||Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust ® # No. 67, BGS Health & Education City, Dr. Vishnuvardhana Road, Kengeri, Bangalore-560060. **Department of Civil Engineering** # Course Outcomes and CO-PO-PSO Articulation Matrix - Batch 2017-21 #### Semester-I/II | Subject: | Dieme | mis of C | vii en | ginee | ring a | | | | | Sub | ject C | ode:17 | CV13 | 3/24 | | |-----------------|--------|-------------------|----------------|---------|---------|---------|---------|----------|--------|----------|---------|------------|-----------|----------|-------| | | 1 | | | | | Cour | rse Ou | tcome | S | | | | | | | | CO1 | its si | erstand ignifican | variou
ices | s field | ls of C | ivil Er | nginee | ring, Ir | nporta | nce of | Infras | tructur | al De | velopm | ent & | | CO2 | Dete | ermine tl | ne res | ultant | of giv | en for | ce sys | tems a | ind an | alyzing | g bodie | es with | roug | h surfa | ice o | | CO ₃ | Com | pute the | react | ive for | ces in | heams | &r tha | offo of | 41 1 | | | 0.2000 100 | 03.176627 | | | | CO4 | Loca | pute the C | entroi | d & co | mnute | Mom | ent of | Inortio | unat d | evelop | as a re | esult of | the e | xternal | loads | | CO5 | Cate | gorize th | ie var | ious tv | nes of | motio | n of be | dies o | of Re | gular & | Built | -up Se | ctions | | | | | | × | | | C | O-PO | -PSO | Mappi | na mu | strating | g throu | igh nur | nerica | ıl probl | ems | | COs | | Also No. 1 | | | | | Os | парр | | | - | | | DOO | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 10 | | PSOs | | | CO1 | 2 | | | | | - | - | 0 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₂ | 3 | 3 | | | | | | | | | | | | | | | CO3 | 3 | 3 | | - | | | | | - 13 | | | | | | | | CO4 | 3 | 3 | | | | | | | | | | | | | | | CO5 | 2 | 2 | 1 | | | 1 | | #### Semester-III | Subject: | Engin | eering | Mathe | ematics | i-III | | | | | Sub | iect C | ode:17 | MAT | 31 | | |--------------------------|-------------|------------------|------------|-----------|----------|------------------------------|--------------------------|----------------------------|-------------------|---------------------|-------------|----------------|--|----------------|------------------| | | | | | | | Cou | rse O | utcom | es | | ,,,,,, | 040.17 | IVII I I | 1 | | | CO1 | Kno | w the | use ation. | of per | riodic | signal | s and | Fouri | er ser | ies to | analy | ze cire | cuits | and | syster | | CO2 | Exp | lain the | ne gen | eral ling | near sy | ystem
ransfor | theory | for c | ontinu | ous - | time s | ignals | and o | ligita | lsign | | CO3 | Emp | oloy ap | propri | ate nur | nerical | metho | ds to s | solve a | laehrai | ic and | rongoo | ndenta | 1 | | | | CO4 | App | ly Gie | ensin | eorem, | Diver | gence
gravitat | theore | m and | Stokes | theore | m in v | ariona | applic | cations | s in tl | | | Dete | rmine | the ex | tramala | of f | | 1 | | | | Proble | III. | | | | | CO5 | Cum | ZC IIIC | COHCE | pis or | , syntl | onal ar
nesis ar | nd the | ır varia
mizati | ations
on of d | in the | applie | for calcations | culus of cor | of var
nmun | iation
icatio | | | Cum | ZC IIIC | COHCE | pis or | , syntl | onal ar
nesis ar
CO-PO | nd then nd opti -PSO | ır varia
mizati | ations
on of d | in the | applie | atione | of cor | nmur | nicatio | | COs | Cum | ZC IIIC | COHCE | pis or | , syntl | onal ar
nesis ar
CO-PO | nd the | r varia
mizatio
Mapp | ations
on of d | in the
ligital o | application | ations . | of cor | PSO | nicatio | | | syste | ems, de | ecision | theory | y, synth | onal arnesis ar | nd then nd opti -PSO Os | ır varia
mizati | ations
on of d | in the | applie | ations | of cor | nmur | nicatio | | COs | syste | ems, de | ecision | theory | y, synth | onal arnesis ar | nd then nd opti -PSO Os | r varia
mizatio
Mapp | ations
on of d | in the
ligital o | application | ations . | culus conference of | PSO | nicatio | | COs
CO1 | syste | 2 2 | ecision | theory | y, synth | onal arnesis ar | nd then nd opti -PSO Os | r varia
mizatio
Mapp | ations
on of d | in the
ligital o | application | ations . | culus con cor | PSO | nicatio | | COs
CO1
CO2 | syste | 2
