


||Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust ®

Department of Civil Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix - Batch 2015-19

Semester-I/II

Subject:	Liem	ents of (IVII E	ngineer	ing an	d Engi	neering	Mech:	anics	Sub	iect Co	de: 15	CIV1	3/23	
*						Cou	rse Ou	tcome	S				13 Ex	The second	_
CO1	Out	line the	variou	s field	s in Ci	vil End	rineeri	na and	ita ima	nowton		0			
CO ₂	Ana	lyse the	force	system	appli	ed to th	1e stru	eturol n	nombe	portano	e on ii	ntrastru	icture.		
CO ₃	Ana	lyse eff	ect of	forces	on eve	tem	ic struc	ciurai II	nembe	rs und	er statı	c cond	ition.	Topic .	
CO ₄	Eva	luate the	effec	t of cer	on sys	gravit				100					
CO5	Ana	luate the	force	cyctem	and d	gravit	y and n	noment	t of ine	ertia fo	r giver	struct	ure.		315
		aj se the	10100	System	and d	ynami	cond	tion							
						100000		Mappi	ing						
Cos		14 17 1941	201			P	os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1		_
CO1	2	1	l l							10	4.1	12		2	3
CO ₂	3	3						31-3							
CO3	3	3						*							
CO4	3	3	-												
CO5	2	2													
Average	2.6	2.75													

Semester-III

	200	12	190 -05-00-0												
Subject:	Engin	eering	Mathe	ematics	i-III					Sub	ject C	ode:1	МАТ	31	
						Cou	rse O	utcom	es						
CO1	Kno com	w the	use ation.	of per	riodic	signal	s and	Fouri	er ser	ies to	analy	ze ci	cuits	and s	system
CO2	Expl	lain the g the F	e gener ourier	al linea transfo	r syste	em theo d z-trai	ory for	contin	ous - ti	me sig	nals an	d digi	al sign	al pro	cessin
CO ₃	Emp	loy ap	propria	ite nun	nerical	metho	de to e	olve al	achroi	o and t		1 . 1			
CO4	Tippi	ly Old	ch 2 mi	corem,	Diver	gence t	heorer	n and	Stokes	thanra	m in .		appli	ons. cation	s in th
CO5	Dete	rinine	tne ext	ermals	of fur	actiona	and s	olve th	e cimr	la meal	h10	C 1	culue	of var	intion
	CHILI	LU LIIU	COHCC	hro or	, synth	onar ar iesis an	d opti	ır varıa mizatic	n of di	in the	annlin	otiona	of co	mmun	icatio
	CHILI	LU LIIU	COHCC	hro or	, synth	onar ar nesis an CO-PC	d optin	ır varıa mizatic	n of di	in the	annlin	otiona	of co	mmun	nicatio
COs	CHILI	ms, de	COHCC	theory	, synth	esis an	d optin D-PSO Os	r varia mizatio Mapp	n of d	in the igital c	applica ircuits.	ations	of co	PSO	orication Os
	syste	LU LIIU	ecision	hro or	, synth	onar ar nesis an CO-PC	d optin	ır varıa mizatic	n of di	in the	annlin	otiona	of con	mmun	nicatio
COs	syste 1	ms, de	ecision	theory	, synth	esis an	d optin D-PSO Os	r varia mizatio Mapp	n of d	in the igital c	applica ircuits.	ations	of co	PSO	orication Os
COs	syste	2 2	ecision	theory	, synth	esis an	d optin D-PSO Os	r varia mizatio Mapp	n of d	in the igital c	applica ircuits.	ations	of co	PSO	oication Os
COs CO1 CO2	syste 1 3 3	2 2 2 2	ecision	theory	, synth	esis an	d optin D-PSO Os	r varia mizatio Mapp	n of d	in the igital c	applica ircuits.	ations	of co	PSO	orication Os
COs CO1 CO2 CO3	1 3 3 3 3	2 2 2 2 2	ecision	theory	, synth	esis an	d optin D-PSO Os	r varia mizatio Mapp	n of d	in the igital c	applica ircuits.	ations	of co	PSO	oication Os

Page 1 of 19

COMPON Head of Department Department of Civil Engineering S J B Instit te of Technology Uttarahalli Road, Kengeri Bengaluru 560 060

Subject: 3	Strengt	h of M	aterial	S						Subj	ect Co	de: 150	CV32		
*****						Cour	se Ou	tcome	3		* 2000				
CO1	tensio	n, shea	ar, ben	ding ar	nd tors	ion						es such			
CO2	manu	facturi	ng.									eld of			
CO3	stress	ses and	thus u	ndersta	ınd fai	lure co	ncepts					the act			ound
CO4	To u	idersta	nd the	basic c	oncep	t of an	alysis a	and de	sign of	memb	ers sul	ojected	to tor	sion.	
CO5	To un		nd the	basic o	concep	ot of ar	nalysis	and de	esign o	of struc	tural e	lements	s such	as col	umns
	I will b	uuts.						2202-11							
	T dild 5	ii uis.			(CO-PC	-PSO	Mapp	ing						
	l and 3	uuis.			(-PSO Os	Mapp	ing					PSOs	
COs	1	2	3	4	5			Mapp 8	ing 9	10	11	12	1	PSOs 2	3
COs			3 2	4 3		P	Os			10	11	12 2	1 3	100000	
	1	2				P	Os			10	11	100 CONTRACT - 100	1 3 3	100000	
CO1	1 3	2 3		3		P	Os			10	11	2		100000	
CO1	1 3 3	2 3 1	2	3 2		P	Os			10	11	2	3	100000	
CO1 CO2 CO3	1 3 3 3	2 3 1 3	2 1 2	3 2 3		P 6 1 1 1 1	Os 7 1			10	11	2 2	3	100000	

Subject: I	Fluid M	lechan	ics							Subje	ct Co	de: 150	CV33		
						Cour	se Out	come	S						
CO1	Posse	ess a so	ound ki	nowled	dge of	fundan	nental j	proper	ties of	fluids a	ind flu	id cont	inuun	1.	
CO2	Comp	ute an	d solve	probl	ems o	n hydro	statics	, inclu	ding p	ractical	applic	cations			
CO3	Apply	princ	iples of	f math	ematic	s to rep	present	kinen	natic co	oncepts	relate	d to flu	id flo	W	Val as
CO4	Apply applic	fund ations	amenta	al law	s of	fluid 1	nechar	nics a	nd the	Berno	oulli's	princi	ple fo	or pra	etical
CO5	Comp	oute the	e disch	arge tl	nrough	pipes :	and ov	er note	ches an	d weirs	8				
					(CO-PO	-PSO	Mapp	ing						
90421000						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2				2	2		3			2		2	
CO2	2	3	2			2	2		2	2		2		1	
CO3	2	3	2	3		1	1	1	1	1	1111	2		1	
CO4	3	3	3	3		1	1		1	1		2		3	
CO5	3	3	3	3		1	1	1	1	1		2		3	
Average	2.4	2.8	2.5	3		1.1	1.1	1	1.6	1.25		2		2	

Subject:	Basic S	Surveyi	ing							Subje	ect Co	de: 150	CV34		
						Cour	se Ou	tcomes	3						
CO1	Posse	ss a so	und kr	owled	ge of f	undam	ental p	orincip	les Ge	odetics					
CO2	Meas	uremen	nt of vo	ertical surveyi	and ho	rizonta blems	al plan	e, linea	r and a	angular	dimer	100	o arriv	e at	
CO3	Captu	ire geo	detic d	lata to	proces	s and p	perforn	n analy	sis for	survey	probl	ems	20		
CO4	Analy data	yze the	obtair e figu	ed spa	ontou	rs				volume	es. Rep	resent	эD ——		
		11/2	***************************************			CO-PC	-PSO	Mapp	ing						
			-			P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	₍ 2	3

CO1	2				1 2	т - г	 		
CO2	2	1	1	 12	1 2		2	1	
CO3	2	1	1	 2	2		1	2	
		2	2	2	2		- - - - - - - - - - 	- 2	
CO4	2	2	0			2	 1	2	
Average	2	1.67	1.5	 2	2	2	1	3	
G]		12.07	1.5		2	2	1.25	2	

