
| Average         | 1.6 | 2 | 3 |   |   | - |    |   |   |    |    |    | 1 | 1.5  |   |

| Subject:        | Object | Oriente  | d Conc   | epts     |         |          |          |          |         | Subj   | ect Co  | de:15C  | S45     |      |   |
|-----------------|--------|----------|----------|----------|---------|----------|----------|----------|---------|--------|---------|---------|---------|------|---|
|                 |        |          |          |          |         | Cou      | rse Ou   | tcome    | \$      |        |         |         |         |      |   |
| CO-1            | Unde   | rstand t | he obje  | ect orie | nted co | ncepts   | using C  | ++       |         |        |         |         |         |      |   |
| CO-2            |        |          |          |          |         |          |          |          | ıva dev | elopme | nt kit  |         |         |      |   |
| CO-3            | Unde   | rstand o | object c | riented  | conce   | pts like | class, i | nherita  | nce, pa | ckages | and int | erfaces | in iava |      |   |
| CO-4            | Interp | ret exc  | eption   | handlin  | g and c | demons   | trate m  | ultithre | ading i | n iava |         |         | ,       |      | - |
| CO-5            |        | op simp  |          |          |         |          |          |          |         |        |         |         |         |      |   |
|                 |        |          |          |          | 100     | -        | -PSO     |          |         | 0      | -       |         |         |      |   |
| COs             |        |          |          |          |         | P        | Os       |          |         |        |         |         |         | PSOs |   |
| 000             | 1      | 2        | 3        | 4        | 5       | 6        | 7        | 8        | 9       | 10     | 11      | 12      | 1       | 2    | 3 |
| CO <sub>1</sub> | 2      |          | 2        |          |         |          |          |          |         |        |         | 2       |         | 2    |   |
| CO <sub>2</sub> |        |          | 2        |          | 2       |          |          |          |         |        |         |         |         | 2    |   |
| CO <sub>3</sub> |        |          | 2        |          |         |          |          |          |         |        |         |         |         | 2    |   |
| CO4             |        |          | 2        | -        |         |          |          |          |         |        |         |         |         | 2    |   |
| CO5             |        |          | 2        |          |         |          |          |          |         |        | 2       |         |         | 2    |   |
| Average         | 2      |          | 2        |          | 2       |          |          |          |         |        | 2       | 2       |         | 2    |   |

| Subject:        | Data Co | mmun     | ication  |          |         |         |         |         |         | Subj     | ect Co                                  | de:15C  | S46 |             |     |
|-----------------|---------|----------|----------|----------|---------|---------|---------|---------|---------|----------|-----------------------------------------|---------|-----|-------------|-----|
|                 |         |          |          |          |         | Cou     | rse Ou  | tcome   | S       |          |                                         |         |     | -           |     |
| CO-1            | Illustr | ate bas  | ic comp  | outer ne | etwork  | techno  | logy    |         |         | -        | *************************************** |         |     |             |     |
| CO-2            | Identi  | fy the c | differen | t types  | of netv | vork to | pologie | s and p | rotocol | s.       |                                         |         |     |             |     |
| CO-3            |         |          |          |          |         |         |         |         |         | each la  | ver.                                    |         | -   |             | -   |
| CO-4            |         |          |          |          |         |         |         |         |         | tions wi |                                         | network |     |             |     |
| CO-5            |         |          | the ski  |          |         |         |         |         |         |          |                                         |         |     |             | 777 |
|                 |         |          |          |          | (       | CO-PC   | )-PSO   | Mapp    | ing     |          |                                         |         |     |             |     |
| COs             |         |          |          |          |         | P       | Os      |         |         |          |                                         |         |     | <b>PSOs</b> |     |
|                 | 1       | 2        | 3        | 4        | 5       | 6       | 7       | 8       | 9       | 10       | 11                                      | 12      | 1   | 2           | 3   |
| CO1             | 2       |          |          |          |         |         |         |         |         | -        | 1                                       |         | 1   |             |     |
| CO <sub>2</sub> | 2       |          |          |          |         |         |         |         |         |          | 1                                       |         | 1   |             |     |
| CO3             | 2       |          |          |          |         |         |         |         |         |          | 1                                       |         | 1   |             |     |
| CO4             | 2       |          | -        | -        |         |         |         |         |         |          | 1                                       |         | 1   |             |     |
| CO5             | 2       |          |          |          |         |         |         |         |         |          | 1                                       |         | 1   |             |     |
| Average         | 2       |          |          |          |         |         |         |         |         |          | 1                                       |         | 1   |             |     |

| Subject: | Design and Analysis of Algorithm Lab                                               | Subject Code:15CSL47                              |
|----------|------------------------------------------------------------------------------------|---------------------------------------------------|
|          | Course Outcom                                                                      | es                                                |
| CO-1     | write programs in java to solve Various problems                                   |                                                   |
| CO-2     | Implement quick sor, merge sort and Dynamic algorith                               | m                                                 |
| CO-3     | implement Backtracking algorithms for the sum of su<br>Knapsack prims and kruskals | bset and Hamiltonian cycle, greedy algorithm, for |
|          | CO-PO-PSO Map                                                                      | ping                                              |

| COs     |   |   |   | T |   | P | Os      |   |   |    |    |    |   | PSOs  |   |
|---------|---|---|---|---|---|---|---------|---|---|----|----|----|---|-------|---|
|         | 1 | 2 | 3 | 4 | 5 | 6 | 7       | 8 | 0 | 10 | 11 | 10 |   | 1 303 | 1 |
| CO1     | 2 | 2 |   |   |   |   | f - ' - | 0 | 9 | 10 | 11 | 12 | 1 | 2     | 3 |
| CO2     | 2 | 2 |   |   |   |   |         |   |   |    |    |    | 2 | 140   |   |
| CO3     | 2 | 2 |   | - |   | - |         |   |   |    |    |    | 2 |       |   |
| Average | 2 | 2 |   |   |   |   |         |   |   |    |    |    |   | 2     |   |
| 8       |   | — |   | I |   |   | L       |   |   |    |    |    | 2 | 2     |   |

| Subject: | IVIICTOP | rocesso | or and I | Vicroco  | ontrolle | er Lab   |              |         |        | Subj    | ect Co  | de:150  | SI 48 |        | - |
|----------|----------|---------|----------|----------|----------|----------|--------------|---------|--------|---------|---------|---------|-------|--------|---|
|          |          |         |          |          |          | Cou      | rse Oi       | itcome  | S      | 1       |         |         |       |        |   |
| CO-1     | Perci    | eve the | signific | ance o   | f Assen  | nbly Lar | -<br>Igijage | Program | nmina  |         |         |         |       |        |   |
| CO-2     | Deve     | Іор арр | lication | using 8  | 3086 In  | structio | n cot        | rograi  | mining |         |         |         |       |        |   |
| CO-3     | Demo     | strate  | the fun  | ctioning | g of ha  | rdware   | do.de.       | 1.6     | -      | ng them |         |         |       |        |   |
|          |          |         |          |          |          | CO-P(    | )-PSO        | Марр    | ing    | ig them | using 8 | 086 and | d ARM | family |   |
| COs      |          |         |          |          |          |          | Os           |         | 82     |         |         |         |       | PSOs   |   |
|          | 1        | 2       | 3        | 4        | 5        | 6        | 7            | 8       | 9      | 10      | 11      | 12      | 1     | 2      | 1 |
|          | -        |         |          |          | -        |          |              |         | 100    |         | 11      | 12      | 1     |        | 3 |
| CO1      | 2        | 2       |          |          |          |          |              |         |        |         |         |         |       |        |   |
| CO1      | 2        | 2       |          |          |          |          |              |         | -      |         |         |         | 1     |        |   |
| CO2      | 2        |         |          |          | 2        |          |              |         |        |         |         |         | 1     | 2      |   |
|          | 2        |         |          |          | 3        |          |              |         |        |         |         |         | _ 1   | 2      |   |

### Semester-V

| Subject:        | Manag   | gement    | and Er   | trepre   | neursh   | ip        | =       |         |                                                | Subi            | ect Ca | de:150 | 2851 |      |   |
|-----------------|---------|-----------|----------|----------|----------|-----------|---------|---------|------------------------------------------------|-----------------|--------|--------|------|------|---|
|                 |         |           |          |          |          | Cou       | rse Ot  | iteom   | ,6                                             | 1               |        |        |      |      | - |
| CO-1            | Defin   | e the m   | anagen   | nent,or  | ganizat  | tion er   | terpre  | nur nl  | anning                                         | staffing,       | - FDD  |        |      |      |   |
| CO-2            | outlir  | ne the ir | nportar  | ice of c | directin | g leadre  | hin sty | los cor | attrolling                                     | starring and co | ,EKP.  |        |      |      | - |
| CO-3            | Descr   | ibe the   | quality  | and ch   | aracter  | rstics of | entenr  | onuore  | HOIIIIE                                        | and co          | mmuni  | cation |      |      | _ |
| CO-4            | Utilize | e the re  | sources  | avalial  | ble effe | ctively   | thrloug | EDD     | <u>.                                      </u> |                 |        |        |      |      |   |
| CO-5            | use o   | f IPR's a | nd insti | tutiona  | al sunne | ort in er | torpro  | LNP     | 702                                            |                 |        |        |      |      |   |
| COs             | 1       | 2         | 3        | 4        | 5        | -         | Os      | 0       | -                                              | 1               | ŕ .    | 1      |      | PSOs |   |
| 001             | 1       | 2         | 3        | 4        | 5        | 6         | 7       | 8       | 9                                              | 10              | 11     | 12     | 1    | 2    | 3 |
| CO1             | 3       |           |          |          |          |           |         |         |                                                |                 |        |        |      |      |   |
| CO2             |         |           |          |          |          |           |         |         |                                                | 2               | -      |        |      |      | - |
| CO <sub>3</sub> |         |           |          |          |          |           |         | 3       |                                                |                 |        |        |      |      |   |
| CO4             |         |           | -        |          |          |           | 2       | -       |                                                |                 |        |        |      |      | 2 |
| CO5             |         |           |          |          | _        |           |         |         |                                                |                 |        |        |      |      | 2 |
| Average         | 3       |           |          |          |          |           |         |         | -                                              |                 | -      | 2      |      |      | 2 |
| 8               |         |           |          |          |          |           | 2       | 3       |                                                | 2               | 1      | 2      |      |      | 2 |