2
2 | ecision | theory | y, synth | onal arnesis ar | nd then nd opti -PSO Os | r varia
mizatio
Mapp | ations
on of d | in the
ligital o | application | ations . | culus (confidence) | PSO | nicatio | | COs
CO1
CO2
CO3 | 1 3 3 3 3 3 | 2
2
2
2 | ecision | theory | y, synth | onal arnesis ar | nd then nd opti -PSO Os | r varia
mizatio
Mapp | ations
on of d | in the
ligital o | application | ations . | culus (cof cor | PSO | nicatio | | Subject: | Streng | th of N | Materia | ls | 2 100 | | | | | Subj | ect Co | de: 17 | CV32 | | | |----------|--------------|-------------------|----------------------|-------------------|--------------|------------------|---------|-----------|----------|---------|---------|----------|--------|---------|-------| | | | | | | 161 | Cour | rse Ou | tcome | s | | | | | | | | CO1 | Unde
(Con | erstand
pressi | l the st
ion, ten | rength
sion, s | and bhear, b | ehavio
ending | or of v | arious | struct | ural el | ement | s for th | he app | olied f | orces | | CO2 | Evalu | uate th | e behav
iderstar | vior an | d stren | gth of | structu | ıral ele | ments | under | the act | ion of c | compo | und st | resse | | CO3 | Maxi | | or mini | | | | f the n | nateria | for th | e appl | ied loa | ds (ber | nding, | shear | stres | | CO4 | Inter | oret th | e basic | conce | ot of v | ertical | structu | ral ele | ments | (colum | ns and | etrute) | | | 200 | | | | | | | (| CO-PO | DCO | 3.5 | | Colum | iis and | Suuis | • | | | | | | | | | • | | -rou | Mapp | ing | | | | | | | | COs | | | | | | 70720 | Os | Mapp | ing | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 70720 | | Mapp
8 | ing
9 | 10 | 11 | 12 | 1 | PSOs 2 | _ | | COs | 1 2 | 2 | 3 | 4 | nov | P | Os | | | 10 | 11 | 12 | 1 2 | PSOs | | | | 1 2 | 2 | 3 | 4 | nov | P | Os | | | 10 | 11 | 12 | 1 2 2 | PSOs | | | CO1 | 1 2 | | 3 | 4 | nov | P | Os | | | 10 | 11 | 12 | 2 | PSOs | 3 | | CO1 | 1 2 2 | | | 4 | nov | P | Os | | | 10 | 11 | 12 | | PSOs | | | Subject: | Fluid | Mechan | ics | | | | | | | Subj | ect Co | de: 17 | CV33 | | | |----------|-------|-----------|---------|---------|---------|----------|--------|---------|---------|--------|----------|----------|---------|--------|--------| | | | | | All T | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Und | erstand | funda | mental | prope | rties of | fluids | and fl | uid Co | ntinuu | m | | -14 | | | | CO2 | Eva | luate the | appli | ied pre | ssure | on the | | | | | | tatic co | onditio | ons of | fluids | | CO3 | | ly princ | | | | | presen | t kinen | natic c | oncept | s relate | d to flu | ıid flo | w | | | CO4 | Forr | nulate tl | ne flow | v equat | tion ba | sed on | the Be | rnoull | i's pri | nciple | | | | | | | CO5 | | rmine t | | | | | | | | | irs | | | | | | | | | | | | CO-PC | | | | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | CO1 | 2 | | | | | | | | W. | | | | TT | 2 | | | CO2 | 2 | 1 | | | | | THE S | | | | | | | 2 | | | CO3 | | 2 | | | | | T H | | | | | 511 | | 1 | | | CO4 | | 2 | | | | | | | | | | | | 2 | | | CO5 | 2 | 2 | 1 | | | | | | | | | 1 | | 2 | T | | Average | 2 | 1.75 | 1 | | | | | | | | | 1 | | 1.8 | | | Subject: E | Basic S | Survey | ing | | | | | | | Subj | ect Co | de: 17 | CV34 | | | |------------|---------|--------|---------|--------|---------|----------|---------|--------|----|--|--------|--------|------|-------------|---| | | | | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Und | erstan | ding fu | ındame
| ental p | rinciple | es of C | eodeti | cs | | | | | | | | CO2 | | | | | | | | | | survey | ing pr | oblem | S. | | | | CO3 | | | | | | | | | | or surve | | | | | | | CO4 | | | | | | | | | | l volun | | | | | | | | | | | | | |)-PSO | | | <u>~ 18 - 48 - 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u> | 2400 | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | 0 | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | | | | | | | | | | | 1 | 2 | 2 | | | CO2 | 2 | 2 | | | | | | | | | | | | 2 | | | CO3 | 2 | | | 2 | | | | | | | | | | 1 | | | CO4 | 2 | 2 | | | | 1 | 3 | 1 | | | | | 1 | 1 | | | Average | 2 | 2 | | 2 | | | 3 | 1 | | | | 1 | 1.5 | 1.5 | | Page 2 of 