Subject:	Engin	eering	Geolo	gy						Sub	iect C	ode: 15	CV3	5	_	
	1 27427		-			Cou	ırse Oı	utcom	es						_	
CO1	Stud	ents w	ill able	to app	oly the	know	edge o	f gool	2021.00	d in Ci		gineerii			_	
CO2	Juna	ents w neering	III CIIC	cuvery	utiliz	e earth	's mate	erials s	uch as	minera	al, rocl	gineerii ks and v	ng water	in civil	6	
CO3	Anal	nalyze the natural disasters and their mitigation seess various structural features and geological tools in ground water exploration, Natural														
CO4	Asse	ss vari	ous str	uctura on and	l featu	res and	genla	gical to	ools in	ground	d wate	r explo	ration	, Natura	al	
CO5	Appl	y and a	asses u	se of h	uildin	g mate	rials in	const	probler	ns		eir prop				
					(CO-PO)-PSO	Manr	ing	and as	sses th	eir prop	perties			
COs						1000	Os	1,1mbl	ing			-		DCO	_	
	1	2	3	4	5	6	7	8	9	10	11	12	- 1	PSOs		
CO ₁	3		2			2	2			10	11			2	L	
CO ₂	2	1 10			2	$\frac{2}{2}$	2					2		1		
CO3	2		2.		2		19-20					2		2		
CO4	2				13326		2					2		1		
			2		2		3					3		2		
COS				10 3	2	1	2	(2	1			
CO5 Average	1 2	100	2		2	2	2					4	1	1		

Subject:	Buildi	ng Mai	terials	and Co	onstruc	tion				Subj	ect Co	de: 15	CV36	
						Cou	rse Ou	tcome	S	S-1				
CO ₁	Selec	t suita	ble ma	terials	for bu	ildings	and a	lont en	itabla	oonstm	. oti	techniq	DO VIOLENZA	
CO2	Adop	t suita	ble rep	air and	d main	tenance	e work	to enh	ance d	lurabili	ty of h	uilding	ues.	
					(CO-PC)-PSO	Марр	ing		tj or o	anding	,3.	
COs							Os							PSOs
	_1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2					2	2		35			2	1	
CO2	2					2	2						2	
Average	2					7.0						2	_ 2	
TACINEC	4				1	12	2					2	^	

abject	Buildi	ng Ma	terials	Testing	g Labo	ratory				Subj	ect Co	de: 15	CVL3	7	
							rse Ou			×					
CO1	tensi	on, cor	npress	on, sh	ear and	l torsic	n.			neering				750	
CO2	Iden	tify, fo	rmulat	e and s	solve e	nginee	ring p	oblem	s of st	ructura	l eleme	ents sul	ojected	to fle	xure
CO3	Evalu	uate the	e impa	ct of er	ngineer	ring so failure	lutions	on the	socie	ty and	also wi	Il be a	ware o	f	
	Conte	прога	1 y 135u	cs rega	uding	ianaic	01 511 1	ctures	aue to	unsuit	able m	aterials	5.		
	Conte		1 y 133u	es rega						unsuit	able m	aterials	S.		
200.100.000000			1 y 155u			CO-PO	Or sure O-PSO Os			unsuit	able m	aterials	S.	PSOs	
COs	1	2	3	4		CO-PO	-PSO			unsuit	able m	aterials	1	PSOs 2	
200 110 100 000	1 2			4	C	PO-PO	-PSO	Mapp					1 2	PSOs 2	3

CO3	2	1		2	2	2		1	2	2	
Average	2	1.33	1	1.5	2	2		1	2	2	

Subject:	Basic S	Survey	ing Pra	actice						Subj	ect Co	de: 15	CVL38		
						Cou	rse Ou	tcome	S						
CO1	Appl	y the b	asic pr	inciple	s of en	gineer	ing su	veying	g and f	or linea	ar and	angula	r measi	ureme	nts.
CO2	Com	prehen	d effec	tively	field p	rocedu	res req	uired f	or a p	rofessio	onal su	rveyor			
CO3	Use pract		ques,	skills	and co	onvent	ional s	survey	ng in	strume	nts ne	cessar	y for o	engine	ering
					(CO-PC	-PSO	Mapp	ing	A					
						P	Os	000						PSOs	T
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
															A THE STATE OF
CO1	2	2										1	1		
CO1	2 2	2								2	2	1 1	1 2		
		2								2	2	1 1 1	1 2 1		

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

Semester-IV

Subject:	Engir	ieering	Mathe	ematics	s-IV					Sub	iect C	ode:15	FF41		
	Tresar sa	750				Cou	irse O	utcom	es				700		
CO1						diffe	rential	equati	ons ari	sing in					
CO2	Solv	e prob	lems o system	f quant	tum me Legren	echani dre's r				l's func to sph					
CO3	theo	ry and		magne	etic the	orv De	neius, escribe	confo	es and	poles o					
CO4	prob	e prob ability	iems of	n proba utions	ability and st	distrib ochasti	utions	relatin	a to di	ssing gital si with m	gnal pi iultivai	rocessin	ng, det rrelati	ermine on	join
CO5	Drav or re	v the v jecting	alidity	of the	hypoth	esis pi	I CHIAM	nrona	N 1 1 1 1 1 7 47	n samp natrix o	oling di	istribut arkov c	ion in hain ai	accept nd solv	ing ⁄e
					(CO-PC)-PSO	Mapp	ing						
COs	1	1 2				P	Os							PSOs	
CO1	3	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO2	3	2													
CO3	3	2											***		
CO4	3	2				_					Land to the same of				
CO5	3	2						7.800							II.
Average	3	2													

Subject:	Analy	sis of	Determ	inate S	Structu	res				Subi	ect Co	ode: 15	CV42		
						Cou	rse Ou	itcom	es				C 1 12		
CO1	Eval	uate th	e force	s in de	termir	ate tru	sses by	meth	od of i	oints a	nd sect	ione			
CO2	Eval meth	uate th	e defle	ction o	of cant	ilever,	simply	suppo	orted a	nd over	hangir	ng bean	ns by	differe	nt
CO3	Unde defle	erstance ctions	the en	ergy p	rincipl	es and	energy	theor	ems ar	nd its ap	pplicat	ions to	deteri	nine th	ie
CO4	Dete	rmine	the stre	ss resu	ıltants	in arch	es and	cable	2						
CO5			the co							he II D	diagra	m for t	tha ma		
				•	-	70 DC		to Come	ti dot ti	IC ILD	ulagia	in tor i	me me	oving io	Jack.
					•	JU-PC)-PSO	Mapp	ing						
Cos						William Park	os os	Марр	ing						
Cos	1	2	3	4	5	William Park		Mapp 8	oing 9	10	11	12	1	PSOs	
Cos CO1	1 3	2 3	3	4 2	r	P	os	Марр	ing		11	12	1 3		
	1 3 3		3 1 1		r	P	os	Марр	ing		11	1	1 3	PSOs	
CO1		3	1	2	r	P	os	8 1 1	ing		11	1	3	PSOs	
CO1	3	3	1	2	r	P	os	8 1 1	ing		11	1 1 1	3	PSOs	
CO1 CO2 CO3	3	3 3 3	1	2 2 2	r	P	os	8 1 1	ing		11	1	3	PSOs	

subject:	Applied Hydraulics	Subject Code: 15CV43
	Course Ou	tcomes
CO1	Apply dimensional analysis to develop math values in prototype by analyzing the correspondent	ematical modeling and compute the parametric
CO2	Design the open channels of various cross se	ections including economical channel sections.

Page **5** of **19**

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060.

CO3							en chant ferent co			Calcula	ate Ene	ergy dis	ssipati	on,	
CO4		W	ines fo	5.54	ven da	ata, an	d to kno	w the	ir oper	ation c	haracte	eristics	under	differe	ent
	HL				(CO-PO)-PSO	Mapp	ing						
00						P	Os				g bea	la e		PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3		2	3	2	2			2		2	
CO2	3	3	3	3		2	2		2			2		1	
CO3	2	3	2	1		2	2		1			2		1	
CO4	2	3	2	2		2	2		1			2		2	
Average	2.5	3	2.5	2.25		2	2.25	2	1.5			2		1.5	