| abject. | Comput | er Netw  | orks      |          |          |          |          |         |         | Subj     | ect Co | de:150 | `S52 |      |   |
|---------|--------|----------|-----------|----------|----------|----------|----------|---------|---------|----------|--------|--------|------|------|---|
|         |        |          |           |          |          | Cou      | rse Ou   | tcome   | S       | -1       | -      |        |      |      |   |
| CO-1    | Demo   | nstrati  | on of A   | pplicati | on laye  | r proto  | cols.    | =       | 222     |          | + -    |        |      |      |   |
| CO-2    | Recog  | gnize tr | ansport   | laver s  | ervices  | and in   | fer UDP  | /TCP ni | rotocol | C        |        |        |      |      |   |
| CO-3    | Classi | fy rout  | ers, IP a | nd Rou   | ting ale | orithm   | s in Net | work Is | Nor.    | 5.       |        |        |      |      |   |
| CO-4    | Disse  | minate   | the wir   | eless a  | nd moh   | ile netv | works of | ovorina | IEEE O  | 02.11 st |        |        |      |      |   |
| CO-5    | Descr  | ibe mu   | ltimedia  | a netwo  | orking a | nd net   | work ma  | anagen  | nent.   | J2.11 St | andard | •3     |      |      |   |
|         |        |          |           |          |          |          | )-PSO    |         |         |          | -      |        |      |      |   |
| COs     |        |          |           |          | 7        |          | Os       |         |         |          |        |        |      | PSOs |   |
|         | 1      | 2        | 3         | 4        | 5        | 6        | 7        | 8       | 9       | 10       | 11     | 12     | 1    | 2    | 3 |
| CO1     | 3      | 1        |           |          |          |          |          |         |         |          |        |        | 2    |      | 3 |

| Subject: Da | atabas | se manger | ment system |      | Cubicat | Code: 15CS53 |    |   |
|-------------|--------|-----------|-------------|------|---------|--------------|----|---|
| Average     |        |           | 1.25        | 2.33 |         | 1.33         | _1 | 1 |
| Average     | 2      | 1         | 1.25        |      |         | _   1        |    | 1 |
| CO5         | 1      |           | 1           | 2    |         | 1            |    |   |
| CO4         | 1      |           | 1           | 2    |         | 1            |    | 1 |
| CO3         | 3      |           | 2           | 3    |         |              | 1  | 1 |
| CO2         |        |           |             |      |         |              | 1  |   |

| Subject:        | Databa        | ase man              | gemen               | t systen              | n                  |          |          |                    |         | Subj      | ect Co           | de:150   | CS53     |                            |        |
|-----------------|---------------|----------------------|---------------------|-----------------------|--------------------|----------|----------|--------------------|---------|-----------|------------------|----------|----------|----------------------------|--------|
|                 |               |                      |                     |                       |                    | Cou      | rse Ou   | tcome              | S       |           |                  |          |          |                            |        |
| CO-1            | Incul         | cate bas             | sic conc            | epts, ap              | plicati            | ons & a  | rchitect | ture of            | Databa  | se Man    | agemer           | nt Syste | ·m       |                            |        |
| CO-2            | Appl          | y design<br>ional Da | princip             | iles & re             | preser             | nt the d | escripti | on of D            | atabas  | e using   | ER diag          | ram an   | d gain k | nowled                     | lge on |
| CO-3            | Cons<br>syste | truct Qu<br>m(Orac   | ieries u<br>le) and | sing Rel<br>Illustrat | lationa<br>e to tu | Algebr   | a expre  | ssions<br>se desig | and SQ  | L on cor  | nmerci           | al relat | ional da | itabase                    |        |
| CO-4            | Learr         | basic is             | ssues of            | transa                | ction p            | rocessii | ng and o | concurr            | ency co | ontrol re | covery           | CCCIIII  | ques     | 2001 <del>1333</del> 12321 |        |
| CO-5            | Desig         | gn and d             | evelop              | any dat               | abase              | applicat | tion sys | tem su             | ccessfu | lly.      |                  |          |          |                            |        |
|                 |               |                      |                     |                       |                    |          | )-PSO    |                    |         |           |                  |          |          |                            |        |
| COs             |               | į.                   |                     |                       |                    | P        | Os       |                    |         |           |                  |          |          | PSOs                       |        |
|                 | 1             | 2                    | 3                   | 4                     | 5                  | 6        | 7        | 8                  | 9       | 10        | 11               | 12       | 1        | 2                          | 3      |
| CO <sub>1</sub> | 3             |                      |                     |                       |                    |          |          |                    |         |           |                  |          | 3        |                            |        |
| CO <sub>2</sub> |               | 2                    | 3                   | 2                     | -                  |          | -        |                    |         |           |                  |          | 2        |                            |        |
| CO3             |               | 1                    | 2                   |                       | 3                  | 1        |          |                    |         |           | Partie - Illiano |          |          | 3                          |        |
| CO4             | 3             |                      |                     |                       | -                  |          | -        |                    |         |           |                  |          | 3        | , J                        |        |
| CO5             |               | 2                    | 2                   | 1                     | 3                  | 1        |          |                    | 1       |           | 1                | 3        |          | 2                          | 2      |
| Average         | 3             | 1.6                  | 2.3                 | 1.5                   | 3                  | 1        |          |                    | 1       |           | 1                | 3        | 2.6      | 2.5                        | 2      |

| Subject:        | Autom         | ata The                                                                                                                                                                                                                                                                                                                                                                                   | ory and           | Comp     | utabilit  | :y       |           |          |         | Subj     | ect Co | de:150   | CS54   |        |     |  |
|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----------|----------|-----------|----------|---------|----------|--------|----------|--------|--------|-----|--|
|                 |               |                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |           | Cou      | rse Ou    | tcome    | S       | -        |        |          |        |        |     |  |
| CO-1            | Dem<br>link t | onstarte<br>o compu                                                                                                                                                                                                                                                                                                                                                                       | an in-c<br>uting. | depth u  | ndersta   | anding o | of theo   | ies , co | ncepts  | and tec  | chniqu | es in au | tomata | and th | eir |  |
| CO-2            |               |                                                                                                                                                                                                                                                                                                                                                                                           | differe           | nt mod   | lels of C | Comput   | ation lil | ke Dete  | rminist | ic , Non | detern | nninstic | and so | ftware |     |  |
| CO-3            | Desc<br>restr | Compare the different models of Computation like Deterministic, Non determninstic and software models  Describe Grammers and Automata for different language classes and become knowledgeable about restricted models of coputation(Regular, Context Free) and their relative powers  Develop skills in formal reasoning and reduction of a problem to a formal model with an emphases on |                   |          |           |          |           |          |         |          |        |          |        |        |     |  |
| CO-4            | Deve          |                                                                                                                                                                                                                                                                                                                                                                                           | in form           | nal reas | soning    | and red  |           |          |         |          |        |          | an em  | phases | on  |  |
| CO-5            |               | ulate a p                                                                                                                                                                                                                                                                                                                                                                                 |                   | _        |           |          | rent m    | odels o  | f Comp  | utation  |        |          |        |        |     |  |
|                 |               |                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |           | CO-PO    |           |          |         |          |        |          |        |        |     |  |
| COs             |               |                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |           | P        | Os        |          |         |          |        |          |        | PSOs   |     |  |
| COS             | 1             | 2                                                                                                                                                                                                                                                                                                                                                                                         | 3                 | 4        | 5         | 6        | 7         | 8        | 9       | 10       | 11     | 12       | 1      | 2      | 3   |  |
| CO1             | 3             |                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |           |          |           |          |         |          |        |          | 2      |        |     |  |
| CO2             |               |                                                                                                                                                                                                                                                                                                                                                                                           | 2                 |          | 3         |          |           |          |         |          |        |          |        | 3      |     |  |
| CO <sub>3</sub> |               | 2                                                                                                                                                                                                                                                                                                                                                                                         |                   |          |           | 2        |           |          |         |          | 3      |          |        |        |     |  |
| CO4             |               | 3                                                                                                                                                                                                                                                                                                                                                                                         |                   |          |           |          |           |          |         |          |        |          |        |        | 2   |  |
|                 |               |                                                                                                                                                                                                                                                                                                                                                                                           |                   | 2        |           |          | 3         |          |         |          |        |          |        |        |     |  |
| CO5             |               | 1 1                                                                                                                                                                                                                                                                                                                                                                                       |                   | Z.       |           |          |           |          |         |          |        |          |        |        |     |  |

| Subject: | Advanced Java and J2EE                          | Subject Code:15CS553                              |
|----------|-------------------------------------------------|---------------------------------------------------|
|          | Course O                                        | utcomes                                           |
| CO-1     | Interprete the need of advanced java concepts s | such as enumerations, auto-boxing and anotations. |
| CO-2     | Understand the working of collection frame wo   |                                                   |
| CO-3     | Demonstrate string and link functions and impli |                                                   |