21 | Subject: | Engine | ering | Geolog | gy | | | | | | Subj | ect Co | de: 17 | CV35 | | | |-----------------|--------|---------|----------|---------|------------|--------|----------|----------|----------|----------|--------|----------|--------|-------------|------| | | | | e e | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Appl | y the k | nowle | dge of | geolog | gy and | its role | in Ci | vil Eng | gineerin | າອ | | | | 133 | | CO ₂ | Utiliz | zation | of eartl | ı's ma | terials | such a | s mine | ral, roo | cks and | l water | in civ | il engin | eering | practi | ces. | | CO3 | | | natura | | | | | | | | | - 0 | | , P | | | CO4 | | | | | | | | | tools in | 1 grour | d wate | er explo | ration | | | | CO5 | Selec | t the a | ppropr | iate bu | ilding | materi | als for | constr | uction | <i>G</i> | 200 | | | | | | | | | | | | |)-PSO | | | | | | | 10.19 | | | COs | | | | | Anne Carre | P | Os | | | | 1150 | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | CO1 | 2 | N N | | | | | | | | | | | 1 | | | | CO2 | 2 | | | | | 1 | 1 | | | | | | 1 | 1 | | | CO3 | 2 | | 10.000 | | | | | | | | | | 1 | | | | CO4 | 2 | | | | | | 1 | | | | | | • | 1 | | | CO5 | 2 | | | | | | | | | | | | | | | | Average | 2 | | | | | 1 | 1 | | | | | | 1 | 1 | | | Subject: | Buildi | ng Mat | terial a | nd Cor | struct | ion | | | | Subj | ect Co | de:17 | CV36 | | | |----------|--------|---------|----------|--------|--------|----------|---------|---------|--------|----------|--------|---------|----------|--------|--------| | | | | | | | Cou | rse Ou | tcome | S | - | | | W 35.340 | | | | CO1 | | lop kr | | ge of | materi | al scie | nce ar | nd beh | avior | of vari | ous bu | ilding | materi | als us | sed in | | CO2 | Ident | ify the | constr | uction | mater | ials rec | uired t | for the | assign | ed wor | k. | | | | | | CO3 | | | | | | | | | | | | t, lime | and co | ncrete | etc. | | CO4 | | | | | | | | | | lurabili | | | | | | | | | | | | (| CO-PC | -PSO | Mapp | ing | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | CO1 | 2 | | | | | | | | | | | | 2 | | | | CO2 | 2 | | | | | | 1 | | | | | | 2 | 1 | | | CO3 | 2 | | | | | | | | | | | | 1 | | | | CO4 | 2 | | | | | | | | | | | 1 | | 1 | | | Average | 2 | | | | | | 1 | | | | | 1 | 1.66 | 1 | | | Subject: 1 | Buildin | ng Mat | erial L | aborat | ory | | | | | Subj | ect Co | de: 17 | CVL3 | 7 | | |------------|---------|----------|---------|---------|---------|----------|---------|--------|----------|-----------|--------|----------|---------|-------------|------| | | | | | | | Cou | rse Ou | tcome | s | | | | | | | | CO1 | | | | | | | | | | tics to s | | | | f build | ling | | CO2 | | nate the | | iess an | d impa | ict stre | ngth o | fvario | us met | als sucl | n as m | ild stee | l, alum | inum, | si. | | CO3 | Evalu | ate the | physi | cal pro | perties | s of ag | gregate | es and | their in | npact c | n cons | structio | n Indu | stry. | | | | | | | | (| CO-PC | -PSO | Марр | ing | | | | | | | | CO- | | | | | | P | Os | | | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | 1 | | | | 2 | 3 | | | | 2 | | | | CO2 | 2 | 2 | | 1 | | | | 2 | 3 | | | | 2 | | | | CO3 | 2 | 2 | | 1 | | | | 2 | 3 | | | | 2 | | | | Average | 2 | 2 | | 1 | | | | 2 | 3 | | | | 2 | | | | Subject: | Surve | ying L | abora | tory | | | | | | Subi | ect Co | do 1 | CVL3 | Q | | |-----------------|--------|---------|---------|---------|-----------|--------|----------|--------|----------|---------|---------|--------|---------|--------|------| | | 1940.2 | | | | | Cou | rse Ou | tcome | e e | Bubj | cci cc | de. 1 | CVLS | 0 | | | CO1 | Appl | y the b | pasic p | rincin | les of en | ginee | ring su | rvevin | a for li | 200 00 | -d on a | .1 | | ** | | | CO2 | Com | prehen | d effe | ctively | field p | rocedi | ires rec | mired | for a n | rofessi | onel a | uiar m | easurei | nents. | 144 | | CO3 | Choc | se the | techni | ques, | skills an | d con | vention | al sur | veying | instru | ments i | necess | ary for | engine | erin | | | · | | | | C | O-PC |)-PSO | Марр | ing | | | | | | - | | COs | | | | | | 75.10 | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 