Subject: (Concre	ete Tecl	nolog	gy						Subj	ect Co	de: 150	CV44		
				The state of the s		Cour	rse Ou	tcome	\$						
CO1	Rela	te mater	rial ch	aracteri	stics a	nd the	ir influ	ience o	n micı	ostruct	ure of	concre	te.		
CO2				ete beha											
CO3			- 5	oning of rofessio	nal co	des	*			es for r	equire	d fresh	and ha	rdene	d
						CO-PO)-PSO	Mapp	ing						
~~						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1		2	2	1	1					1	2		
CO2	1	1		2		1	1				1	2	3		
CO3	1	2	2	1	2	1	1			1		1	3		
Average	1	1.33	2.	1.67	2	1	1			1	1	1.33	2.67		

subtect: 1	Basic G	eotech	nical E	Engine	ering					Subje	ect Co	le: 150	CV45		
						Cour	se Out	comes							
CO1	soil. c	lassify	the so	il base	d on it	s index	prope	erties					ny type		
CO2	compa	action	proced	ures									to as		
CO3	to see	page a ure	nd effe	ective s	stress;	Also a	cquire	ability	to est	imate s	seepag	e losse:	about s	s hydr	aulio
CO4	Estim tests a									soils u	sing th	e data	of diff	erent	shea
	LOSES C	mu coi	Ilbrene	ma ivic	JIII-CO	uloillo	Tallure	theor	<u>y</u>						ASTON AND DE
CO5	Solve	practi	cal pro	blems	relate	d to es	timatio	on of c	onsoli	dation	settlen	nent of	soil de	posits	also
CO5	Solve	practi	cal pro	blems	relate e	d to es	timatio	on of c	onsoli	dation	settlen	nent of			
	Solve	practi	cal pro	blems	relate e	d to es	timatio	on of c	onsoli	dation	settlen	nent of		eposits PSOs	
CO5	Solve	practi	cal pro	blems	relate e	d to es	timatio	on of c	onsoli	dation 10	settlen	nent of	1	PSOs 2	
COs	Solve time r	practi equire	cal pro	blems ne sam	relate	d to es	-PSO Os	on of c	onsoli ing				1 2	PSOs 2 1	
	Solve time r	practi require 2	d for th	blems ne sam	relate e	d to es	-PSO Os	on of c	ing 9				1 2 2 2	PSOs 2 1 1	
COs	Solve time r	practi require 2 2	d for the	blems ne sam	relate e	d to es	-PSO Os	on of c	ing 9				1 2	PSOs 2 1	
COs CO1 CO2	Solve time r	practi require 2 2 1	al prod for the	blems ne sam	relate e	d to es	-PSO Os 7	on of c	ing 9				1 2 2 2 2 1	PSOs 2 1 1	
COs CO1 CO2 CO3	Solve time r	practi require 2 2 1	3 2 2 2 2	blems ne sam	relate e	d to es	-PSO Os 7	on of c	ing 9				1 2 2 2	PSOs 2 1 1	

comman

Subject:	Adva	nced Si	urveyii	ng	A					C-1					
	ale and					~				Sub	ject Co	ode: 15	CV46	5	
001						Co	urse O	utcome	es						_
CO1	App	ly the l	knowle	edge of	geom	etric n	rinciple	es to ar	rive of	CHIMION		.11			
CO2	000	moderi neering	n mon i	umems	to obt	ain ge	eo-spati	al data	and an	alyze t	the san	ne to ap	propr	iate	17
CO3	Cap	ture ged tronic in	odetic	data to	proces	ss and	perform	m analy	sis for	surve	y prob	lems w	ith the	use of	f
CO4	Desi	on and	imple	ment th	a diff		Superior and the second	Street and the street.		1027 W/W					
	12001	gn and	mpici	ment ti	ie diffe	erent t	ypes of	curves	for de	viating	g type	of align	ments	5.	
						CO-P	O-PSO	Mapp	ing						
COs						I	POs							DCO.	
	1	2	3	4	5	6	7	8	9	10	11	12	-	PSOs	1
CO1	2	2				1	1	1	1	10	11	12	1	2	3
CO2	2	$\frac{1}{2}$				1	1	1_1	_ 1			1	2		
	535	1 2				1					1502		2		
CO3	2	1					2	2	2			1	2		
001	2	1 1					2	2				1	.555		
CO4	~							_ Z	- 19				2	1	4.
Average	2	1.5				1	1.66	1.66	1.5			1	4		

Subject:	Fluid 1	Mechai	nics La	borato	ry					Subj	ect Co	de: 15	CVI.4	7	
						Cou	rse Ou	tcome	S	1 0			<u> </u>		-
CO1	Prop	erties o	f fluid	s and t	he use	of var	ious in	strume	nte for	fluid	Flores and	easure			
CO ₂	Worl	cing of	hydra	ulic ma	achine	s under	variou	is cond	litions	of	llow m	easure nd thei	ment.		200
					(CO-PC	PSO	Mann	ina	or wor	king a	na thei	r chara	cterist	ics.
COs			FG				Os	mapp	mg					DGO	-
CUS	1	2	2	1	-				77 923					PSOs	
	1	2	3	4	1 5	6	1 7 1	Q	0	10	11	10	-		
CO1	2		2	1	5	1	7	8	9	10	11	12	1	2	3
CO1	2	2		1	5	1	1	8	2	10	11	3	1	2	3
CO1 CO2 Average	2 3 2.5		2 2	1 1	5	1 2	1 2	8	2	10	11	3 3	1	2 2 2	2

Subject:	Engin	eering	Geolo	gy Lat	orator	y				Sub	ject Co	ode: 1	5CVL4	8	
	-					Cou	rse O	utcom	es						
CO1	Iden	tifying	the m	inerals	and ro	ocks an	d utiliz	ze then	n effec	tively i	in civil	engin	eering 1	aractic	
CO2	civil	engine	nng an eering	a inter projec	pretin _i ts	g the go	eologic	cal con	ditions	s of the	area f	or the	implem	entatio	on o
CO3	Inter	preting	g subsu	ırface	inform	ation s	uch as	thickn	ess of	soil, w	eathere	ed zon	e, depth	of ha	rd
CO4	The	technic echnica	ques of	drawi	ng the	curves	of ele	ctrical	resisti	vity da	ta and	its inte	erpretat	ion for	
	V ========					CO-PC)-PSO	Mapı	oing						
COs							Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	2					3	2	1000				2	2	1	- 3
CO2	2				2		2					2	2	_1_	
CO3	2		2	2			2			-			2		
CO4	2		2	2		2.	2					2	1		
					2	2.5	2						2		
Average	2		2	1 2								2	1.75		

Head of Department
Department of Civil Engineering
5 J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

Semester-V

		n of RC	- 11 110	turar L	Terrier					Sub	ject Co	ode: 1:	5CV51		
COI	Und	oraton d	41 1			Cou	rse O	utcome	S				* *		
CO ₂	Solv	e engin	ine de	sign pl	hiloso	phy and	princ	iples						*	_
CO3		onstrate mns and			ral kn	RC electory	ments e in de	subject signs o	ed to f	lexure, tructur	shear al elem	and to	rsion uch as	slabs.	
CO ₄	Own	s profes	sional	and of	higal	responsi	1 111			-					
2020000	I			*		СО-РО		Марр	ing				Al .		
COs	1			Т.	T		-PSO Os	Марр	ing					PSOs	
	1	2	3	4	5			Mapp	ing	10	11	12		PSOs	1
CO1	1 2	2	1	4	T	PO	Os	,		100	11	12	1 2	PSOs	1
CO1	1 2 3		3 1 2	4 1 1	T	6 PC	Os	8 2		10	11	12 2	1 3	PSOs	3
CO1		2	1	4 1 1	T	6 3 3	Os	8 2 2 2		1	11	2	3	PSOs	1
CO1	3	2 3	1 2	4 1 1 1	T	6 3 3 3	Os	8 2 2 3		100	11		-	PSOs	1
CO1 CO2 CO3	3	2 3	1 2	4 1 1 1	T	6 3 3	Os	8 2 2 2		1	11	2	3	PSOs	1

Subject:		515 01	mucle	mmate	e struc					Sub	ject C	ode: 1:	5CV52	,	
	T					Cou	irse Oi	ıtcom	es		5 N 55				-
CO1	Dete	ermine subsid	the mo	oment sing sl	in inde	etermin fection	ate bea	ms an	d fram	es havi	ng var	iable n	nomen	t of ine	ertia
CO2	Dete	ermine ibution	the mo	oment	in inde	termin	ate bea	ms and	d fram	es of n	o sway	and sy	vay us	ing mo	men
CO3	Con	struct t	he ben	ding n	omen	t diagra	m for	L	1.0						200
CO ₄	cons	truct tl	ne bend	ling m	Oment	diagra	m for 1	beams	and fr	ames b	y Kani	's met	hod		
CO5	Ana	vze th	e beam	s and	indeter	diagraminate	for the	eams	and fra	mes us	ing fle	xibilit	y meth	od	
				is und	(Indeter	CO-PC)-PSO	s by sy Mann	stem s	tiffnes	s meth	od	_		
COs							Os	тарр	mg	*				DCO-	
1 20 004	1	2	3	4	5	6	7	8	9	10	11	12	-	PSOs	
CO1	3	3	1	1	1	1				10	11	12	1	2	3
CO ₂	3	3	1	1	1	1	110					1	3		
CO3	3	3	1	1	1	2			-			1	_ 3		
CO4	3	3	1	1	1	1						1	3		
CO5	3	3	1	1	1	1						1	3		
	3	3	1	1	1	1.2						1	3		
Average					200										