| CO-4                                                                    | Build                                       | web ap                                                             | oplication                              | on using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g servel                                   | ets,java                                                      | server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pages                                                          | and de                                               | plovmei                      | nt in we              | b serve           | r                |        |    |
|-------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------|-----------------------|-------------------|------------------|--------|----|
| CO-5                                                                    | Illust                                      | rate the                                                           | e datab                                 | ase acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess and                                    | manag                                                         | e data ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | using JE                                                       | BC cor                                               | cepts ir                     | iava.                 | o ocive           |                  |        |    |
|                                                                         |                                             |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                          | CO-PC                                                         | )-PSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Марр                                                           | ing                                                  |                              | <b>J</b> 37 2 - 20 1  |                   | 404              |        | -  |
| COs                                                                     |                                             |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                               | Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - * *                                                          |                                                      | *                            |                       |                   |                  | PSOs   |    |
|                                                                         | 1                                           | 2                                                                  | 3                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                          | 6                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                              | 9                                                    | 10                           | 11                    | 12                | 1                | 2      | 3  |
| CO1                                                                     | 2                                           |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                      | 1                            |                       |                   | 2                | + -    |    |
| CO2                                                                     |                                             | 2                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                              |                                                      | 1                            |                       | t                 | 2                |        | -  |
| CO3                                                                     |                                             | 2                                                                  | 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n s                                                            |                                                      |                              | -                     |                   | -                | . 2    |    |
| CO4                                                                     |                                             |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                          |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ===                                                            | -                                                    |                              |                       |                   |                  |        | 2  |
| CO <sub>5</sub>                                                         |                                             |                                                                    | 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                      |                              | 0.02.2                |                   | 2                | 2      | -  |
| Average                                                                 | 2                                           | 2                                                                  | 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                          |                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                      | 1                            | -                     |                   | 2                | 2      | 2  |
| CO-1<br>CO-2                                                            | Unde<br>Anala                               | rstand t<br>ysis the                                               | the prol                                | in repre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | esenting                                   | is need                                                       | nowledg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | solving                                                        | g using<br>deriving                                  | Heurist                      | ic searc              | de:15C<br>h appro | aches            | nowled | ge |
| CO-1                                                                    | Unde<br>Anala<br>Unde<br>Define             | rstand t<br>ysis the<br>rstand a                                   | the prol<br>Issues<br>and ana           | blem which the second s | esenting<br>differe<br>and cor<br>proces   | is need<br>g the kr<br>ent Al to<br>mpare I<br>ssing ar       | ded and<br>nowledgechnique<br>earning<br>nd Expe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | solving<br>ge and o<br>e to so<br>techni<br>rt syste           | g using<br>deriving<br>lve pro<br>ques<br>ems        | Heurist                      | ic searc              | h annro           | aches            | nowled | ge |
| CO-1<br>CO-2<br>CO-3<br>CO-4<br>CO-5                                    | Unde<br>Anala<br>Unde<br>Define             | rstand t<br>ysis the<br>rstand a                                   | the prol<br>Issues<br>and ana           | in repre<br>lyse the<br>niques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | esenting<br>differe<br>and cor<br>proces   | is need<br>g the kreent Al to<br>mpare I<br>ssing ar<br>CO-PO | ded and nowledgechnique arning type of the control | solving<br>ge and o<br>e to so<br>techni<br>rt syste           | g using<br>deriving<br>lve pro<br>ques<br>ems        | Heurist                      | ic searc              | h annro           | aches            |        |    |
| CO-1<br>CO-2<br>CO-3<br>CO-4                                            | Unde<br>Anala<br>Unde<br>Define             | rstand t<br>ysis the<br>rstand a                                   | the prol<br>Issues<br>and ana           | in repre<br>lyse the<br>niques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | esenting<br>differe<br>and cor<br>proces   | is need<br>g the kr<br>ent Al to<br>mpare I<br>ssing ar       | ded and nowledgechnique arning type of the control | solving<br>ge and o<br>e to so<br>techni<br>rt syste           | g using<br>deriving<br>lve pro<br>ques<br>ems        | Heurist<br>g the ru<br>blems | ic searc<br>les to re | h appro           | aches<br>t the k | PSOs   |    |
| CO-1<br>CO-2<br>CO-3<br>CO-4<br>CO-5                                    | Under<br>Anala<br>Under<br>Define<br>Discus | rstand t<br>ysis the<br>rstand a<br>e learnings<br>on na           | the prolesses and ana ang tech          | in repre<br>lyse the<br>niques<br>inguage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esenting<br>different<br>and cor<br>proces | is need<br>g the kreent Al to<br>mpare I<br>ssing ar<br>CO-PO | ded and nowledgechnique earning the Expense of PSO Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solving<br>ge and de<br>e to so<br>techni<br>rt syste<br>Mappi | g using<br>deriving<br>lve pro<br>ques<br>ems<br>ing | Heurist                      | ic searc              | h annro           | aches<br>t the k |        |    |
| CO-2<br>CO-3<br>CO-4<br>CO-5                                            | Under Anala Under Define Discus             | rstand t<br>ysis the<br>rstand a<br>e learnings<br>on na           | the prolesses and ana ang tech          | in repre<br>lyse the<br>niques<br>inguage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esenting<br>different<br>and cor<br>proces | is need<br>g the kreent Al to<br>mpare I<br>ssing ar<br>CO-PO | ded and nowledgechnique earning the Expense of PSO Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solving<br>ge and de<br>e to so<br>techni<br>rt syste<br>Mappi | g using<br>deriving<br>lve pro<br>ques<br>ems<br>ing | Heurist<br>g the ru<br>blems | ic searc<br>les to re | h appro           | aches<br>t the k | PSOs   |    |
| CO-1<br>CO-2<br>CO-3<br>CO-4<br>CO-5                                    | Under Anala Under Define Discus             | rstand t<br>ysis the<br>rstand a<br>e learni<br>ss on na           | the prolesses and ana ang tech          | in repre<br>lyse the<br>niques<br>inguage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esenting<br>different<br>and cor<br>proces | is need<br>g the kreent Al to<br>mpare I<br>ssing ar<br>CO-PO | ded and nowledgechnique earning the Expense of PSO Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solving<br>ge and de<br>e to so<br>techni<br>rt syste<br>Mappi | g using<br>deriving<br>lve pro<br>ques<br>ems<br>ing | Heurist<br>g the ru<br>blems | ic searc<br>les to re | h appro           | aches<br>t the k | PSOs   |    |
| CO-1<br>CO-2<br>CO-3<br>CO-4<br>CO-5                                    | Under Anala Under Define Discus             | rstand t<br>ysis the<br>rstand a<br>e learnings on na<br>2         | the proles issues and anang tech        | in repre<br>lyse the<br>niques<br>inguage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esenting<br>different<br>and cor<br>proces | is need<br>g the kreent Al to<br>mpare I<br>ssing ar<br>CO-PO | ded and nowledgechnique earning the Expense of PSO Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solving<br>ge and de<br>e to so<br>techni<br>rt syste<br>Mappi | g using<br>deriving<br>lve pro<br>ques<br>ems<br>ing | Heurist<br>g the ru<br>blems | ic searc<br>les to re | h appro           | aches<br>t the k | PSOs 2 |    |
| CO-1<br>CO-2<br>CO-3<br>CO-4<br>CO-5                                    | Under Anala Under Define Discus             | rstand t<br>ysis the<br>rstand a<br>learnings on na<br>2<br>2<br>2 | the proles issues and anang tech        | in repre<br>lyse the<br>niques<br>inguage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esenting<br>different<br>and cor<br>proces | is need<br>g the kreent Al to<br>mpare I<br>ssing ar<br>CO-PO | ded and nowledgechnique earning the Expense of PSO Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solving<br>ge and de<br>e to so<br>techni<br>rt syste<br>Mappi | g using<br>deriving<br>lve pro<br>ques<br>ems<br>ing | Heurist<br>g the ru<br>blems | ic searc<br>les to re | h appro           | aches<br>t the k | PSOs   |    |
| CO-1<br>CO-2<br>CO-3<br>CO-4<br>CO-5<br>COs<br>CO1<br>CO2<br>CO3<br>CO4 | Under Anala Under Define Discus             | rstand tysis the rstand a learnings on na                          | the prolesses and analog technitural la | in repre<br>lyse the<br>niques<br>inguage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esenting<br>different<br>and cor<br>proces | is need<br>g the kreent Al to<br>mpare I<br>ssing ar<br>CO-PO | ded and nowledgechnique earning the Expense of PSO Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solving<br>ge and de<br>e to so<br>techni<br>rt syste<br>Mappi | g using<br>deriving<br>lve pro<br>ques<br>ems<br>ing | Heurist<br>g the ru<br>blems | ic searc<br>les to re | h appro           | aches<br>t the k | PSOs 2 |    |

| Subject: | DOT NE | TAPPL     | ICATIO   | N       |         |          |          |          |          | Subj     | ect Co  | de:15C    | S564 |             |       |
|----------|--------|-----------|----------|---------|---------|----------|----------|----------|----------|----------|---------|-----------|------|-------------|-------|
|          |        |           |          |         |         | Cou      | rse Ou   | teome    | S        | 1        |         |           |      |             |       |
| CO-1     | Creat  | e, test a | and dek  | oug And | roid ap | plicatio | n by se  | tting up | Andro    | id deve  | lopmer  | nt enviro | nmen | †           |       |
| CO-2     | Imple  | ment a    | daptive  | , respo | nsive u | ser inte | rfaces t | hat wo   | rk acro  | ss a wid | e range | of devi   | ces. |             |       |
| CO-3     | Imple  | ment a    | daptive  | , respo | nsive u | ser inte | rfaces t | hat wo   | rk acro  | ss a wid | e range | of devi   | ces. |             |       |
| CO-4     | Infer  | long rui  | nning ta | sks and | backg   | round v  | work in  | Androi   | d applic | ations.  | o.      |           |      |             |       |
| CO-5     |        |           |          |         |         |          |          |          |          | share    | with th | e world.  |      |             |       |
|          |        |           |          |         |         |          | )-PSO    |          |          |          |         |           |      |             | 10.00 |
| COs      |        |           |          |         |         | P        | Os       |          |          |          |         |           |      | <b>PSOs</b> |       |
|          | 1      | 2         | 3        | 4       | 5       | 6        | 7        | 8        | 9        | 10       | 11      | 12        | 1    | 2           | 3     |
| CO1      | 2      |           |          |         |         |          |          |          |          |          |         |           | 1    | ,           |       |
| CO2      |        | 2         |          |         |         |          |          |          |          | 1        |         |           | 1    |             |       |
| CO3      |        |           | 2        |         |         |          |          |          |          |          |         |           | -    | . 1         | -     |
| CO4      |        |           |          | 2       |         |          |          | ~        |          |          |         |           |      | 1           |       |
| CO5      |        |           |          |         | 2       |          |          |          |          |          |         |           |      | 1           |       |
| Average  | 2      | 2         | 2        | 2       | 2       | -        | -        | -        |          |          |         |           | 1    | 1           |       |

| subject: | Computer Networks Lab                          | Subject Code: 15CSI.57                       |  |
|----------|------------------------------------------------|----------------------------------------------|--|
|          | Course Out                                     | comes                                        |  |
| CO-1     | Analyze and Compare various networking protoco | ols, security and error checking mechanisms. |  |

| CO-2            | Demo | nstrate | e the wo | orking c | of differ | ent con | cepts o | f comp | uter ne | tworkin | g  |    |   |      |   |
|-----------------|------|---------|----------|----------|-----------|---------|---------|--------|---------|---------|----|----|---|------|---|
| CO-3            |      |         |          |          |           |         |         |        |         | S2/NS3  |    |    |   |      |   |
| -               |      |         |          |          | (         | CO-PO   | -PSO    | Mapp   | ing     |         |    |    |   |      |   |
| COs             |      |         |          |          |           | P       | Os      |        |         |         |    |    |   | PSOs |   |
|                 | 1    | 2       | 3        | 4        | 5         | 6       | 7       | 8      | 9       | 10      | 11 | 12 | 1 | 2    | 3 |
| CO1             |      | 2       |          |          |           |         |         |        |         |         |    |    |   |      |   |
| CO <sub>2</sub> |      |         |          | 1        | -         |         |         |        |         |         |    |    |   |      |   |
| CO3             |      | 2       |          | 1        |           |         |         |        |         |         |    |    | 2 |      |   |
| Average         |      | 2       |          | 1        |           |         |         |        |         |         |    |    | 2 | -    |   |

| Subject:        | DBA Lal | with r  | nini pr  | oject   |            |          |          |        |          | Subj     | ect Co | de:150           | SL58 |      |   |
|-----------------|---------|---------|----------|---------|------------|----------|----------|--------|----------|----------|--------|------------------|------|------|---|
|                 |         |         |          |         |            | Cou      | rse Ou   | tcome  | S        | 1        |        | 1 4 11 4 11 4 11 |      |      |   |
| CO-1            | Creat   | e,updat | e and c  | query o | n the da   | tabase   |          |        |          |          |        |                  |      |      | - |
| CO-2            | Demo    | nstrate | the wo   | orking  | of differe | ent con  | cepts o  | f DBMS | 3        |          |        |                  | 100  |      |   |
| CO-3            | imple   | ment,a  | nalyze a | and eva | aluate th  | ne proje | ect deve | eloped | for an a | pplicati | on     | -                |      |      |   |
|                 |         |         |          |         | (          | CO-PC    | )-PSO    | Марр   | ing      | •        |        |                  |      |      |   |
| COs             |         |         |          |         |            | P        | Os       |        |          |          |        |                  |      | PSOs |   |
| COS             | 1       | 2       | 3        | 4       | 5          | 6        | 7        | 8      | 9        | 10       | 11     | 12               | 1    | 2    | 3 |
| CO <sub>1</sub> | 3       | 2       | 3        | 2       | 2          |          |          |        |          |          |        |                  | 3    |      |   |
| CO2             |         |         | 3        |         | 3          |          |          |        |          |          |        |                  |      | 3    |   |
| CO3             |         | 2       | 3        | 2       | 3          | 2        |          |        | 2        |          | 3      | 2                |      | 2    | 3 |
| Average         | 3       | 2       | 3        | 2       | 2.6        | 2        |          |        | 2        |          | 3      | 2                | 3    | 2.5  | 3 |