2 | 1 | | | 1 | 1 | | | | | | | 1 | 1 | | | CO ₂ | 2 | 1 | | | 1 | 1 | | | | | | - | 1 | 1 | | | COM | | | | | - | | | | | | 2.2 | | 1 1 | 1 1 | | | CO3 | 2 | 1 | | | 2 | 1 | | | | | | | 2 | 2 | | #### Semester-IV | Subject:] | Engine | ering | Mather | natics- | ·IV | | | | | Subj | ect Co | de:17N | AAT4 | 1 | | |-------------------|------------------------|------------------|--------------------------------|---------------------|--------------------|--------------------|--------------------|------------------|---------------|----------------------|--------------------|----------------------|--------------------|--------------------|----| | | - 100 | | | | | Cou | rse Ou | tcome | S | | 7.1 | | | | | | CO1 | | | and sec
ultister | | | | | equatio | ns aris | sing in | flow p | roblem | s usin | g singl | e | | CO2 | Solv
polar
syste | r coord | lems of | f quant
systems | tum me
s and L | echanic
Legrenc | es emp
dre's po | loying
olynom | Besselials re | l's func
lating t | tion re | lating t
rical po | o cylin
olar co | ndrical
ordina | te | | CO3 | theo | ry and | d the an
electro
eory fl | magne | tic the | ory De | scribe | confor | mal ar | nd bilin | | | | | | | CO4 | Solv
joint | e prob
proba | lems or
bility d | n proba
listribu | ability
tions a | distrib
ind sto | utions | relatin | g to di | gital si | gnal pr
vith mu | ocessii
Iltivaria | ng, det
ate cor | termine
relatio | n | | CO5 | or re | jecting | alidity g the hy | pothes | sis, def | ine tra | nsition | | bility r | | | | | | | | | proo | icilis i | oratea t | | | | | | | | | | | | | | | proo | icilis i | ciatoa | | (| CO-PO | -PSO | Mapp | ing | * | | | | | | | COs | proo | icins i | Clutou | | C | | Os
Os | Mapp | ing | * | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | | - | Mapp
8 | ing
9 | 10 | 11 | 12 | 1 | PSOs 2 | _ | | COs | | | | 4 | | P | Os | | | 10 | 11 | 12 | 1 | | _ | | | 1 | 2 | | 4 | | P | Os | | | 10 | 11 | 12 | 1 | | _ | | CO1 | 1 3 | 2 2 | | 4 | | P | Os | | | 10 | 11 | 12 | 1 | | _ | | CO1 | 1
3
3 | 2
2
2 | | 4 | | P | Os | | | 10 | 11 | 12 | 1 | | _ | | CO1
CO2
CO3 | 1
3
3
3 | 2
2
2
2 | | 4 | | P | Os | | | 10 | 11 | 12 | 1 | | 3 | | Subject: A | nalys | is of D | etermi | inate S | tructur | es | | | 211100 | Subj | ect Co | de:170 | CV42 | | | |------------|--------------|-----------------|---------|----------|----------|----------|----------|---------|---------|----------|---------|----------|---------|-------------|-----| | | | | | | | Cou | rse Ou | tcome | s | | | | | | | | CO1 | Dete | ermine | the fo | rces in | deterr | ninate | trusses | by me | ethod o | f joints | s and s | ections | | | | | CO2 | Solv
metl | | he def | lection | of can | tilever | , simpl | y supp | orted a | and ove | erhang | ing bea | ms by | differ | ent | | CO3 | | ly the
frame | | princi | ples a | nd ener | rgy the | orems | to dete | ermine | the de | flection | s of tr | usses a | and | | CO4 | Dete | ermine | the str | ress res | sultants | s in arc | hes an | d cable | es. | | | | | | | | CO5 | Con | struct | Influer | nce Lin | e Diag | gram fo | or the n | noving | loads. | i | | | | | | | | | | | | (| CO-PO | -PSO | Марр | ing | | | | | | | | 00 | | | | | | P | Os | | | | | | | PSOs | ž | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 3 | | | | | | | | | | | 2 | | | | CO2 | 3 | 3 | | | | | | | | | | | 2 | | | | CO3 | 3 | 3 | | | | | | | | | | | 2 | | | | CO4 | 3 | 3 | | | | | | | | | | | 2 | | | | CO5 | 3 | 3 | | | | | | | | | | | 2 | | | | Average | 3 | 3 | | N. | | | | | | | | | 2 | | | | Course Outcomes Course Outcomes Apply dimensional analysis to develop mathematical modeling and compute the parameters under different conditions Cos Design the open channels of various cross sections including economical channel sections. Cos Cos Design turbines for the given data, and to know their operation characteristics under different conditions COS PO-PSO Mapping COS POS PSO PSO PSO Mapping COS PSO PSO PSO PSO PSO PSO PSO PSO PSO P | | :V43 | e: 170 | ct Co | ıbje | Su | | | | | | | | raulics | d Hyd | Applie | Subject: |