- and good	: Appli	ca Oct	necilli	cai En	gineer	ıng				Sub	ject C	ode: 15	CV53	3	
			- West			Cou	irse O	utcom	es			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		21 7	
CO1	7	TIOUI III	5 PIUIC	CLO		otechn	ical sit	e inves	stigatio	n progr					-
CO2	Und	erstand and cl	ling of	stress	distrib	oution a	and res	ulting	settlem	nent bei	neath t	he load	ed foc	otings c	n
CO3	Abil	ity to e	stimat	e facto d earth	r of sa	fety ag	ainst f	ailure o	of slop	es and	to com	pute la	teral p	ressure	.
CO4	Abil	ity to d	letermi	ne bear	ring ca	apacity	of soil	and a	chieve	profici	iency i	n propo	rtioni	ng shal	llow
CO5	Capa	ble of	estima	ting lo	ad car	rving c	anacit	ofcin	g press	sure d group	· · ·				
				510	ad car	CO-PC	D-PSO	Monn	igie and	a group	of pil	es			
						and the second		Maph	ung	45					
00	-	2				P	Os							PSOs	
COs				1 2	5			8	2						

Page 8 of 19

Head of Department
Department of Civil Engineering
S J B Institte of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

3	2	1		1							,			
2	2	1	1		-		-				1	2	2	
2	3	1	1	1								1	1	
3	2		1	1	4.1514	1000						1		
3	1	1	1			1	-		-	-		1		
2.6	2	1	1	1		-			-	-	<u> </u>	1	1.5	
	3	2 3 3 2 3 1	2 2 1 2 3 1 3 2 3 1 1	2 2 1 1 2 3 1 3 2 1 3 1 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 2 3 1 1 3 2 1 3 1 1	2 2 1 1 1 2 2 3 1 1 1 1 3 2 1 1 1 3 1 1 1 1	2 2 1 1 1 2 2 2 3 1 1 1 1 3 2 1 1 1 3 1 1 1 1 2.6 2 1 1 1

Subject:	Comp	uter Aid	ded Bu	uilding	Plant	ning and	l Drav	ving		Subi	ect Co	de: 15	CV54		
						Cour	rse O	utcome	6			15	0 1 3 1	50	-
CO1	Gain	a broad	d unde	rstand	ing of	nlannir	าธุลก	decian	ing o	f buildir			-		
CO ₂	Prep	are, rea	d and	internr	et the	drawin	oe in	profes	cione	l set up	igs	_			-
CO3	Kno	w the prings for	rocedu	res of	subm	ission o	f drav	vings an	d De	velop w	orking	and su	ıbmiss	sion	
CO4	Plan	and des	sign a	resider	ntial o	r public	build	ing as r	er the	e given i	require	monto		-	
				3. 3		СО-РО	-PSO	Mappi	ing	giveni	cquire	ments			
COs						P		1						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1		1
CO ₁	2	1	1		2	1		2		10	- * *		1	2	3
CO ₂	2	2	1		2	1		-	2			2	2		
CO3	1					1		2	2	L		2	2		
	1				2	1		1	2	2		2	2		
CO4	2	1			2	2		2	2	2		2	2		
Average	1.75	1.33	1		2	1.25		1.75	2	1.67		2	2		

Subject:	Air po	ollution a	ind Co	ntrol						Subj	ect Co	de: 15	CV55	1	
						Cou	rse Ou	itcome	S						
CO1	Ider	ntify the ironmen	majoi t	source	es of a	ir pollu	tion a	nd und	erstanc	d their o	effects	on hea	lth and	d	
CO ₂	Eva	luate the	dispe	ersion o	of air i	ollutan	ts in t	he atm	osnher	e and t	a dava	lam a:	154		•
CO3	Asc	ertain aı	nd eva	luate s	ampli	ng techi	niques	for atr	noenhe	ric one	Leteck	op air	qualit	y mode	IS
CO ₄	Cho	ose and	desig	n contr	ol tecl	nniques	for na	rticula	te and	Gacaon	g omio	ponuta	ınıs		
						CO-PO	-PSO	Mapp	ing	gascou	is cillis	SIOIIS.			
COs							Os						JI Page	PSOs	
2000-000 000000	1	2	3	4	5	6	7	8	9	10	11	12	1	2] 3
CO1		1			22.00	2	2	2				1	_	2	-
CO ₂				2		2	2	2				1		1	_
CO3		2		2		1	2	2				1		1	_
CO4	2	2				2	2					- 1		2	
COT		-0.0				5556						1			

subject:	Railwa	ays, Ha	arbours	s, tunne	eling a	nd Airp	orts			Subj	ect Co	de: 15	CV552	2	
						Cour	se Out	come	S						
CO1	Acqu runw	ires cap ay, taxi	oability way	of cho	osing a	lignmer	t and al	so des	ign geo	metric	aspects	of raily	way sys	stem,	
CO2	Sugg	est and nine th	estimat e haulii	te the m	naterial city of	quantity a locom	y require	ed for	laying	a railwa	ay track	and als	so will	be able	to
CO3	Deve	lop lay	out plan	of air	ort, ha	rbor, do	ck and v	will be	able r	elate the	e gaine	d knowl	edge to	identi	G,
COS	requi	red type	e of vis	ual and	or nav	igationa	laids fo	or the	ame				FF.		y
CO4	requii	red type	e of vis	ual and	or nav	igationa induct s	l aids fo urveying	or the s	same erstand	the tun	neling	activitie	es		y
	requii	red type	e of vis	ual and	ed to co	nduct s	ll aids fourveying -PSO I	or the s g, und	erstand	the tun	neling	activitie	es		y
	requii	red type	e of vis	ual and	ed to co	nduct s	urveying -PSO I	or the s g, und	erstand	the tun	neling	activitie		PSOs	.y

Page 9 of 19

Head of Department

Department of Civil Engineering

S J B Institute of Technology

Uttarahalli Road, Kengeri

Bengaluru 560 060

CO1	3	3	3	1	1 1	1		1	2
CO2	2	2	200.00				2	2	2
CO3	3			1	1	1		2	2
CO4	3			1				1	2
Average	2.75	2.5	3	1	1	1	2	1.5	2

Subject: '	Traffic	Engine	eering							Subj	ect Co	de: 150	CV561	t:	
						Cour	rse Ou	tcome	S						
CO1	Unde	rstand	the hu	man fa	ctors a	and vel	nicular	factors	s in tra	ffic eng	gineeri	ng desi	gn		
CO2	Cond		ferent	types o	of traff	ic surv	eys an	d analy	sis of	collect	ed data	using	statist	ical	
CO3		n appre	100		c flow	theory	and to	comp	rehend	the ca	pacity	& sign	alized		
CO4	Unde	rstand	the ba	sic kno	wledg	e of In	tellige	nt Trar	sporta	tion Sy	stem				
					(CO-PO	-PSO	Mapp	ing	200					
_						P	os							PSOs	86
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2					HI					1		2	
CO2	3	2						1	2			1		2	
CO3	3	3	F-8-7		1							1		2	+.
CO4	2	3	3			2		1		1		1		2	
	2.8	2.6	3	The same of	1	2		-	2	-		4		2	1

Subject:	Occupa	tional	Health	and S	afety					Subj	ect Co	de: 150	CV564	4	
						Cour	se Out	comes	3						
CO1	Identi		ards in	the w	orkpla	ce that	pose a	dange	r or th	reat to	their sa	afety or	r healt	h, or th	at o
CO2	Contr	ol uns	afe or	unheal	thy ha	zards a	nd prop	ose m	ethods	to elir	ninate	the haz	zard	Mr. Cl	
CO3	citing	the oc	cupati	onal H	ealth a	and Saf	ial safe ety Re	gulatio	ns as v	well as	suppor	rted leg	gislatio	on	ng,
CO4	worke	ers, ma	nagers	s, supe	rvisors		ı the w		530						
CO5			decision	13	8	to mair	ntain pr	otectio	on of tl	ne envi	ronme	nt, wor	kplace	e as we	ll as
					(CO-PO	-PSO	Mapp	ing				- 1100		
					(-PSO : Os	Mapp	ing					PSOs	
COs	1	2	3	4	5		190	Mapp 8	ing 9	10	11	12	1	PSOs 2	3
COs	1 2	2	3	4		P	Os			10	11	12 2	1	_	3
		2	3	4		6	Os 7	8		10	11		1	2	3
CO1	2	2	3	4		6 3	Os 7 3	8 2		10	11	2	1	2	3
CO1 CO2 CO3	2	2	3	4		6 3 3	Os 7 3 3 3	8 2 2		10	11	2	1	2 2	3
CO1	2 1 1	2	3	4		P(6 3 3 3 2	Os 7 3 3 2	8 2 2 2		10	11	2 2 1	1	2 2 2 3	3