### Semester-VI

Subject Code:15CS61

Subject: Cryptography Network Security and Cyber Law

|                 |       |          |         |            |        | Cou       | rse Oi  | utcome              | S     |          |         |        |         |             |        |
|-----------------|-------|----------|---------|------------|--------|-----------|---------|---------------------|-------|----------|---------|--------|---------|-------------|--------|
| CO-1            | Discu | uss cryp | tograp  | hy and it  | s need | l to vari | ous ap  | plication           | ns    |          |         |        |         |             |        |
| CO-2            | Desig | gn and o | develop | simple     | crypto | graphy    | algorit | hms.                |       |          |         |        |         |             |        |
| CO-3            |       |          |         | igital sig |        |           |         |                     | nagem | ent tech | nniques | for se | cure co | mmunic      | cation |
| CO-4            |       |          |         | ine diffe  |        |           |         |                     |       |          |         |        |         |             |        |
| CO-5            |       |          |         | ecurity    |        |           |         | 2001 2000 2000 2000 |       |          |         |        |         |             |        |
| COs             |       |          | T       |            |        | P         | Os      |                     |       |          |         | ·      |         | <b>PSOs</b> |        |
| COs             |       |          | ,       |            |        | P         | Os      |                     |       |          |         |        |         | <b>PSOs</b> |        |
|                 | 1     | 2        | 3       | 4          | 5      | 6         | 7       | 8                   | 9     | 10       | 11      | 12     | 1       | 2           | 3      |
| CO1             | 2     |          |         |            |        |           |         |                     |       |          |         |        |         |             |        |
| CO <sub>2</sub> |       |          | 1       |            |        |           |         |                     |       |          |         |        |         |             |        |
| CO3             |       | 3        |         |            |        |           |         |                     |       |          |         |        | 2       |             |        |
| CO4             |       |          |         | 2          |        |           |         |                     |       |          |         |        | 2       |             |        |
| CO <sub>5</sub> |       |          |         |            |        | 2         |         | 2                   |       |          |         |        |         |             |        |
| Average         | 2     | 3        | 1       | 2          |        | 2         |         | 2                   |       |          |         |        | 2       |             |        |

| ubject: | Computer Graphics & Visualziation                    | Subject Code: 15CS62                 |
|---------|------------------------------------------------------|--------------------------------------|
|         | Course Outco                                         | omes                                 |
| CO-1    | Explain the Concepts of Computer Graphics and usa    | ge of open GL                        |
| CO-2    | Illustrate geometric transformation and viewing fun  | ctions on 2D objects                 |
| CO-3    | Demonstrate the concepts of clipping, 3D transform   | ations, color and illumination model |
| CO-4    | Differentiate various projection and viewing technic | ues on 3D objects                    |

| CO-5            | Demo     | onstrat  | e the us  | se of va     | rious AF  | ol for in | nut inte | eractio  | n to dev | ıalan Gl       | П        |          |        |                |      |
|-----------------|----------|----------|-----------|--------------|-----------|-----------|----------|----------|----------|----------------|----------|----------|--------|----------------|------|
|                 | 1        |          |           | (2) (2) (2)  |           |           | )-PSO    |          |          | velop G        | JI<br>   |          |        |                |      |
| CO              |          |          |           |              |           |           | Os Os    | ттар     | ing      |                |          |          | T      | DCO.           |      |
| COs             | 1        | 2        | 3         | 4            | 5         | 6         | 7        | 8        | 9        | 10             | 11       | 12       | 1      | PSOs           |      |
| CO1             | 3        |          |           |              | 2         |           |          | 0        |          | 10             | - 11     | 12       | 1      | 2              | 3    |
| CO2             | 3        | 2        |           |              | 2         |           |          |          | -        |                | -        | -        | -      |                | 1    |
| CO3             | 3        |          |           | <del> </del> | +         |           | -        |          |          | -              |          | -        | -      | +              | 2    |
| CO4             | 2        | 2        |           |              |           |           |          |          |          |                |          | -        |        |                |      |
| CO5             | 3        |          |           | -            | 3         |           |          |          |          | -              |          |          |        | 1              | 1    |
| Average         | 2.8      | 2        |           | 1            | 2.33      |           |          |          |          |                |          | -        |        | -              | 1    |
|                 |          |          |           | .1           |           |           |          | 1        | L        | 1              |          |          | l      | 1              | 1.2  |
| Subject         | Contract | C - C    |           |              |           |           |          | -        |          | Γ              |          |          |        |                |      |
| Subject:        | system   | Softwa   | are and   | compi        | ler desig | all as    |          |          |          | Subj           | ect Co   | de:150   | S63    |                |      |
| CO1             | Analy    | uzo nio  | nala au   | ad a suf     |           |           | rse Ou   |          |          |                |          |          |        |                |      |
|                 | Evnls    | yze sig  | Apply     | u peri       | orm var   | 10us si   | ignal p  | rocess   | ng ope   | erations       | using    | DFT.     |        |                |      |
| CO <sub>2</sub> | seque    | ence     | Appry     |              | algorith  | ms for    | CHICLE   | int con  | iputatio | on of D        | or I and | 1 IDFT   | of a   | given          |      |
| CO3             |          |          | R anal    | og and       | digital   | filters   | hy nei   | no Rui   | terwor   | th and         | Chaba    | show to  | ماسام  |                |      |
|                 | Desig    | n of II  | R digit   | tal filte    | ers by u  | sing in   | inulse   | inyari:  | int teck | mique          | and hil  | inear tr | enniq  | ue.<br>rmatior |      |
| CO4             | techn    | ique.    |           |              |           |           |          |          |          |                |          |          |        |                |      |
| CO5             | Desig    | gn a dig | gital III | R and        | FIR filte | er by u   | sing di  | irect, c | ascade.  | , parall       | el and   | linear p | hase   | method         | s of |
| William Town    | realiz   | ation.   |           |              |           | 10 DO     |          |          |          |                |          |          |        |                |      |
|                 |          |          |           |              | (         |           | -PSO     | Mapp     | ing      |                |          |          |        |                |      |
| COs             | -        | _        |           |              | Т 2 Т     |           | Os       | I        |          | 1              |          |          |        | <b>PSOs</b>    | ,    |
| CO1             | 1        | 2        | 3         | 4            | 5         | 6         | 7        | 8        | 9        | 10             | _11      | 12       | 1      | 2              | 3    |
| CO1             | 2        |          |           |              |           |           |          |          |          |                |          |          |        |                |      |
| CO2             |          | 2        |           |              |           |           |          |          |          | 1              |          |          |        |                |      |
| CO3             |          |          |           |              |           |           |          |          |          |                |          |          |        |                | 2    |
| CO4             |          |          |           | 2            |           |           | -        |          |          |                |          |          |        |                |      |
| CO5             | _        |          |           |              | 2         |           |          |          |          |                |          |          |        |                |      |
| Average         | 2        | 2        |           | 2            | 2         |           |          |          |          | L              |          |          | -      |                | 2    |
|                 |          |          |           |              |           |           |          |          |          |                |          |          |        |                |      |
| Subject: 0      | Operatio | ng Syst  | ems       |              |           |           |          |          |          | Subic          | ect Coc  | le:15C   | S64    |                |      |
|                 |          |          |           | -            |           | Cour      | se Out   | tcome    |          | 1 3            |          |          |        |                |      |
| CO-1            | Demo     | nstrate  | need f    | or Ope       | rating Sy |           |          |          |          | Operatir       | ng Syste | em.      |        |                |      |
| CO-2            |          |          |           |              | for Mana  |           |          |          |          |                | 0 1      |          |        |                |      |
| CO-3            | Use pr   | osesso   | r, men    | nory ,st     | orage ar  | nd file s | ystem    | comma    | nds.     |                |          |          |        |                |      |
| CO-4            |          |          |           |              | and solv  |           |          |          |          |                |          |          |        |                |      |
| CO-5            | Realize  | e the d  | ifferen   | t conce      | pts of o  |           | _        |          |          | of usage       | e throug | gh case  | studie | 25.            |      |
|                 |          |          |           |              | C         |           | -PSO     | Mapp     | ng       | - (A)(e) & -() |          |          |        |                |      |
| COs             |          |          |           |              |           | PC        |          |          |          | r              |          |          |        | PSOs           |      |
| 601             | 1        | 2        | 3         | 4            | 5         | 6         | _ 7      | 8        | 9        | 10             | _11      | 12       | 1_     | 2              | 3    |
| CO1             | 2        | 200      |           |              |           |           | -        |          |          |                |          |          | 2      |                |      |
| CO2             |          | 2        |           |              |           |           |          |          |          |                |          |          |        | 2              |      |
| CO3             |          | 2        |           |              |           |           |          |          |          |                |          |          |        |                |      |
| CO4             |          | 2        |           |              |           |           |          |          |          |                |          |          |        |                |      |
| CO5             | 2        |          | 2         |              |           |           |          |          |          |                |          |          |        |                |      |
| Average         | 2        | 2        | 2         |              |           | - 1       |          |          |          |                |          |          |        |                |      |

| Subject: | Data mining data warehousing                     | Subject Code: 1CS651 |
|----------|--------------------------------------------------|----------------------|
|          | Course Ou                                        | teomes               |
| CO-1     | understand the basic concepts of data mining and | d datawarehousing    |