---|---------|-------------|--------|--------|------|--------|---------|--------|-------|-------|--------|---------|---------|-------------------|---------------|-------------|---| | Apply dimensional analysis to develop mathematical modeling and compute the parame values in prototype by analyzing the corresponding model parameters Design the open channels of various cross sections including economical channel section. Apply Energy concepts to flow in open channel sections, Calculate Energy dissipation, CO4 Compute water surface profiles at different conditions Design turbines for the given data, and to know their operation characteristics under different conditions CO5 PO-PSO Mapping CO6 PO-PSO Mapping CO7 PO 2 2 3 4 5 6 7 8 9 10 11 12 1 2 CO7 PO 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | Se mayers | | 1100 | | | S | come | e Ou | our | Co | | | | | | | | CO3 Apply Energy concepts to flow in open channel sections, Calculate Energy dissipation, CO4 Compute water surface profiles at different conditions CO5 Design turbines for the given data, and to know their operation characteristics under different conditions CO6 PO-PSO Mapping CO8 POS PSO PSO PSO PSO PSO PSO PSO PSO PSO | netric | ie param | oute t | nd con | g a | deling | al mac | matic | nath | elon | deve | sis to | l analy | nsiona
ototype | dime
in pr | Apply value | CO1 | | CO4 Compute water surface profiles at different conditions | | - 100 | | eters | am | para | inolud | tions | ee ee | s cr | rious | s of va | nannel | pen cl | n the | Desig | CO ₂ | | Cos | ons | nel section | chan | nomic | eco | ing e | metua | ol see | ohon: | nen | in o | o flow | cents t | ev con | Ener | Apply | CO3 | | CO5 Design turbines for the given data, and to know their operation characteristics under different operating conditions CO-PO-PSO Mapping PSC | , | sipation, | gy dis | te Ene | cula | Calc | tions, | er sec | ont a | i ffo | ot d | rofiles | face n | ater su | ute w | Comr | CO4 | | COs POs PSC CO1 2 3 4 5 6 7 8 9 10 11 12 1 2 CO2 2 2 2 2 2 2 CO3 2 2 2 2 2 CO4 2 2 2 2 CO5 2 2 2 2 | fferent | ınder dif | stics | aracte | n ch | ration | ir oper | w the | o kno | and | ata, a | iven da | r the g | ines for | n turb | Desig | CO5 | | CO1 2 3 4 5 6 7 8 9 10 11 12 1 2 CO1 2 2 2 2 2 2 2 CO3 2 2 2 2 2 2 CO4 2 2 2 2 2 CO5 2 2 2 2 | | | | | | | ing | lappi | | | | | | | | | | | CO1 2 2 3 7 8 9 10 11 12 1 2 CO2 2< | SOs | PS | | | | | | 1 | - T | - 1 | - | | 4 | 2 | 2 | 1 | COs | | CO2 2 2 CO3 2 2 CO4 2 2 CO5 2 | 2 | 1 3 | 12 | 11 |) | 10 | 9 | 8 | 7 | | 6 | 5 | 4 | 3 | | - | CO1 | | CO3 2 2 CO4 2 2 CO5 2 2 2 2 2 2 2 2 | 2 | 1 3 | | | | | | | | | | | | _ | _ | | 000000000000000000000000000000000000000 | | CO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 | | | | | | | | | | | | | 2 | | | | | CO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | | | | | | | | 2 | (00)07 | | | COS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | - | | + | | | | | | | | | | 2 | 2 | CO4 | | Number 2 2 2 2 2 2 2 2 2 | | | - | | + | | | | | 1 | | | | 2 | 2 | 2 | CO5 | | Average 2 2 2 2 | | | | - | + | | | | - | + | | | | 2 | 2 | 2 | verage | | Subject: | Concr | ete Tec | chnolo | gy | | | | | | Subj | ect Co | de:170 | CV44 | | | |---|-------------|-------------------|----------|----------|---------|----------|-------------|----------|----------|---------|---------|---------|------------------|----------|----| | | | | | | | Cou | rse Ou | tcome | S | | | | 520 | | | | CO1 | Unde | erstand | mater | ial cha | racteri | stics ar | nd their | r influe | ence or | micro | structi | re of c | onorot | .0 | - | | CO ₂ | Disti | nguish | concr | ete beh | avior l | based o | on its fi | resh an | d hard | ened p | roperti | AC OI C | oncrei | С. | | | CO3 | Desig | gn of d
ssiona | lifferen | it types | of con | ncrete | mixes 1 | for req | uired f | resh an | d hard | ened p | ropert | ies usii | ıg | CO-PC |)-PSO | Марр | ing | | | | | | | | COs | | | | | | | O-PSO
Os | Mapp | ing | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | | | Mapp | ing
9 | 10 | 11 | 12 | 1 | PSOs 2 | 1 | | COs | 1 2 | | | 4 | 5 | P | | | | 10 | 11 | 12 | 1 2 | PSOs | 1 | | 777000000000000000000000000000000000000 | 1