Subject:	Geotechnical Engineering Laboratory	Subject Code: 15CVL57
	Course Outco	mes
CO1	Physical and index properties of the soil	
CO ₂	Classify based on index properties and field idea	ntification
CO3	To determine OMC and MDD, plan and assess	field compaction program
CO4	Shear strength and consolidation parameters to a	
CO5	In-situ shear strength characteristics (SPT- Dem	onstration)

	T	-				CO-PC)-PSC) Map	oing						
COs						P	Os						T -	DCO-	
	I	2	3	4	5	6	7	8	0	10	11	10		PSOs	_
CO ₁	3	3	3		937	1	1	1 2	-	10	11	12	1	2	3
CO2	3	2	2			1	1	3	3	1		2	3		
CO3	2	2	2			1	1	3	3	1		2	3		
		2	3					3	3			2	3		
CO4	3	2	3					2					3		
CO5	3	2	3)	3			3	2		
	2	-	-					2	2			3	2		
Average	3	2.2	2.8		-37	1.5	1	2.8	2.8	1		2.4	2.6		

Subject:	Conci	cie and	u rugn	way M	lateria					Subj	ect C	ode: 15	CVL5	8	
604	1-2-					Cou	irse O	utcome	S		-770				- 19
CO1	Con	duct ap	propri	ate lab	orator	y expe	riment	s and in	ternre	t the re	culta				
CO ₂	Dete	rmine	the qu	ality ar	nd suit	ability	of cen	nent	torpre	t the re	Suits				
CO ₃	Desi	gn app	ropria	te conc	rete m	ix	OI COI	icit			-				- 100
CO ₄	Dete	rmine	strengt	th and	quality	ofco	norata								
CO5	Test	the roa	ad agg	regates	and b	itumen	forth	eir suita	1 111						
CO6	Test	the so	il for it	s suital	hility o	o oub	one de	oil for	ollity	as road	mate	rial			
			i ioi it	3 Suita	onity a	CO DO	grade s	soil for	pavem	ents					
			-		11			Mapp	ing						
Cos	1	1 2	T 2		70.00	H	os							PSOs	
001		2	3	4	5	6	7	8	9	10	11	12	1	2	T
CO1	2			1		1	1	2	1	2		2	2	1	+
CO ₂	2		i i	p* =3 = 3.8.		2	2	2		1		1	3	1	_
CO ₃	2		2			1	1	1	1			1		1	
CO4	2		2	1		1	1	1	1	-		1	3	1	
CO5	2	1		1		1	1	1	l			1	3	1	
CO6	2	1				2	2	1				1	2	1	
Average	2	1				2	2	1				1	2	1	
		1	2	1 1		1.5	1.5	1.33		1.5					1

Head of Department
Department of Civil Engineering
S J B Institute of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

Semester-VI

Subject:	Constru	iction M	I anager	nent ar	nd Entr	epreneu	ırship	11.1 v		Subje	ect Co	de: 150	CV61		
						Cour	se Ou	tcomes	8			1000			
CO1	Unde	rstand	the cor	struct	ion m	anagem	ent pro	ocess							
CO2		rstand arging				fissues	s that a	re enco	ountere	d by ev	ery p	rofessio	onal in		
CO3	Fulfil	I the pr	ofessi	onal o	bligati	ons eff	ectivel	y with	global	outloo	k				
COs					(CO-PO	-PSO Os	Mapp	ing	,				PSOs	
COs	1	2	3	4	5			Mappi	ing 9	10	11	12	1	PSOs 2	3
COs	1 2	2	3	4		P				10	11	12 1	1	1	3
	1 2 1	2 1 1	3 1 2	4		P				10 1 1	11	12 1	1	2	3
CO1	1 2 1	2 1 1 2	1	4		6 1	Os 7 1	8		10 1 1 2	11 1 1	12 1 1	1	2	3

Subject: 1	Design	of Ste	el Stru	ctural	Eleme	nts				Subj	ect Co	de: 150	CV62		
						Cou	rse Ou	tcome	S			Y.,			
CO1				<u> </u>			es Adv	36.76		Disadv eel	antage	s of Ste	eel stru	ictures	,
CO2	Under	rstand	the Co	ncept	of Bol	ted and	l Weld	ed con	nection	ns					
CO3	Under splice		the Co	ncept	of Des	ign of	compr	ession	memb	ers, bu	ilt-up c	olumn	s and o	column	iS
CO4	Under	rstand	the Co	ncept	of Des	ign of	tension	n mem	bers, s	imple s	lab bas	se and	gusset	ed base	•
CO5	Under	rstand	the Co	ncept	of Des	ign of	lateral	ly supp	orted	and un-	suppo	rted ste	el bea	ms	
		- Water - E			(CO-PC)-PSO	Mapp	ing						
						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					1	2	3				2	3		
CO2	3	3	3					3				2	3		
CO3	3	3	3					3				2	3		
CO4	3	3	3					3				2	3		
CO5	3	3	3					3				2	3		
Average	2.8	3	3			1	2	3		Ĭ		2	3		

ubject:	Highwa	y Engi	neering							Subje	ect Co	de: 150	CV63		
						Cour	se Ou	tcomes			- 2100000000				
CO1	neces	sary fi	eld inv	estigat	ion for	gener	ation o	f requi	red da	ta		f existii			
CO2			e engin onstruc		prope	ties of	the ma	aterials	and s	uggest	the sui	itability	of the	same	for
CO3	Desig	n road	geom	etrics,	structu	ral cor	nponei	nts of p	aveme	ent and	draina	age			
CO4				vay eco y finan				ct met	nods a	nd also	will h	ave a b	asic k	nowled	lge
						O-PO		Monn	72 CF						
	01 / 65	TO GO II	0	M	C	O-I O	-1 20	maph.	uig			5.5			
	01 / 11	10000 11		M		nome line seo	Os	wapp.	ıng					PSOs	
COs	1	2	3	4	5	nome line seo	0.0000000000000000000000000000000000000	8 8	9 9	10	11	12	1	PSOs 2	3
COs	1 2			4		P	0.0000000000000000000000000000000000000			10	11 1	12	1	PSOs 2 2	3
PAGE STREET	1	2		4		6	0.0000000000000000000000000000000000000			10	11 1	12 1 1	1	2	3

					ectabals					
CO ₄	3	3		\neg	T		r	 		
Average	2.5	2.25	3		12	1	-	 2	1	2
						1	2	1.5	1	2

a a a ject.	water	Supply	and Tr	eatmen	t Engin	eering				Sub	ject Co	de: 15	CV64	8	
						Cou	rse Ou	itcom	es				0101	2	
CO1	Estin	nate a	verage a	and pe	ak wat	er dem	and fo	r a cor	nmuni	tv					
CO2	choi	uate a ce for	vailable a comm	sourc unity	es of w	vater, c	uantita	atively	and qu	ualitati					
CO3	Eval	uate w	ater qua	ality a	nd env	ironme	ental si	gnifica	ince of	variou	s parai	neters	and pl	an suit	table
CO4	Desi	gn a c	ompreh	ensive	water	treatm	ent and	1 distri	bution	eveten	to my	.:c	1 1.	•1	
	to the	e requ	ired qua	lity sta	andard	S			oution	System	r to pu	my and	1 distr	ibute v	vate
	to the	e requ	ired qua	lity st	anuaru	S				System	i to pu	my and	1 distr	ibute v	vate
	to the	e requ	ired qua	llity st	anuaru	S CO-PC	O-PSO			System	i to pu	my and	1 distr		
COs	1	e requ	ired qua	ality sta	anuaru	S CO-PC	-PSO						1 distr	PSOs	
		roqu	Tou qua	inty su	andard (CO-PC	Os 7	Марр	ing	10	110 pu	12	1 distr	PSOs 2	
COs	1	2	3	inty su	andard (PO-PO Po 2	Os 7	Марр	ing				1 distr	PSOs 2 2	
COs	1 2	2 2 2	3	inty su	andard (P(6 2 2 2	0-PSO 0s 7 2 2	Марр	ing				1	PSOs 2 2 2 2	
COs CO1 CO2 CO3	1 2 2 2	2 2 2 2 2	3 2	inty su	andard (Po P	0-PSO 0s 7 2 2	Марр	ing				1	PSOs 2 2	
COs CO1 CO2	1 2 2	2 2 2	3	inty su	andard (P(6 2 2 2	0-PSO 0s 7 2 2	Марр	ing				1	PSOs 2 2 2 2	