| CO-2       | Ident   | ify data              | mining   | Proble   | ms and  | implen   | nent the  | e dataw  | arehoi   | ISP      |           |           |         |             |      |
|------------|---------|-----------------------|----------|----------|---------|----------|-----------|----------|----------|----------|-----------|-----------|---------|-------------|------|
| CO-3       |         | associa               |          |          |         |          |           | - dataw  | archot   |          |           |           |         |             |      |
| CO-4       |         |                       |          |          |         |          | techniq   | ues      | -        |          |           |           |         |             |      |
| CO-5       | choos   | se betw               | een cla  | ssificat | ion and | cluster  | ring slou | ution fo | r a give | n probl  | em        |           | _       |             |      |
|            | 4       |                       |          |          |         |          | )-PSO     |          |          | n probl  |           |           |         |             | 1770 |
| CO         |         |                       |          |          |         |          | Os        | тарр     | ···s     | -        |           |           |         | PSOs        |      |
| COs        | 1       | 2                     | 3        | 4        | 5       | 6        | 7         | 8        | 9        | 10       | 11        | 12        | 1       | 2           | 3    |
| CO1        | 3       |                       |          |          |         |          |           |          |          | 1        |           | 12        | 2       | -           | 3    |
| CO2        |         | 2                     |          |          |         |          |           |          |          | -        |           |           |         |             | -    |
| CO3        |         |                       | 3        |          |         | -        |           |          |          | -        |           |           |         | 2           | -    |
| CO4        |         |                       | -        | 2        | -       |          |           |          |          | -        | -         |           |         | 2           | -    |
| CO5        | -       |                       |          |          | 2       |          |           |          |          |          |           |           |         |             | -    |
| Average    | 3       | 2                     | 3        | 2        | 2       |          |           |          |          | +        |           |           |         | -           | 2    |
|            | 1 -     |                       |          |          |         | 1        | i         |          |          |          |           |           | 2       | 2           | 2    |
|            |         |                       |          |          |         |          |           |          |          |          |           |           |         |             |      |
| Subject: 1 | MOBILE  | APPLI                 | CATION   | DEVEL    | OPME    | NT       |           |          |          | Subje    | ect Co    | de:15C    | S661    |             |      |
|            |         |                       |          | -        |         | Cou      | rse Ou    | tcomes   | 3        | <u> </u> |           |           |         |             |      |
| CO-1       | Create  | e, test a             | and deb  | ug And   | roid ap | plicatio | n by se   | tting up | Andro    | id deve  | lopmen    | t enviro  | nment   | •           |      |
| CO-2       | Imple   | ment a                | daptive  | , respo  | nsive u | ser inte | rfaces t  | hat wo   | rk acros | ss a wid | e range   | of devi   | ces.    |             | -    |
| CO-3       | Imple   | ment a                | daptive  | , respo  | nsive u | ser inte | rfaces t  | hat wo   | k acros  | ss a wid | e range   | of devi   | ces.    |             |      |
| CO-4       | Infer I | ong rur               | nning ta | isks and | backg   | round v  | work in   | Android  | applic   | cations. |           |           |         |             | -    |
| CO-5       | Descr   | ibe the               | steps ir | rvolved  | in pub  | lishing  | Android   | applica  | ation to | share v  | with the  | world.    |         |             |      |
|            |         |                       |          |          | (       | CO-PC    | PSO       | Mappi    | ng       |          |           |           |         |             |      |
| COs        |         | r                     | ·        |          |         | P        | Os        |          |          |          |           |           |         | <b>PSOs</b> |      |
|            | 1       | 2                     | 3        | 4        | 5       | 6        | 7         | 8        | 9        | 10       | 11        | 12        | 1       | 2           | 3    |
| CO1        |         |                       | 2        |          |         |          |           |          |          |          |           |           | 1       |             |      |
| CO2        |         |                       | 2        | 2        |         |          |           |          |          |          |           |           | 1       |             |      |
| CO3        |         |                       |          | 2        |         |          |           |          |          |          |           |           | 1       | -           |      |
| CO4        |         |                       |          |          | 2       |          |           |          | -        |          |           |           | 1       |             |      |
| CO5        |         |                       |          |          | 2       |          |           |          |          |          |           | 1         | 1       |             | 2    |
| Average    |         |                       | 2        | 2        | 2       |          |           |          |          |          |           | 1         | 1       |             | 2    |
|            |         |                       |          |          |         |          |           |          |          |          |           |           |         |             | 4    |
|            |         |                       |          |          |         |          |           |          |          |          |           |           |         |             |      |
| Subject: F | NOHTY   | APPLI                 | CATION   | I PROG   | RAMM    | ING      |           |          |          | Subje    | ect Coc   | le:15C    | S664    |             |      |
|            |         |                       |          |          |         |          | se Out    |          |          |          |           |           |         |             |      |
| CO-1       | Exami   | ne Pyth               | on syn   | tax and  | seman   | tics and | be flue   | nt in th | ne use o | of Pytho | n flow    | control   | and fu  | nctions     |      |
| CO-2       |         |                       |          |          |         |          | gs and F  |          |          |          |           |           |         |             |      |
| CO-3       | Create  | e, run ai<br>ar Expre | nd man   | ipulate  | Pythor  | 1 Progra | ms usir   | ng core  | data st  | ructure  | s like Li | sts, Dict | ionarie | es and u    | ise  |

| Subject:   | PYTHO  | APPLI                | CATION | N PROG  | RAMM    | IING     |        |           |         | Subj      | ect Co    | de:15C    | S664    |          |     |
|------------|--------|----------------------|--------|---------|---------|----------|--------|-----------|---------|-----------|-----------|-----------|---------|----------|-----|
|            |        |                      |        |         | -       | Cou      | rse Ou | tcomes    | 3       | 1         |           |           |         |          |     |
| CO-1       | Exami  | ne Pyth              | on syn | tax and | seman   | tics and | be flu | ent in tl | ne use  | of Pytho  | on flow   | control   | and fu  | nctions  | j.  |
| CO-2       |        | nstrate              |        |         |         |          |        |           |         |           | •         |           |         |          |     |
| CO-3       |        | e, run a<br>ar Expre |        |         | Pytho   | n Progra | ms usi | ng core   | data st | tructure  | s like Li | sts, Dict | tionari | es and   | use |
| CO-4       | Interp | ret the              | concer | ts of O | bject-0 | riented  | Progra | mming     | as use  | d in Pytl | non.      |           |         |          |     |
| CO-5       |        | ment ex              |        |         |         |          |        |           |         | ıming, V  |           | vices ar  | nd Data | ibases i | n   |
|            |        |                      |        |         | (       | CO-PO    | -PSO   | Mappi     | ng      |           |           |           |         |          |     |
| COs        |        |                      |        |         |         | P        | Os     |           |         |           |           |           |         | PSOs     |     |
| COs        | 1      | 2                    | 3      | 4       | 5       | 6        | 7      | 8         | 9       | 10        | 11        | 12        | 1       | 2        | 3   |
|            |        |                      |        |         |         |          |        |           |         |           |           |           |         |          |     |
| CO1        |        | 2                    |        |         |         |          |        |           |         |           |           |           |         |          |     |
| CO1        |        |                      |        | 2       |         |          |        |           |         |           |           |           |         |          |     |
|            |        | 2                    |        | 2       | 2       | -        |        |           |         |           |           |           |         |          |     |
| CO2        |        |                      |        |         | 2       |          |        |           |         |           |           |           | 2       |          |     |
| CO2<br>CO3 |        | 2                    |        |         | 2       | 2        |        |           |         |           |           |           | 2       |          |     |

| Subject:              | System         | JUILW               | are and               | Opera           | ung sy    |             |         |          |               | Sub                 | ect Co   | de:15             | CSL67             | 7             |       |
|-----------------------|----------------|---------------------|-----------------------|-----------------|-----------|-------------|---------|----------|---------------|---------------------|----------|-------------------|-------------------|---------------|-------|
| CO-1                  | Impl           | ement               | and den               | nonstra         | te leve   |             |         | itcome   | S             |                     |          |                   |                   |               |       |
| CO-2                  | Imple          | ement               | and den               | nonstra         | te ton    | down k      | ottom   |          | in ~ » =      |                     |          |                   |                   | -             |       |
| CO-3                  | ппри           | ament               | differen<br>sed in o  | t algori        | tnms re   | equired     | for me  | mory m   | anage         | a genera<br>ment,pr | ocesssc  | interm<br>hedulir | ediate<br>ig,reso | code.<br>urce |       |
|                       |                |                     | Jed III O             | peracing        |           | CO-P(       | ) Den   | Mono     |               | 100                 |          |                   |                   |               |       |
|                       |                |                     |                       |                 |           |             | Os      | wapp     | mg            |                     |          |                   |                   |               |       |
| COs                   | 1              | 2                   | 3                     | 4               | 5         | 6           | U8 -7   | 0        | Γ ο           | 1 10                | I        | Γ                 | -                 | PSOs          |       |
| CO1                   | -              |                     | +                     |                 | 3         | +           | - /     | 8        | 9             | 10                  | 11_      | 12                | 1                 | 2             | 3     |
| CO2                   | +              |                     |                       | 3               | 5         |             |         |          |               |                     |          |                   |                   |               |       |
| CO3                   | -              | 1                   | 3                     | 3               | -         |             | ļ       |          |               |                     |          |                   | 2                 | -             | -     |
| Average               |                | +                   | 3                     | 3               | 3         |             | -       |          |               |                     |          |                   |                   | -             | 1     |
| ranese                |                | 1                   |                       |                 |           |             |         |          |               | l                   | 1        |                   | 2                 | l             | 1     |
| Subject:              | Compu          | ter Gra             | phics w               | ith min         | i proje   | <br>ct      | _       |          |               | Subje               | ect Co   | de:150            | 'SI 68            |               |       |
|                       |                |                     |                       |                 |           | -           | rse Ou  | tcomes   | 3             | 1                   |          |                   |                   |               | -     |
| CO-1                  | Illustr<br>GL  | ate the             | concep                | ots of co       | ompute    |             |         |          |               | mputer              | graphic  | cs appli          | cation            | using o       | pen   |
| CO-2                  | Devel          | op and              | execute               | e polygo        | on fillin | g,clippi    | ng.algo | rithms   | and an        | imate ci            | Irves us | ing on            | anG!              |               |       |
| CO-3                  | Desig<br>probl | n and i             | mpleme                | nt basic        | c transf  | ormatio     | on and  | viewing  | functi        | ons on o            | bjects   | using o           | pengl f           | or real       | worl  |
|                       |                |                     |                       |                 | (         | CO-PO       | -PSO    | Mappi    | ing           |                     |          |                   |                   |               |       |
| COs                   |                |                     |                       |                 |           | PO          |         |          |               |                     |          |                   | -                 | PSOs          |       |
|                       | 1              | 2                   | 3                     | 4               | 5         | 6           | 7       | 8        | 9             | 10                  | 11       | 12                | 1                 | 2             | 3     |
| CO1                   | 3              |                     |                       |                 |           |             |         |          |               |                     |          |                   |                   |               | 2     |
| CO <sub>2</sub>       |                |                     | 2                     |                 |           |             |         |          | -             |                     |          |                   |                   | -             | 1     |
| CO <sub>3</sub>       |                |                     | 3                     |                 |           |             | -       |          | 3             |                     | 2        | 2                 |                   |               | 2     |
| Average               | 3              |                     | 2.5                   |                 |           |             | -       |          | 3             | 1                   | 2        | 2                 |                   |               | 1.6   |
|                       |                |                     |                       |                 |           | Se          | meste   | r-VII    |               | L 1                 |          |                   |                   |               | 1     |
| Subject: '            | Web Te         | chnolo              | gy And                | lts App         | lication  |             | _       |          |               | Subje               | ect Coc  | le:15C            | S71               |               |       |
|                       |                |                     |                       |                 |           |             |         | teomes   |               |                     |          | _                 |                   |               |       |
| CO-1                  |                |                     | and Ada               |                 |           |             |         |          |               |                     | b page   |                   |                   |               |       |
| CO-2                  | Const          | ruct an             | d visuall             | y forma         | at table  | s and fo    | orms us | ing HTN  | <b>AL</b> and | CSS                 |          |                   |                   |               |       |
| CO-3                  | Develo         | op Cliei<br>nts dyn | nt-Side S<br>amically | Scripts ι<br>⁄. | using Ja  | ıvaScrip    | t and S | erver-Si | ide Scr       | ipts usir           | g PHP t  | o gene            | rate an           | ıd displ      | ay th |
| CO-4                  | Appra          | ise the             | principle             | es of ob        | oject or  | iented (    | develor | ment i   | ising P       | HP                  |          |                   |                   |               |       |
| CO-5                  | Inspec         | t Javas             | Script fra            |                 |           |             |         |          | 0             |                     | tates d  | evelop            | er to fo          | ocus or       | n cor |
|                       | featur         | es.                 |                       |                 |           | YO DO       | DOO     | · .      |               |                     |          |                   |                   |               |       |
|                       |                |                     |                       |                 |           | CO-PO<br>PC |         | viappi   | ng            |                     |          | 1                 |                   | neo           |       |
| COs                   | 1              | 2                   | 3                     | 4               | <i>E</i>  |             | r       | 0        |               | [ 10 ]              | 11       | 10                |                   | PSOs          | 1     |
| CO1                   | 3              | 2                   | 3                     | **              | 5         | 6           | 7       | 8        | 9             | 10                  | 11       | 12                | 1                 | 2             | 3     |
| CO2                   | 2              | 2                   | 2                     |                 |           |             |         | -        |               |                     |          |                   | 2                 | 2             |       |
|                       | 2              |                     |                       |                 |           |             | -       |          |               |                     |          |                   | 2                 | 2             |       |
| CO3                   |                | 2                   | 2                     |                 |           |             |         |          |               |                     |          |                   | 2                 | 2             |       |
| COL                   | 2              | 2                   |                       |                 |           |             |         |          |               |                     |          |                   | 2                 |               |       |
| CO4                   | ~              | ~                   |                       |                 |           |             |         |          |               |                     |          | 2                 | 2                 | ~             | 1 0   |
| CO4<br>CO5<br>Average | 2.2            | 2                   | 2                     |                 |           |             | _       |          |               |                     |          | 2 2               | 2                 | 2             | 2     |