2
2 | 2 | | 4 | 5 | P | | | | 10 | 11 | 12 | 1 2 2 | PSOs 2 | 1 | | CO1 | | 2 2 | | 2 | 5 | P | | | | 10 | 11 | 12 | 1
2
2
2 | PSOs | 3 | | Subject: | Basic (| Geote | chnica | l Engi | neerin | g | | | | Subj | ect Co | de:170 | CV45 | | | |-----------------|---------|---------|---------|-----------|---------|----------|----------|----------|---------|---------|--------|---------|------|-------|----------| | | | | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Identi | ify the | type o | of soil b | pased o | on phys | sical pr | opertie | es | | | | | | _ | | CO ₂ | Evalu | ate the | e engir | neering | prope | rties of | soil ir | terms | of she | ear and | compi | eccibil | ity | _ | | | CO3 | Comp | oute th | e effec | tive st | resses | of the s | soil str | ata | OI DIII | our und | compi | CSSIUII | щ | | | | CO ₄ | | | | t of hy | | | | | soils | _ | | | | | | | CO5 | Predic | ct the | failure | behavi | our of | soils | | 0.1 1110 | 50115. | | | | | V-800 | _ | | | | | | | | СО-РО | -PSO | Марр | ing | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | | | 005 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | | | | | | - | | 584 | | | | 2 | | _ | | CO2 | 2 | 2 | | | | | | | | | | | 2 | | \vdash | | CO3 | 3 | 2 | | | | | | | | | | | 2 | | | | CO4 | 2 | | | 2 | | | | | _ | | | | 10 | | 5 | | CO5 | | | 2 | | | | | | | | | | 2 | | | | Average | 2.25 | 2 | 2 | 2 | | | - | | | | | | 2 | | | | 2.01.05 | 2.23 | | | | | | | | | | | | 2 | | | Command | Subject: | Advan | ced su | ırveyir | ıg | | | | | | Subj | ect Co | de:170 | CV46 | | | |-----------------|-------|---------|---------|----------|---------|----------|---------|---------|---------|----------|----------|----------|----------------|-------------|-----| | | | | | | | Cour | rse Ou | tcome | S | | | | es as centres. | | 120 | | CO1 | Appl | y the k | nowle | dge of | geome | tric pr | inciple | s to an | ive at | survey | ing pro | blems | | | | | CO2 | Anal | yze the | geo-s | patial o | data ob | tained | using | moder | n surve | eying in | nstrum | ents an | d appl | y the s | ame | | CO ₃ | | | | | | | irvey p | roblen | is with | the us | e of ele | ectroni | e instr | ument | | | CO4 | Desig | gn and | impler | nent th | e diffe | erent ty | pes of | curves | for de | viating | type o | of align | ments | | , | | | | | | 172 | | CO-PO | | | | | 7 7 1 | | | | | | COs | | | | - 15/200 | | P | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | | | | | | | 1 | 2 | | | CO ₂ | 2 | 2 | | | | | | | | | | | 1 | 2 | | | CO3 | 2 | 2 | | | | | | | | | | | 1 | 2 | | | CO4 | 2 | 2 | 2 | | | | | | | | | | 1 | 2 | | | Average | 2 | 2 | 2 | | | | | | | | | | 1 | 2 | | | Subject: | Fluid : | Mecha | anics ar | id Hy | drauli | e Mac | hines l | Labora | tory | Subj | ect Co | de:170 | CVL47 | ria | | |-----------------|---------|---------|----------|--------|--------|----------|---------|--------|------|---------|---------|-----------|------------|-------------|-----| | | | | | | | Cour | rse Ou | tcome | S | | | | 2000 127 E | | | | CO1 | Deve | lop pr | ocedure | for st | andard | lization | of ex | perime | nts. | - | | | | | | | CO ₂ | | | ow disc | | | | | | | , chann | els and | d tanks | | | | | CO3 | | | fluid an | | | | | | | | | | | | | | CO4 | 20100 | | e lamin | | | | WS. | | | | 7 | WHO ELLIN | | | | | CO5 | Test | the per | rforman | ce of | pumps | and tu | rbines | | | | | | 2000 | | 200 | | | | | | | | | | Mapp | ing | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | 2 | | | | | 1 | | | 1 | | 2 | | | CO2 | 2 | 2 | 2 | 2 | | | | | 1 | | | 1 | | 2 | | | CO3 | | | 1 | 2 | | 1100 | | | | | | 1 | | | | | CO4 | 2 | 2 | 2 | 2 | 1 | 2 | | | 1 | | | 1 | | | | | CO5 | 2 | 2 | | 2 | | | | | 1 | | 1 | 1 | | | | | Average | 2 | 2 | 1.66 | 2 | 1 | 2 | | | 1 | | 1 | 1 | | 2 | | | Subject: | Engin | eering | Geolo | gy La | borate | ry | | | | Subj | ect Co | de:170 | CVL48 | 8 | | |---------------|-------