Subject:	Solid V	Waste N	/lanage	ment						Subj	ect Co	de: 15	CV65	1	
						Cou	rse Ou	tcome	S				- , 00		-
CO ₁	Anal	yze ex	isting s	solid w	aste m	anage	ment sy	/stem	and to	identif	z thair	duand	1		
CO ₂	Eval	uate di	fferent	eleme	nts of	solid v	vaste m	anaga	ment o	watom	y tileli	urawba	icks		
CO3	Sugg	uate different elements of solid waste management system gest suitable scientific methods for solid waste management elements gn suitable processing system and evaluate disposal sites													
CO4	Desi	gn suit	able pr	ocessi	no syst	em an	d evalu	wasie	manaş	zement	eiemei	nts			
			P.	000001	<u>(15 5) 5(</u>	CO-PC	O-PSO	Mann	ing	sites			_		
COs							Os	11						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	2	2				2	2		2			2		2	3
CO2	2	2				2	3	2	2			2			
CO3	2	2				2	3	2	2			_		2	
CO4	2	2				2						2		2	
Average	2	2				\$1000 N	2	2	2			2		2	
Average		2				2	2.5	2	2			2		2	

Subject:	Matrix	Meth	od of	Structu	ral Ana	alysis				Subj	ect C	ode: 15	CV65	2	
						Cour	rse Ou	tcome	S						
CO1	Eval for s	uate th imple p	e struc proble	etural sy ms	ystems	to app	licatio	n of co	ncepts	of flex	cibility	and st	iffness	matri	ces
CO2	Ident matr	dentify, formulate and solve engineering problems with respect to flexibility and stiffness natrices as applied to continuous beams, rigid frames and trusses dentify, formulate and solve engineering problems by application of concepts of direct													
CO3	Ident	ify, for	rmulat	e and s	olve ei	ngineer ontinu	ing pr	oblems	s by an	plication	on of o	concepts	s of di	rect	
					(со-Ро	-PSO	Марр	ing	303					
COs		18///				P(0							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		1	1	1						2	3		
CO ₂	3	3	1	2	1	2		1			7006	1	3		\vdash
CO3	3	3		1	2	1						1	3		-
Average	3	3	1	1.67	1.33	1.33		1		_		1.33	3		

Subject		A SARCIAN CONTRACTOR			- miqu					Sub	iect C	ode: 1:	SCVIC	F 4	
CO1	Giv	e solut	ions to	golves		Cor	irse O	utcom	es		3.44	ouc. 1.	CVO.	04	
CO2												ons hav			
CO3	0 0111	ZV DIU		ne logo									rover	upon 1	he
15000			- tile u	OIBILO	1 1011m	1atione	of	•			Prof	TITH TITLE	uoven	nent so	tha
						74110113	or var	ious c	vil eng	gineeri	10 stru	ctures			uia
				esign o	(CO-PC)-PSO	Mapp	vil eng ing	gineeri	ng stru	ctures			ina
COs	1				(CO-PC	Os Var	Mapp	vil eng i ng	gineeri	ng stru	ctures			
	1	2	3	4	5	CO-PC)-PSO	Марр	vil eng		ng stru	ctures		PSOs	
CO1	1 3	2 2				P)-PSO	Mapp	vil engoing	gineerii 10	ng stru	ctures 12	1		
	1	2			5 2	P)-PSO	Марр	vil eng ing		ng stru	ctures	1		
CO1	1 3	2	3		5 2 2	P)-PSO	Марр	vil eng		ng stru	ctures	1		
CO1	1 3 3	2	3		5 2	P)-PSO	Марр	vil eng		ng stru	ctures	1 1 1		

Subject:		Residence of								Sub	iect C	ode: 15	CVI	7	_
	Utili	Ze MA	TIAD	1		Cou	ırse Oı	itcome	es				CVL		
CO ₁	frequ	lenov c	ILAE	platto	rm to	perform	n inter	pretati	on of s	amplin	a theo	rom in	41		
	Ticqu	ichey (iomain	IS.						Pilli	S 11100	ciii iii	time a	nd	
	-				(CO-P()-PSO	Manr	ina						
COs		T				P	Os	repl	ing						
	1	2	3	4	5	P	Os	o	nig .					PSOs	
CO1	1 3	2	3	4		6 6	Os 7	8	9	10	11	12	1	PSOs	
	3 3	1 1	3	4		P	Os 7	8 2	9	10	11	12	1	PSOs	3

1		-		Toject	/Camp		اولوس			Su	biect (Code:	15CVI	60	
CO1	An	nly Cu				C	urse (Outcon	nes	08507846	-3-00	out.	IJCVI	208	
CO2	Un tow	derstar vards co	ding Tommor	ask er goals	vledge ivironn s, Orga	and to nent, C nizatio	ols eff Goals, i onal pe	ectively respons	y for the sibilitie ince exp	e proje s, Task pectatio	ects focus	, work	ing in	Teams	
CO3	App	pincatio	n of in	dividi	al effe	ctivon	200 -1 .	11 .			izatio	al con	text o	oal see	rai
CO ₄	Pro	fession	al etion	Letter	of same	ation a	nd pre	ils in te sentation	on skill	s			icai, g	vai sei	ung,
CO ₅	Esta	blishir	o truct	hagas	at work	kplace,	meeti	sentations and	genera	1				-	
CO6	Orie	entation onflicts	towar	ds cor	iflicts i	onship: in team	s in tea	ng and ums & o	organiz	ationa	l envir	onmen	t		
	OI C	unflicts	. Conf	lict red	alutio			ngamiza	monal	enviro	nment.	Under	standi	no con	roog
DESAW.	01 60	onthets	, Conf	lict res	solutio	n style CO-P	s and to	rganiza echniqu Mapı	ues Ding	enviro	nment,	Under	rstandi	ng sou	rces
Cos		T			solutio	CO-P	s and to	echnique Mapp	ues Ding	enviro	nment,	Under	rstandi		
	1	2	3	lict res	solution 5	CO-P	O-PSC	echnique Mapp	oing					PSOs	
CO1	1 2	2			,	CO-Po	O-PSO Pos 7) Mapi	ues Ding	enviro:	nment,	12	1	PSOs 2	
CO1	1 2 2	T			5	6 2	Pos 7 2) Mapi	oing			12 2		PSOs	
CO1 CO2 CO3	1 2	2			5 2 2	CO-PC 1 6 2 2	O-PSO Pos 7 2 2) Mapi	oing	10	11	12	1	PSOs 2	
CO1	1 2 2	2			5 2	6 2 2 2	O-PSO Pos 7 2 2 2	8	oing			12 2	1 2	PSOs 2 2	
CO1 CO2 CO3	1 2 2 2	2			5 2 2	6 2 2 2 2	O-PSO Pos 7 2 2 2 2	8 8 2	oing	10	11	12 2 2	1 2 2	PSOs 2 2 2	
CO1 CO2 CO3 CO4	1 2 2 2 2 2 2	2			5 2 2	CO-P(1 6 2 2 2 2 2 2 2 2	O-PSO Pos 7 2 2 2 2 2	8 2 2	oing	10	11	12 2 2	1 2 2 2	PSOs 2 2 2 2 2 2	
CO1 CO2 CO3 CO4 CO5	1 2 2 2 2	2			5 2 2	6 2 2 2 2	O-PSO Pos 7 2 2 2 2	8 8 2	oing	10	11	12 2 2 1 2	1 2 2 2 2	PSOs 2 2 2 2 2	

anne

Semester-VII

Subject:	INTUING	ipai an	a Indus	trial Wa	aste Wa	ater En	gineerin	ıg		Sub	iect Co	ode: 15	CV71	-	
	1		1550			Cou	irse Ou	tcome	es		,		CVII		
CO1	Desi	gn mu	nicipal	and in	dustria	al sew	ane tran	tmont	mland.						
CO ₂	Estir	nate th	e degr	ee and	type o	ftreat	ment fo	J:	piant.			7000			
CO ₃	Anal	yze wa	aste wa	iter cha	racter	ictica	mem 10	r dispo	osai, re	use and	d recyc	ele			
CO4	Reco	gnize	the cor	nmon	physic	al, che	emical a	nd bio	logica	l unit o	peratio	ns enc	ounter	ed in	
CO5	Com	munic	ate wit	h the s	take ho	olders	on sew	are on	d indu	rtuial at	ca ,	•			
					(CO-PO	O-PSO	Mann	ing	striai ei	Tiuent	issues			
Cos							Pos	марр	ing					DCO	
Cos	1	2	3	4	5	6	7	8	9	10	11	10		PSOs	_
CO1	2	2	2				-	0	9	10	11	12	1	2	3
CO ₂	2	2				-	2		1000						
CO3	2	2				1								2	
COA	2	2	2			1	1							2	
CO4						1	1							2	
CO5										2		1			
CO5 Average	2	2	2							4		1			1