|          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | Cou      | rse Ot    | itcomo    | S        | J J          |          | , de. 15 c                            | 7072     |      | -    |
|----------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-----------|-----------|----------|--------------|----------|---------------------------------------|----------|------|------|
| CO-1     | Evol     | ain tha    | concon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ts of no  | rallala  | c manuti |           |           |          | ologies      |          |                                       |          |      | -    |
| CO-2     | Ana      | yze the    | nerfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mance     | with ro  | enact to | ng and    | networ    | k techn  | lologies     |          |                                       |          |      | -    |
| CO-3     |          | trate pa   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           | •        |              | -        |                                       |          |      | -    |
| CO-4     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           | rchyan   | nd archi     | to otuvo |                                       |          |      |      |
| CO-5     | Und      | erstand    | the nr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ogramn    | ning co  | nconte   | in cont   | by mera   | omputo   | id archi     | tecture  | n & orga                              |          |      |      |
|          | 1        | crotaria   | the pri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | овтанні   | iiiig co | CO-PO    | D-PSO     | Manr      | ina      | i syster     | ii desig | n & orga                              | anizatio | on.  |      |
|          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 1000     | Os        | mapp      | mig      |              |          | -                                     |          | DCO. |      |
| COs      | 1        | 2          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4         | 5        | 6        | 7         | 8         | 9        | 10           | 11       | 12                                    | 1        | PSOs | -    |
| COI      | 3        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | - `      |          |           | 0         | 7        | 10           | 11       | 12                                    | 1        | 2    | 3    |
| CO2      | 2        | 1          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |          |           | -         |          |              |          | -                                     | 2        |      |      |
| CO3      | 2        | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          | -        |           | -         |          |              |          | -                                     | 1        |      |      |
| CO4      | 3        |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |          |          |           |           |          |              |          |                                       | 1        |      | -    |
| CO5      | +        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -        |          |           |           |          |              | -        | -                                     | 1        | 1    |      |
|          | 2        | -1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          | ļ         |           |          |              |          | 1                                     | 1        |      | 1    |
| Average  | 2.4      | 1_1_       | 1_1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l         | _        |          | l         |           |          | 1            |          | 1                                     | 1.2      | 1    | 1    |
|          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          |              |          |                                       |          |      |      |
| Subject: | Machi    | ne Lear    | ning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |          |          |           |           |          | Subi         | not Co   | <b>de:</b> 15C                        | C72      |      |      |
| Jung     |          | ic Leai    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          | Con      | rse Ou    | taama     |          | Subje        | eci Co   | de.15C                                | 3/3      |      |      |
| CO-1     | Unde     | rstand t   | he hasi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ic conce  | ents of  |          |           |           |          |              |          | <del>- Hill</del>                     |          |      |      |
| CO-2     |          | fy optin   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          | 25           |          |                                       | -        |      |      |
| CO-3     | 1        | ate lear   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | -        | ic for a | Siverip   | nobien    |          |              |          |                                       |          | -    |      |
| CO-4     | +        | machin     | 5-1-1 (a) 10 (b) 10 (c) |           |          | toward   | ls real v | vorld da  | ata anal | lysis        |          |                                       |          |      | -    |
| CO-5     |          | n an app   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          | 19313        |          |                                       |          | -    |      |
|          | 1 - 00.0 | a.i. a.b.l | 0.11001010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ii asiiib |          |          | )-PSO     |           | inσ      |              |          |                                       |          |      |      |
|          | 1        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -        |          | Os        | тарр      | mg .     |              |          |                                       |          | PSOs |      |
| COs      | 1        | 2          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4         | 5        | 6        | 7         | 8         | 9        | 10           | 11       | 12                                    | 1        |      | 1    |
| CO1      | 3        | 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           | 0         | 9        | 10           | 11       |                                       | 1        | 2    | 3    |
| CO2      | 3        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2        |          |           |           |          |              |          | 1                                     | 2        | _    | 2    |
| CO3      | 2        | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          | <del> </del> |          |                                       | 2        | 2    | -    |
| CO4      | 2        | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 2        |           |           |          |              |          | 2                                     | 2        |      | 1    |
| CO5      |          |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |          |          |           |           |          |              |          | 1                                     | 1        |      | 2    |
| Average  | 2.33     | 2.33       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         | 2        | 2        |           |           |          |              |          | 1.33                                  | 1.6      | 2    | 1.60 |
|          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          |              |          |                                       |          |      |      |
| Subject: | Unix S   | ystem      | Progra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ammin     | g        |          |           |           |          | Subje        | ect Co   | <b>de:</b> 15C                        | S744     |      |      |
|          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | Cou      | rse Ou    | tcome     | S        |              |          |                                       |          |      |      |
| CO-1     | Revi     | ew the ι   | unix ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rnel str  | ucture   | and sys  | tem cal   | 1         |          |              |          |                                       |          |      |      |
| CO-2     | Appl     | y unix A   | Pls to c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | demons    | trate tl | ne work  | cing of t | he file : | system   |              |          |                                       |          |      |      |
| CO-3     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          |              | in unix  | enviror                               | ment     |      |      |
| CO-4     |          | yze unix   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          |              |          | T T T T T T T T T T T T T T T T T T T |          |      |      |
| CO-5     | Inter    | pret the   | e differ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent me    |          |          |           |           |          | cation.      |          |                                       |          |      |      |
|          | r        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | (        | CO-PC    | )-PSO     | Mapp      | ing      |              |          |                                       |          |      |      |
| COs      |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _        | P        | Os        |           |          |              |          |                                       |          | PSOs |      |
| COS      | 1        | 2          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4         | 5        | 6        | 7         | 8         | 9        | 10           | 11       | 12                                    | 1        | 2    | 3    |
| CO1      | 3        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          |              |          |                                       | 2        |      |      |
| CO2      | 2        | 2          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |          |           |           |          |              |          |                                       | 2        | 2    |      |
| CO3      | 2        | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          |              |          |                                       |          | 2    |      |
|          | 2        | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |          |          |           |           |          |              |          |                                       |          | 2    |      |
|          | _        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          |           |           |          |              |          |                                       |          | 2    | -    |
| CO4      |          | 2          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          | 1        |           |           |          |              |          |                                       | 7        |      |      |
|          | 2 2.2    | 2 1.8      | $-\frac{2}{1.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |          |           |           | -        | -            |          |                                       | 2        | 2    | -    |