--|--------|----------|---------|--------|-----------|-----------|--------|----------|----------|----------|---------|-------------|-----| | | | | | | | Cou | rse Ou | itcomes | | | | | | | | | CO1 | Ident | ify the | miner | als and | l rocks | and u | tilize tl | hem effe | ective | ly in ci | vil eng | gineerir | ig prac | ctices | | | CO2 | Unde | | and in | terpret | | | | ditions o | | | | | | | vil | | CO3 | | erpret subsurface information such as thickness of soil, weathered zone, depth of hard rock disaturated zone by using geophysical methods. derstand the techniques of drawing the curves of electrical resistivity data and its | | | | | | | | | | | | | | | CO4 | | | | | nnical | and ag | uifer b | oundari | es. | ical re | sistivit | y data | and its | S | | | | | - | | | | - | | Mappi | ng | | | | | | | | COs | | | | | 4 | P | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | - 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | | | | 2 | | | | CO2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | | | | | 2 | | | | CO3 | 2 | 2 | 2 | 2 | 2 | | 1 | 1 | | | | | 2 | | | | 1000011001110 | | | | 2 | 2 | | 2 | | | | | | 2 | | | | CO4 | | | 1 | S. C. C. | | | | | | | | | | | | # Semester-V | Subject: | Design | of R | C Struc | tural] | Eleme | nts | | | | Sub | iect (| Code:1 | 7CV51 | | _ | |-----------------|----------|---------|----------|---------|---------|---------|---------|--------|--------|-----------|--------|---------|-----------|-------------|---| | | <u> </u> | | | | | Cour | se Out | comes | | 300000000 | | | , 0 , 0 1 | | - | | CO1 | Appl | y the d | lesign p | hiloso | phies a | nd pri | nciples | of the | codal | nrovis | ione | | | | | | CO2 | Analy | ze an | d design | of the | e beam | eleme | nts for | flexur | e she | ar and | torsic | \n | | | | | CO ₃ | Analy | ze an | d Design | n of th | e Slab | and sta | aircase | using | the kn | owled | ge of | oodal r | | | | | CO ₄ | Desig | n of th | ne Colu | mn and | d Footi | ing usi | ng the | design | princi | nlec | ge or | coual | Drovisi | ons | | | | | | | | C | O-PO- | PSO I | Mappi: | ng | ipies | | | | | | | COs | | | | | | PO | | | 0 | | | | | PSOs | - | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 2 | 1 | 1 | | | | | 3 | | | | 1 | 2 | | - | | CO ₂ | 2 | 3 | 3 | | | | | 3 | | | | 2 | 2 | | | | CO3 | 3 | 2 | 3 | | | | | 3 | | | | 1 | 1,00000 | | | | CO4 | 3 | 2 | 3 | | | | | 3 | | | | 2 | 2 | | - | | Average | 2.8 | 2 | 2.5 | | - | | | 3 | | - | | 1.8 | 2 | | - | | Subject: A | nalysi | s of Ir | ıdeteri | ninate | e Stru | ctures | \$ | | | Subj | ect Co | de:170 | CV52 | | | |-------------------|---------------|---|-------------------|--------------|------------------|----------|------------------|---------|---------|---------|----------|---------|---------|--------|-----| | | 14 | | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Dete: | rmine
ction | the sur
method | port r
l. | nomei | nts of | indeter | minate | beam | s and r | igid fra | ımes us | sing sl | ope | | | CO2 | Deter | rmine
using | the sup | port r | nomei
tributi | nts of i | indeter
thod. | minate | beams | s and r | igid fra | mes w | ith no | n-sway | and | | CO3 | Cons
by K | truct b
ani's n | | | | | | | | | | | | | | | CO4 | Cons
by sy | ani's method. truct bending moment and shear force diagrams for continuous beams and rigid frames stem flexibility method. | | | | | | | | | | | | | | | CO5 | Anal | yze co | ntinuo | us bea | ms, ri | gid fra | mes ar | nd plan | e truss | es by s | vstem | stiffne | ss met | hod. | | | | | | | | | | | Mapp | | | | | | | | | | | | | | | F | POs | | | | | | | PSOs | | | COs | | | | | | | | | | | | | | rous | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | COs | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 2 | | | | S. Outse | 1 - | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 2 2 | | | | CO1 | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 2 | | | | CO1 | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | | | CO1
CO2
CO3 | 3 3 3 | 3 3 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 2 | | 3 | | Subject: | Appli | ed Geo | techn | ical E | nginee | ring | -27 | | | Subi | ect Ca | de:170 | CV53 | | | |-----------------|--------------|---------------------|---------------------|----------------|----------|---------|----------|---------|----------|----------|---------|---------|---------|---------|------| | | | | | to: | | Cou | rse Ou | tcome | S | -3- | | | A 200 | | | | CO1 | Abil