Subject:	Power	Syster	n Prot	ection					1/62	Subj	ect Co	de: 15	CV72.		
						Cou	rse Ou	tcome	S					1707	
CO1	Anal India	yze an n stand	d Designated	gn RCo dal pro	C footi	ng, ret	aining	wall, v	vater ta	anks ar	ıd porta	al fram	e usin	g relev	ant
CO ₂	Anal	yze an	d Desi	gn Stee	el roof	truss, 1	olate o	irder a	nd gan	try gird	ler neir	ng IS 80	00.200	\7	-
						CO-PC	-PSO	Mapp	ing	ny gne	ici usii	1g 15 0	00.200)/.	- 160
COs						75000	Os		-		-			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	-	2	3
CO1	3	3	3					3		120		2		-	3
CO2	3	3	3					3					3	-	
Average	3	3	3					- F.				2	_ 3		
			J				9	3	1		1 !	1 2 1	3		

Subject:	Hydro	logy a	ind Irrig	ation	Engin	eering				Subj	ect C	ode: 15	CV73	}	
							rse Ou								
CO1	Appl	y the	knowled	dge of	hydro	logical	cycle o	compo	nents :	and its	impor	tance			
CO ₂	Estin	nate th	ne precij	pitatio	n, its 1	osses		тотпро		110 105	mpor	tance			_
CO ₃	Asse	ss run	off and	develo	op unit	t hydro	graphs								
CO4	Appl	y the	various	metho	ds of	irrigatio	on for d	iffere	nt field	condit	ione				
CO5	Estin	nate qu	uantity	of irrig	gation	water a	and free	mency	of irri	gation	water	for vari	0110 0	WO 40 0	
CO6	Desig	gn the	compoi	nents o	anal s	vstems		aoney	OI III	ganon	water	ioi vai	ous c	rops	
						-)-PSO	Mann	ing		-				_
COs							Os	- FF	8					PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1				2	2					1		1	٥
CO2	2	1	1			1	1					2		2	A.
CO3	2	2				1	1			-					
CO4	2				-	2	2					1		1	
CO5	2	2	2									2		2	
- 1000H of 1201 6720K						2	2					2		2	
CO6	2	2	2			2	2					2		2	
Average	1.83	1.6	1.67			1.67	1.67					1.67		1.67	

Page **15** of **19**

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

Subject		- O	Driuge	<i>,</i> 3						Sul	bject	Code:	15CV	741	
CO1	Ar	nly IR	Caton	dand	C 1	Co	ourse (utcom	ies						17.01
CO2	An	ply III	e dani	uarus	for load	calcu	lations	on bric	lges						
CO3	Δn	alvzo	v desi	gn the	slab an	d T be	am bri	dges							5
CO4	De	cian Di	x Desi	ign Bo	x culve	rt, pipe	e culve	rt							
] DC	oigii Fi	ers an	a abut	ments a	nd use	bearin	gs, hin	ges and	d expan	nsion	joints			
	7			Ursie.		CU-F	O-PS() Мар	ping						
COs	1	2	1 2				POs							PSC)c
CO1	3	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO2	3	$\frac{2}{2}$	3	-	-		1	3				2	3	1	-
CO3	3	2	3	2			1	3				2	3	1	+
CO4	3	2		2			1	3				2	3	1	+
Average	3	2	3	2	-		1	3				2	3	1	+
Average		2	2.5	2			1	3				2	3	1	-
Subjects	Crow	ad XXI										-			
Subject:	Groun	nd Wat	er & I	lydrau	ilics					Subj	ect C	ode: 1	5CV7	12	
CO1	Idon	4:C 1	1 .		- 10 TOTAL	Cou	irse Ou	tcome	S		AUS SHOT SHOW				
CO2	Eatin	tilly the	e basic	chara	cteristic	es of a	quifers								
CO3	Esti	mate th	ie quai	ntity o	f groun	d wate	r by va	rious m	ethods	3					
CO4	Loca	ate pros	spectiv	e zone	es of gr	oundw	ater av	ailahili	fre				* * •		
	Ana	lyze the	e suita	ble tec	hnique	s for g	roundw	ater ex	plorati	on					
CO5	Sele	ci parti	cular i	vne of	well to	allam	ant the	~~~	1		rge				
CO6	Reco	mmen	d metl	nods o	f water	harves	ting str	uctures	based	on the	e terra	in con	ditions		
					(CO-PC)-PSO	Mappi	ing			in con	unions		
COs						P	Os							PSOs	
COL	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	1	3	2						1	2	1	3
CO2	2		3		2	2						2	2	1	
CO3	3	2	2	2	2	1						2	1		
CO4	2		1	1	3	3				\rightarrow	-	2	2	2	
00-	3	2	2		2	2				-		2	2	2	
CO5		2		2	1	2	75 SE								
CO5 CO6 Everage	2.5	2 2.25	2	1.5	1	2				1	9	2	1	1	

Subject:	Oroa	ii Traiis	portat	ion and	Plann	ıng				Sub	ect Co	de: 15	CV7	51	
						Cou	rse Ou	tcome	S		4				
<u>CO1</u>	Ana	lyse the	data	require	d for t	ranspo	rtation	planni	no						
CO2	For	mulate t	ranspo	ortation	1 proje	ct plan	ning ar	d day	lonma	nt.					
CO ₃	Pred	lict futu	re trin	distrib	ution	rate for	the ct	id ucvi	ropine	ill					
CO ₄	Dev	elop mo	odal sr	olit and	trin oc	cionm	and dead	iuy are	a	787					
CO5	Val	elop mo	deve	loned r	nodel d	Signin	ent tec	inique	s for v	arious	travel	oattern:	S		46.
		the the	deve	loped I	nouel 1	or ion	g term	transpo	ortation	n plan					
		781 16	7800)-PSO	Mapp	ing						
COs	<u> </u>	1 -	in the same			P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	1503	
CO1	2	2								10	- 11	12		4	3
CO ₂		2					-								į.
CO3	2	3												3	
CO4			3												
CO5				3	-									2	
Average	2	2.33	3	3										2	
	-	2.33	3)	1		1 1	- 1		1				2.33	

Subject:	THAIL	Junem	iai Eng	gineerii	ng Lab	oratory	7			Sub	iect Co	ode: 15	CVI 7	6	
001						Cou	rse Ou	itcome	es					U	
CO1	Anal	yse &	Estima	ate the	variou	s parar	netero	nrecen	t in we	ton on a	1	water	_		
CO ₂	Com	pare th	e resu	lt with	Codal	provis	ione	presen	t III Wa	ner and	waste	water			
CO ₃	Eval	uate tv	pe of t	reatme	nt dec	ree of	trootes	t C							
CO4	Conc	luct inv	estion	tions o	n wate	# TVOS	home	ent for	water	and wa	aste wa	iter			
CO5	Form	ulate t	he nro	hlem s	totomo	, was	iewate ₁	r, air ai	nd nois	se using	g mode	iter ern equ	ipmen	t.	250
	- 0.11	arate t	ne pro	olem s	lateme	iii and	remed	ial soli	itions :	for thei	r proje	ern equ ect worl	ζ.	111	See to the
					(CO-PC		Mapp	ing						
COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	PSOs 2	1 2
CO ₁		2			Ī							12	- 1		3
								3		-				2	
CO ₂	. 4	U \												2	
		2	-					3						2	ia.
CO3		2						3						2	
CO3		2		2				3							
CO3		2		2		2		3						2	