Subject Code:15CS72

Subject: Advanced Computer Architecture

| Subject:             | Storag                         | e Area                       | a Netw                    | orks                        |                                   |                                            |                                |                                |                               | Sub       | ject Co | de:15   | CS754    | -            |      |
|----------------------|--------------------------------|------------------------------|---------------------------|-----------------------------|-----------------------------------|--------------------------------------------|--------------------------------|--------------------------------|-------------------------------|-----------|---------|---------|----------|--------------|------|
|                      | 1                              |                              |                           |                             |                                   | Cou                                        | rse Ot                         | itcom                          | es                            | 1         |         |         |          |              | 11.5 |
| CO-1                 | Ider                           | itify ke                     | y challe                  | nges in                     | manag                             | ing info                                   | rmatio                         | n alana                        | with D                        | AID:      |         |         |          |              |      |
| CO-2                 | Des                            | cribe d                      | ifferent                  | storage                     | e netwo                           | rking ta                                   | chnoic                         | n along                        | With K                        | AlD imp   | lement  | ations. |          |              |      |
| CO-3                 | Illus                          | trate b                      | ackup,                    | archive                     | and rer                           | dication                                   | Fynla                          | in com                         | nonont                        | anzatioi  | l.<br>  |         |          |              |      |
| CO-4                 | Deti                           | erminir<br>ponen             | ng diffei                 | ent clo                     | ud com                            | puting                                     | deployr                        | ment m                         | odels,                        | service   | models  | and inf | rastruct | NAS.<br>ture | - 12 |
| CO-5                 | Illus                          | trate tl                     | ne stora                  | ige infra                   |                                   |                                            |                                |                                |                               | es.       |         |         | E        |              |      |
|                      | F                              |                              |                           |                             |                                   | CO-PC                                      |                                | Mapp                           | oing                          |           |         |         |          |              |      |
| COs                  |                                |                              |                           |                             | 7                                 | P                                          | Os                             | 1                              |                               |           |         |         |          | <b>PSOs</b>  |      |
| 001                  | 1                              | 2                            | 3                         | 4                           | 5                                 | 6                                          | 7                              | 8                              | 9                             | 10        | 11      | 12      | 1        | 2            | 3    |
| CO1                  | 3                              | 2                            |                           |                             |                                   |                                            |                                |                                |                               |           |         |         | 2        | •            |      |
| CO2                  | 1                              | 2                            | 2                         |                             |                                   |                                            |                                |                                |                               |           |         | 1       |          |              |      |
| CO3                  | 2                              |                              |                           |                             |                                   |                                            |                                |                                |                               |           |         |         | 2        |              | 2    |
| CO4                  | 2                              |                              | 2                         |                             | 1                                 | 1                                          |                                |                                |                               |           |         |         | 1        | 1            | 2    |
| CO5                  | 1                              | 2                            |                           |                             |                                   |                                            |                                |                                |                               |           |         | 2       |          |              | 2    |
| Average              | 1.8                            | 2                            | 2                         | 1.5                         | 1.66                              | i                                          | 2                              |                                |                               |           |         |         |          |              |      |
| CO-3                 | Iden                           | ify and                      | the im                    | Machin                      | e Learn                           | ing algo<br>CO-PO                          | rithms                         | to solv                        | e real v                      | vorld pr  | oblems  |         |          |              |      |
|                      |                                |                              |                           |                             |                                   | P(                                         | -                              | wapp                           | ing                           | -         |         |         |          | 13(1/2)      |      |
| COs                  | 1                              | 2                            | 3                         | 4                           | 5                                 | 6                                          | 7                              | 8                              | 9                             | 10        | 11      | 10      | - 18     | PSOs         | ~    |
| CO1                  | 2                              | 2                            | 2                         | •                           |                                   |                                            |                                |                                | 9                             | 10        | 11      | 12      | 1        | 2            | 3    |
| CO2                  |                                |                              |                           |                             | 2                                 | 1                                          |                                |                                |                               |           |         |         | 2        |              |      |
| CO3                  | 1                              | 2                            | 2                         |                             |                                   | - 1                                        |                                |                                |                               |           |         |         | 2        |              |      |
| Average              | 1.5                            | 2                            | 2                         |                             | 2                                 | 1                                          |                                |                                |                               |           |         | 2       | 2 .      | 2            | 2    |
|                      |                                |                              |                           |                             |                                   | 1                                          |                                |                                |                               | l         |         | 2       | 1        | 2            | 2    |
|                      | Veb Te                         | hnolo                        | gy Labo                   | ratory                      | With M                            | ini Proi                                   | ect                            |                                |                               | Subje     | ect Coc | le:15C  | SI 77    |              |      |
| Subject: W           |                                | CONTRACTOR AND INC.          |                           |                             |                                   |                                            | se Out                         | comes                          |                               | Loubje    |         |         | 01.//    |              |      |
| Subject: W           |                                |                              |                           |                             |                                   |                                            |                                |                                |                               |           |         |         |          |              |      |
| CO-1                 | Unde                           | rstand<br>good a             | and Ad                    | apt HTI                     | VIL and                           |                                            | tax and                        | d semai                        | ntics to                      | Design    | and dev | velop d | ynamic   | web pa       | ges  |
|                      | Unde<br>with                   | good a                       | esthetic                  | sense                       |                                   | CSS syn                                    |                                |                                |                               |           |         |         | ynamic   | web pa       | ges  |
| CO-1                 | Unde<br>with a<br>unde<br>Deve | good a<br>rstandi<br>op Clie | esthetion<br>of Went-Side | sense<br>/eb App<br>Scripts | lication<br>using J               | CSS syn Termir avaScrij                    | nologies                       | s, Inter<br>Server-            | net Too<br>Side Sci           | ols other | web se  | ervices |          |              |      |
| CO-1<br>CO-2         | Unde<br>with a<br>unde<br>Deve | good a<br>rstandi<br>op Clie | esthetic<br>ing of W      | sense<br>/eb App<br>Scripts | olication<br>using Ja<br>Learn ho | CSS syn<br>Termir<br>avaScrij<br>ow to lii | nologies<br>ot and S<br>nk and | s, Inter<br>Server-<br>publish | net Too<br>Side Sci<br>web si | ols other | web se  | ervices |          |              |      |
| CO-1<br>CO-2<br>CO-3 | Unde<br>with a<br>unde<br>Deve | good a<br>rstandi<br>op Clie | esthetion<br>of Went-Side | sense<br>/eb App<br>Scripts | olication<br>using Ja<br>Learn ho | Termir<br>avaScrip<br>ow to lii<br>O-PO-   | nologies ot and S nk and -PSO  | s, Inter<br>Server-<br>publish | net Too<br>Side Sci<br>web si | ols other | web se  | ervices | erate ar | nd displa    |      |
| CO-2                 | Unde<br>with a<br>unde<br>Deve | good a<br>rstandi<br>op Clie | esthetion<br>of Went-Side | sense<br>/eb App<br>Scripts | olication<br>using Ja<br>Learn ho | CSS syn<br>Termir<br>avaScrij<br>ow to lii | nologies ot and S nk and -PSO  | s, Inter<br>Server-<br>publish | net Too<br>Side Sci<br>web si | ols other | web se  | ervices | erate ar |              |      |

| COs             |      |      |   | PSOs |   |   |   |      |   |         |    |    |   |    |   |
|-----------------|------|------|---|------|---|---|---|------|---|---------|----|----|---|----|---|
| COS             | 1    | 2    | 3 | 4    | 5 | 6 | 7 | 8    | 9 | 10      | 11 | 12 | 1 | 2. | 3 |
| CO1             | 3    | 3    | 2 |      |   |   |   | t    |   | 1000000 |    |    | 2 | 2  |   |
| CO <sub>2</sub> | 2    | 2    | 2 |      | 2 |   |   |      |   |         |    |    | 2 | 2  |   |
| CO3             | 2    | 2    | 2 | 2    | 2 | 1 | - | **** | 2 | 2       | 2  | 2  | 2 | 2  | 2 |
| Average         | 2.33 | 2.33 | 2 | 2    | 2 | 1 |   |      | 2 | 2       | 2  | 2  | 2 | 2  | 2 |
| Subject: P      |      |      |   |      |   |   |   | 1    |   | 1       |    |    |   |    | l |

| CO-2<br>CO-3 | Und  | ertake i | dentifie | d probl | ems st  | atemen | t in diff | erent d | omains |    |    |      |     |   |        |  |  |
|--------------|------|----------|----------|---------|---------|--------|-----------|---------|--------|----|----|------|-----|---|--------|--|--|
| CO-3         | Form | lyse the | proble   | m state | ment ti | nrough | literatu  | re surv | ey     |    |    |      |     |   |        |  |  |
|              |      | nulation |          |         |         |        | ,         |         | 40.00  |    |    |      |     |   |        |  |  |
| CO-5         | KIIO | wing the | runctio  | onality | of team | work / | / Individ | luals   |        |    |    |      |     |   |        |  |  |
|              |      |          |          | _       | (       | CO-PC  | )-PSO     | Mapp    | ing    |    |    |      |     |   | -11-80 |  |  |
| COs          |      | POs      |          |         |         |        |           |         |        |    |    |      |     |   | PSOs   |  |  |
| COs          | 1    | 2        | 3        | 4       | 5       | 6      | 7         | 8       | 9      | 10 | 11 | 12   | 1   | 2 |        |  |  |
| CO1          | 2    |          |          |         |         |        |           |         |        |    |    | 2    | 2   |   | T '    |  |  |
| CO2          |      | 2        |          |         |         |        | -         |         |        |    |    | 1    |     |   |        |  |  |
| CO3          |      | 3        |          |         |         |        |           |         |        |    |    | 2    | 1   |   |        |  |  |
| CO4          |      |          | 1        |         |         |        |           |         |        |    | 2  |      |     | 1 | -      |  |  |
| CO5          |      |          |          |         |         |        |           |         | 3      |    |    | 2    |     | - | -      |  |  |
| Average      | 2    | 2.5      | I        |         |         |        |           |         | 3      |    | 2  | 1.75 | 1.5 | 1 |        |  |  |

| Subject: | Interne | et of Th  | ings &   | Appli    | cation   |           | -        |           |          | Subi     | ect Co  | de:150    | S81      |         |        |
|----------|---------|-----------|----------|----------|----------|-----------|----------|-----------|----------|----------|---------|-----------|----------|---------|--------|
|          |         | -         |          |          | _        | Cou       | rse Ou   | tcome     | s        | 1 3      |         |           |          |         |        |
| CO-1     | Interp  | ret the   | impact   | and Ch   | nallenge |           |          |           |          | ding to  | new Ard | chitectu  | ıral mod | dels    | -      |
| CO-2     | 1       | are and   |          |          |          |           |          |           |          |          |         |           |          |         |        |
| CO-3     | Appra   | sie the   | role of  | loT pro  | tocols   | for effic | ient ne  | twork o   | ommui    | nication |         |           |          |         |        |
| CO-4     | Elobo   | rate the  | need     | of Data  | Analyt   | cs and    | its secu | rity in I | οT       |          |         |           |          |         |        |
| CO-5     | Illustr | ate diffe | erent se | ensor te | echnolo  | gies fo   | r sensin | g real w  | vorl ent | ities an | d ident | ify the a | pplicat  | ions of | lot in |
|          |         |           |          |          | (        | CO-PC     | )-PSO    | Mapp      | ing      |          |         |           |          |         |        |
| COs      |         |           |          |          |          | P         | Os       |           |          |          |         |           |          | PSOs    |        |
| COS      | 1       | 2         | 3        | 4        | 5        | 6         | 7        | 8         | 9        | 10       | 11      | 12        | 1        | 2       | 3      |
| CO1      | 3       |           |          |          |          |           |          |           |          |          |         |           | 1        | 1=-1    |        |
| CO2      | 2       | 2         |          |          |          |           |          |           |          |          |         |           | 2        |         |        |
| CO3      | 2       | 2         |          |          |          |           |          |           |          |          |         |           | 1        |         |        |
| CO4      |         | _ 1       |          |          |          | 2         |          |           |          |          |         |           | 1        |         |        |
| CO5      | 2       | 2         |          |          |          |           |          |           |          |          |         |           | 2        | 1       |        |
| Average  | 2.25    | 1.75      |          |          |          | 2         |          |           |          |          |         |           | 1.4      | 1       |        |

| subject: | Big Dat | ta Anal  | ytics    |          |           |          |            |         |          | Subj      | ect Co   | de:15C   | S82     |         | 2010 |
|----------|---------|----------|----------|----------|-----------|----------|------------|---------|----------|-----------|----------|----------|---------|---------|------|
|          | 7       |          |          |          |           | Cour     | se Ou      | tcome   | S        |           |          |          |         |         |      |
| CO-1     | Unde    | erstand  | the co   | ncepts   | of HDFS   | and m    | ap red     | uce fra | meworl   | k         |          |          |         |         |      |
| CO-2     | Inves   | stigate  | hadoop   | related  | d tools f | or Big o | data An    | alytics | and per  | form ba   | asic had | oop ad   | ministr | ation.  |      |
| CO-3     | Reco    | gnize t  | he role  | of busin | ness Int  | elligend | e, data    | ware l  | nousing  | and vis   | ualizati | on in de | cision  | making. |      |
| CO-4     | Infer   | the im   | portano  | ce of co | re data   | mining   | techni     | ques fo | r data a | analytics | 5.       |          |         |         | -    |
| CO-5     |         |          |          |          |           | ext min  | ing web    | minin   | g, naïve | bayes a   | analysis | , suppo  | rt vect | or mach | ine  |
| 00 5     | and     | social n | etwork   | analysi  | S.        |          |            |         |          |           |          |          |         |         |      |
|          | and     | social n | etwork   | analysi  |           | O-P0     | -PSO       | Марр    | ing      |           |          |          |         |         |      |
|          | ands    | social n | etwork   | analysi  |           | 7 1 1    | -PSO<br>Os | Марр    | ing      |           |          |          |         | PSOs    |      |
| COs      | and s   | social n | etwork 3 | analysi  |           | 7 1 1    |            | Mapp    | ing<br>9 | 10        | 11       | 12       | 1       | PSOs 2  | 3    |
|          | 1 3     |          |          |          | (         | P        |            | т       |          | 10        | 11       | 12       | 1 2     |         | 3    |
| COs      |         | 2        |          |          | (         | P        |            | т       |          | 10        | 11       | 12       | 1 2 2   |         |      |
| COs      | 1 3     | 2 2      |          |          | (         | P        |            | т       |          | 10        | 11       | 12       |         | 2       |      |