Subject:	Comp	uter Al	ued D	etailing	g of Sti	ructure	S			Subj	ect Co	de: 15	CVL7	7			
-						Cou	rse Ou	tcome	S	*							
CO1	Anal	yse the	data f	urnish	ed for	detailii	าด										
CO ₂	Prepa	are the	detaile	ed struc	ctural o	drawin	gs base	d on c	odal n	rovisio	na		_				
	120				(CO-PC)-PSO	Mapp	ing	0 1510	115						
COs	CO-PO-PSO Mapping POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	- 1		_		
CO1	2									10	11	12	L	2	3		
CO2	2							2		-	2.500		2				
5755560000 45	2							2					2				
Average	2							2				-	2				

Subject:	Projec	t Phase	e I +Pr	oject S	Semina	ır				Sub	ject C	ode: 15	CVP7	8		
	,					Co	urse O	utcome	S							
CO1	Iden susta	tification inable	on of c object	comple tives.	x prob	lems 1	by com	prehens	ive lit	erature	revie	w and f	ormula	ate the		
CO2	Desi the s	Design the methodology and selection of suitable materials for the experimental work or desi the suitable methodology for the analysis														
CO ₃	Choo	Choose the appropriate approach for the condition of project Form a group to function effectively in a diverse teams and multidisciplinary settings														
CO4	Form	a grou	up to f	unction	n effec	tively	in a div	verse te	ams a	nd mul	tidicci	nlinom	cotting			
		7,11,10			(CO-P	O-PSO	Марр	ing	id IIIdi	lidisci	Jillaly	Settili	38		
COs							POs							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2					1	1		2	1	5/35/80	1	2	2	-	
CO ₂	1	2					1	1	2	2		1	2	2		
CO3	2	1			1	1	2	2	2	2		2	2	2		
CO4	1							1	4	3		3	2	2	_	
	1.5	1.5				See .	1.33	1.33)	1000	3	2	2		

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru 560 060

Semester-VIII

Subject:	Quant	ity Sur	veying	and C	ontrac	ts Man	ageme	ent	-	Subj	ect C	ode: 15	CV81				
						Cou	rse Ou	itcome	S								
CO1	Dev	elop det	tailed	and abs	stract e	stimat	es for	Buildin	os and	d roade	,				20-11-		
CO2	Eval	uate va	luation	repor	ts of b	mildino	101	Junun	igo aire	a roads			_				
CO3	Inter	pret co	ntract	docum	ents of	Dome	estic C	onstruc	etion w	iorke				, e			
					(CO-PC)-PSO	Марр	ing	VOIKS							
COs	CO-PO-PSO Mapping POs													PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2							1	2		2	2	2	3		
CO2	2	1						1		1 ~	1	1	2				
CO3	2							1	1	1	1	1	1	2			
Average	2	1.5						1	1	2	1	1.33	1.67	1.67			

Subject:	Design	n of Pr	e-Stres	sed Co	ncrete	Eleme	nts			Subj	ect Co	de: 15	CV82		
						Cou	rse O	utcomes	8						
CO1	App	ly the l	knowle	dge in	under	standin	g cond	cept of I	PSC						_
CO2	Anal	yse the	e forces	s in the	PSC:	membe	rs.	opt of i	50.						_
CO3								nembers		- 35					_
CO4				bers sul				icinocis	•				-	2111ba	
CO5	Eval	uate th	e anche	orage z	one st	resses	and de	esign of	chear	and an	d blool				
					(CO-PO	-PSO	Mappi	ng	and en	u bloci	Κ.		-	
COs				PSOs											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	1				2						2	2		
CO2	3	3	2	1		2		1		1		2	3		-
CO3	2	3	1	1		1		1		1		1	3		
CO4	3	3	1	2		2		1				1	- 70		_
CO5	3	3	3	1				1	-			2	3		_
	1000			1	_	2	-	2				1	3		
Average	2.4	2.6	1.75	1.25		1.8		1.25		1		1.6	2.8		

Subject:	Pavem	ent De	sign	1						Subj	ect Co	de: 15	CV83	3	
						Cou	rse Ou	tcome	S						
CO1	Anal	yse str	esses,	strains	and de	eflection	ns usi	ng vari	ous the	eories		-	-	4	
CO2	Desig	gn of p	aveme	ents as	per co	dal pro	visions	- <u>B</u>	000 011	001105				2200	
CO3									eme en	vironn	nental i	conditi	one		_
CO4	Predi	ct the	failure	behav	ior of	flexible	and r	gid na	vemen	ts	Tontar	conditi	OHS		
CO5	Deve	lop pa	vemen	t main	tenanc	e solut	ions ba	sed on	site st	pecific	require	ements	-		
CO6	Anal	se the	field	survey	data fe	or airfi	eld pay	ement	S	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	roquii	monts			- 13
						CO-PC									
COs				PSOs											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1 3
CO1	2	3												2	
CO2	3		3											2	
CO3		3			2			2						2	
CO4	2	2							N					2	
CO5	2				-									2	
CO6	2	2	1											2	_
Average	2.16	2.5	2		2			2						2	\vdash

Page 18 of 19

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

Subject:	mem	snip/P	rofessio	onal P	ractice					Sub	iect C	ode: 15	CV8	1	
						Cor	urse O	utcom	es		,		C V 0-	F0	
CO1	Unde	erstan	d the im	porta	nce of I	ndust	rv Inst	itute In	teracti	on					
CO ₂	Appl	y the	practica	l knov	wledge	in va	rious fi	elde of	Civil	OII En oin a		-			
CO3	Anal	vzing	skills to	solve	the pr	ohlen	oc anno	untono	din 41	engine	ering.				
CO4	Reco	gnize rience	the nee	d for	lifelong	learn	ing pro	cesses	throug	gh criti	cal ref	lection	of int	ernship	
					C	CO-P	O-PSO	Марр	oing			-			
COs	- 2			PSOs											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1 MIL 1990 P. L.			-												
CO1						3	2	2	3	2			-	1	
CO1	2	2	1	1	2	3	2	2	3	2	1	2		1	
580382181	2 2	2 2	1 2	1	2	3	2	2	1	2 2	1	2 2	2	1 2	
CO2			2	1	2	1	2	1	1 1	2	1 1 1	2 2 2	2	1 2 2	
CO2 CO3	2	2		1	2 1 1 1.33	2 2	2 1 1 1.33	2 1 2 1.67	1		1 1 1 2 1.33	2 2		1 2	

Subject:	Projec	t Phas	e II							Sub	ect C	ode: 15	CVP8	5	
						Cou	rse Ou	ıtcom	es				O 110		
CO1	Iden susta	tificati inable	on of c	comple tives.	x prob	lems b	y com	prehen	sive lit	terature	reviev	w and f	ormul	ate the	Č
CO2	Desi the s	gn the uitable	metho metho	dology odolog	and so	electione anal	n of su vsis	itable	materia	als for 1	he exp	erimer	ntal wo	ork or o	desig
CO3	Deve	elop an	d dem	onstrat	e the r	roject	model	s to me	et the	needs (of the c	ogioty			
CO4	Appi	Develop and demonstrate the project models to meet the needs of the society Apply appropriate techniques and tools to develop the solutions to the complex problems addressing society after understanding the limitations.													
CO5	Com	ommunicate effectively to address complex engineering problems with proper ocumentations, reports and presentations through ICT tools. CO-PO-PSO Mapping													
						CO-PC	D-PSO	Mapp	oing						
COs						P	Os							PSOs	
35.5.37.40940	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2	2	1
CO ₂	2	2											2	2	-
CO ₃			2				2					2	2	2	+-
001				3					2			2			-
CO4					_				<u> </u>	_					
CO4					2	l	I 10	1		2		1			

Subject:	Semin	ar			3,00					Subj	ect Co	ode: 15	CVS8	36	
						Cou	rse Ou	tcome	S						
CO ₁	Iden	ification	on of s	eminar	topic	on rec	ent dev	elopm	ents in	Civil a	and all	ied bra	nches		-
CO ₂	Prep	are a co	omprel	hensive	e repor	t based	d on the	Litera	iture re	view		100 010	itorios		
CO3	Com	munica	ate effe	ectively	y to ade	dress tons thr	he com ough IC	plex e	nginee Is	ring pr	oblem	s with _l	proper	• 11	
					(CO-PC)-PSO	Mapp	ing						162773
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	2					1	2		1		540363	2	2	1	
COI		-				1	1						2	1	
CO2	2	1		1										1 1 1	
	2	1				-	-		A-10.1	3		3		2	-

Comment