| Average         | 2.4    | 2          | 2        |         | 1        | 2        |           |          |          |          |           | 1         | 2      | 2         | 2.   |
|-----------------|--------|------------|----------|---------|----------|----------|-----------|----------|----------|----------|-----------|-----------|--------|-----------|------|
|                 |        |            | OV.      |         |          |          |           |          |          |          |           | •         |        |           |      |
| Subject:        | Systen | Mod        | elling A | nd Sin  | nulatio  | n        |           |          |          | Subj     | ect Co    | de:150    | `S834  |           |      |
|                 |        |            |          |         |          | Cou      | rse Ou    | teome    | S        | 1        | - Comment |           | -      |           |      |
| CO-1            | Ident  | ify the    | role of  | mporta  | ant elen | nents o  | of discre | te evei  | n simula | ation an | d mode    | ling pa   | radigm | in real v | worl |
| CO-2            |        |            | e variou |         |          |          |           |          |          |          |           |           |        |           |      |
| CO-3            |        |            | d apply  |         |          |          |           |          |          |          |           |           |        |           |      |
| CO-4            |        |            | priate r |         |          |          |           |          |          |          |           |           |        |           |      |
| CO-5            | Sketo  | h the r    | nodel ar | nd appl | y the re | sults to | solve o   | critical | issues i | n a real | world e   | environ   | ment   |           | -    |
|                 |        |            |          |         | (        | CO-PC    | )-PSO     | Марр     | ing      |          |           |           |        |           |      |
| COs             |        | POs        |          |         |          |          |           |          |          |          |           |           |        |           |      |
|                 | 1      | 2          | 3        | 4       | 5        | 6        | 7         | 8        | 9        | 10       | 11        | 12        | 1      | 2         | 3    |
| CO1             | 3      | 2          |          |         |          |          |           |          |          |          |           | 2         | 2      |           | 3    |
| CO <sub>2</sub> | 1      | 2          |          | 2       |          |          |           | -        |          |          | 2         |           |        | 2         |      |
| CO <sub>3</sub> |        |            |          |         | 1        |          |           |          |          |          |           |           |        | 3         |      |
| CO4             |        |            | 2        |         |          |          | 3         |          |          | 1        |           |           | 1      |           |      |
| CO5             |        |            | 3        | 2       |          |          |           |          |          |          | 3         |           |        | 2         |      |
| Average         | 2      | 2          | 2.5      | 2       | 1        |          | 3         |          |          |          | 2.5       | 2         | 1.5    | 2.33      | 3    |
|                 |        |            | •        |         |          |          | 1         |          | 1        | 1        | 1         | 1000      |        | 1 1       |      |
| Subject: 1      | ntores | hin        |          |         |          |          |           |          |          | C 1.     |           | 1 1 5 6 7 | G0.4   |           |      |
| Subject: 1      | nterns | шр         |          |         |          |          |           |          |          | Subje    | ect Coc   | ie:15C    | 584    |           |      |
| CO 1            | Idos±: | £., a., -1 |          | 1       | i        |          | rse Ou    |          |          |          |           |           |        |           |      |
| CO-1            |        |            | apply th |         |          |          | neering   |          | edge     | _        |           |           | 4      |           |      |

2

CO<sub>5</sub>

|         |       |           |          |          |          | Cou      | rse Ou    | tcom    | es        |         |         |          |         |          |      |  |  |
|---------|-------|-----------|----------|----------|----------|----------|-----------|---------|-----------|---------|---------|----------|---------|----------|------|--|--|
| CO-1    | Ident | ify and a | apply tl | he prob  | lem usi  | ng engi  | ineering  | g know  | ledge     | * **    | */*     |          |         |          |      |  |  |
| CO-2    | Desig | n and in  | npleme   | ent new  | conce    | pts in m | nultidisc | iplinar | y area.   | -       |         |          | -       |          |      |  |  |
| CO-3    | Explo | re caree  | er alter | natives  | prior to | gradu    | ation in  | differ  | ent don   | nains   |         |          |         |          |      |  |  |
| CO-4    | Demo  | onstrate  | profes   | ssional  | and eth  | ical pra | ctice     |         |           |         |         |          |         |          |      |  |  |
| CO-5    | Gain  | more ex   | perien   | ce in ac | compli   | shing a  | long-te   | rm pro  | oject, ar | nd mana | ging th | e progre | ess cor | ntinuous | ily. |  |  |
|         |       |           |          |          | (        | CO-PC    | )-PSO     | Map     | ping      |         |         |          |         |          |      |  |  |
| COs     | POs   |           |          |          |          |          |           |         |           |         |         |          |         | PSOs     |      |  |  |
| COS     | 1     | 2         | 3        | 4        | 5        | 6        | 7         | 8       | 9         | 10      | 11      | 12       | 1       | 2        | 3    |  |  |
| CO1     | 3     | 2         |          |          |          |          |           |         | ,         | -       |         |          | 2       | 1        |      |  |  |
| CO2     |       |           | 3        |          |          |          |           |         | 2         | 2       |         |          |         | 1        | 2    |  |  |
| CO3     |       | 1         | 1        |          |          |          |           |         | 2         |         |         | 2        | ***     |          | 3    |  |  |
| CO4     |       |           | 2        |          |          |          |           | 2       |           |         |         |          |         | 2        |      |  |  |
| CO5     |       |           |          |          |          |          |           |         |           |         | 2       | 2        |         |          | 2    |  |  |
| Average | 3     | 1.5       | 2        |          |          |          |           | 2       | 2         | 2       | 2       | 2        | 2       | 1.33     | 2.33 |  |  |

| Subject: | Project | Work                                                             | Phase   | H       |         |          |          |           |          | Subje    | ect Co    | de:15C   | SP85    |             |      |
|----------|---------|------------------------------------------------------------------|---------|---------|---------|----------|----------|-----------|----------|----------|-----------|----------|---------|-------------|------|
|          |         |                                                                  |         |         |         | Cour     | rse Ou   | teomes    | S        | 1        |           |          |         |             |      |
| CO-1     | Desi    | gn engi                                                          | neering | solutio | n to co | mplex    | oroblen  | ns utiliz | ing a sy | stem ap  | proach    | using r  | noderr  | tools       |      |
| CO-2     | Com     | munica                                                           | te with | peers,  | supervi | isor eng | ineers   | and soc   | iety     |          |           |          |         |             |      |
| CO-3     |         | ement<br>ciples.                                                 | the inn | ovative | designe | ed work  | and co   | onduct    | perforn  | nance ar | nalysis ı | using er | ngineer | ring pro    | ject |
| CO-4     | Dem     | Demonstrate the work done and knowledge gained in completed work |         |         |         |          |          |           |          |          |           |          |         |             |      |
| CO-5     | Dem     | onstrat                                                          | ed wor  | k prese | nted in | terms    | of Disse | rtation   | and / c  | r Public | ations    |          |         | 1 1000      |      |
|          |         |                                                                  |         |         | (       | CO-PC    | -PSO     | Mapp      | ing      |          |           |          |         |             |      |
| COs      |         |                                                                  |         |         |         | P        | Os       |           |          |          |           |          |         | <b>PSOs</b> |      |
| COS      | 1       | 2                                                                | 3       | 4       | 5       | 6        | 7        | 8         | 9        | 10       | 11        | 12       | 1       | 2           | Ι.   |
| CO1      |         |                                                                  | 3       |         | 3       | 2        |          |           |          |          |           | 2        | 3       | 3           |      |
| CO2      |         |                                                                  |         |         |         |          |          | 2         | 3        | 3        |           | 2        |         | 2           |      |

| Subject: Semi | nar |    |   |   |   |   |   |      | Subje | ect Cod | le:15C | SS86 |     |   |
|---------------|-----|----|---|---|---|---|---|------|-------|---------|--------|------|-----|---|
| Average       |     | .5 | 3 | 3 | 2 | 2 | 2 | 2.33 | 2.66  | 2.66    | 2      | 3    | 2.5 | 2 |
| CO5           |     |    |   |   |   |   | 2 | 2    | 3     | 2       | 2      |      |     | 2 |
| CO4           |     |    |   |   |   | 2 |   | 2    | 2     | 3       | 2      |      | 2   | 2 |
| CO3           | 3   |    | 3 |   |   |   |   |      |       | 3       | 2      | 3    | 3   | 2 |

| -               |       |          |          | -       |         |         |          |         |          | Subj      | cci co   | uc. IJC | 0000    |          |         |
|-----------------|-------|----------|----------|---------|---------|---------|----------|---------|----------|-----------|----------|---------|---------|----------|---------|
| -               | 1     |          |          |         |         | Cor     | irse Ou  | itcom   | es       |           | 7        |         |         |          |         |
| CO-1            | Ident | ify and  | Analyze  | inform  | mation  | about e | emergin  | g techr | nologies | s with re | spect to | curren  | t trenc | ds.      |         |
| CO-2            | Ident | ify pron | nising n | iew dir | ections | of vari | ous cutt | ing ed  | ge tech  | nologies  | with in  | trapers | onal sk | ills.    | -       |
| CO-3            | 1     |          |          |         |         |         |          |         |          | ve comm   |          |         |         |          |         |
| CO-4            | Stude | nts sho  | uld dis  | cuss ap | propria | ate mod | dern eng | gineeri | ng and   | IT Tools  | in new   | innovat | ions an | ıd inver | itions. |
| CO-5            |       |          |          |         |         |         |          |         |          | ed repor  |          |         |         |          |         |
|                 |       |          |          |         |         | CO-P    | O-PSO    | Map     | ping     |           |          |         |         |          |         |
| COs             |       |          | 1        | ,       | -,      | J.      | Os       |         |          |           |          |         |         | PSOs     |         |
|                 | 1     | 2        | 3        | 4       | 5       | 6       | 7        | 8       | 9        | 10        | 11       | 12      | 1       | 2        | 3       |
| CO1             | 2     | 2        |          |         |         |         |          |         | 1        |           |          |         | 2       |          | -       |
| CO <sub>2</sub> | 2     | 2        |          |         |         |         | 1        |         |          | 1         |          |         | 1       |          | -       |
| CO <sub>3</sub> | 2     | 2        |          | 1       |         |         | 1        |         | 2        | 3         |          |         | 2       |          | -       |
| CO4             | 2     | 2        | -        |         | 1       | 1       | 1        |         |          |           |          |         | 2       |          |         |
| CO5             | 2     | 2        |          |         |         | 1       | 2        |         | +        | -         | -        |         |         |          | -       |

Head of the Department
Dept. of Computer Science and Engineering
SJB INSTITUTE OF TECHNOLOGY
BGS Health & Education City
No. 67, Uttarahalli Road, Kengeri,
Bengaluru-550 060.