engi | ity to p
neering | lan and
g projec | d execu | ute geo | techni | cal site | inves | tigation | n progr | am for | differe | nt civ | il | | | CO2 | Unde
sand | erstand
and cl | ling of ayey so | stress
oils | distrib | ution a | and res | ulting | settler | nent b | eneath | the lo | aded f | ooting | s on | | CO3 | Abil: | ity to e
ibution | stimate
behind | factor | r of saf | ety aga | ainst fa | ilure o | f slope | es and t | to com | pute la | teral p | ressure |) | | CO4 | Abili | ity to d
ted and | etermi | ne bear | ring ca | pacity | of soil | and a | hieve | profici | ency in | propo | rtionir | ng shal | low | | CO ₅ | Capa | ble of | estima | ting lo | ad carr | ving ca | apacity | of sin | gle and | dorour | ofnil | AC | | | | | | 14 | | | | (| O-PO | -PSO | Mann | ing | a group | or pir | CS | | | | | COs | | | | | | | Os | T.F | 8 | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | | | | | | | 1 | 2 | | | CO ₂ | 3 | 1 | | | | | | | | | | | 1 | 2 | | | CO3 | 2 | 1 | | | 1200 | | | ** | | | | | 1 | 2 | | | CO4 | 3 | 3 | | | | | | | | | | | 1 | 2 | | | CO5 | 3 | 3 | | | | | | | | | | | 1 | 2 | | | Average | 2.6 | 2.5 | | | | | W - 1997 | 1000 | | | - | | 1 | 2 | | | Subject: | Comp | uter A | ided I | Buildin | g Dra | wing | | | | Subj | ect Co | de:170 | CV54 | | | |-----------------|------|-----------|--------|---------|----------|--------|---------|--------|---------|--------|---------|---------|--------|--------|------| | | | | | | | Cou | rse Ou | tcome | es | | | | | | | | CO1 | Gain | a broa | d unde | erstand | ing of | planni | ng and | design | ning of | buildi | 108 | | | | - | | CO2 | Prep | are, rea | d and | interpr | et the | drawin | gs in a | profes | ssional | set up | 3 | | _ | | | | CO3 | Knov | | rocedu | | | | | | | lop wo | | and sub | missio | n drav | ving | | CO4 | Plan | and de | sign a | resider | ntial or | public | build | ing as | per the | given | require | ements | | | | | | | 2.310/922 | | | | |)-PSO | | | | | K. 1880 | | | | | COs | | | | | | P | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 1 | | | | 3 | | | | | | | 2 | 2 | 1 | | | CO ₂ | 1 | | | | 3 | 1 | 1 | 1 | | | | 2 | 2 | 1 | | | CO3 | 1 | | | | 3 | | | | | | | 2 | 2 | 1 | | | CO4 | 1 | | | | 3 | 1 | 1 | 1 | | | | 2 | 2 | 1 | | | CU4 | | 10 | | | | | | | | | | | | | | | Subject: | Railwa | ays, H | arbors | , Tuni | neling | and A | irport | | | Subj | ect Co | de: 17 | CV55 | 2 | | |-----------------|---------------|---|--------|---------|--------|---------|----------|---------|---------|--------|---------|----------|--------|-------------|----| | | | | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Deve
aids. | lop lay | out pl | ans for | Airpo | rt, Har | bor, R | ailway | , Dock | along | with v | isual ar | nd nav | igation | al | | CO ₂ | Desig | esign of geometric aspects for railway system, runways and taxiway. | | | | | | | | | | | | | | | CO3 | | naracterize & estimate the material quantity required for laying a railway track. | | | | | | | | | | | | | | | CO4 | Sumi | narize
deratio | variou | s meth | ods of | tunne | ling, tu | nnel li | ning, d | rainag | e and e | environ | menta | 1 | | | | | | | | (| CO-PC | -PSO | Марр | ing | | | | | | | | COs | | | | | | P | Os | | | | 3 | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | | | 1 | | 2 | | | | | | | 2 | | | CO ₂ | 3 | 2 | 3 | | | 2 | | | | | | | | 2 1 | | | CO ₃ | 3 | | | | | | | | | |-----------------|------|---|---|-----|---|--------|-----|----------|---| | CO4 | 2 | | | 2 | | 2 | 1 1 | A Harris | 2 | | Average | 2.75 | 2 | 2 | 1.5 | | 2 | 2 | 1 | 2 | | ge | 2.13 | | 3 | 1.5 | 2 | 1. 2 m | 1.5 | 1 | 2 | | Subject: | Traffic | Engi | neering | 3 | | | | | | Subi | ect Co | de: 17 | CV56 | 1 | | |-----------------|---------|--------------------|-----------|-----------------|---------|----------|-----------|---------|---------|---------|--------|---------|---------|---------|---| | | | | | | | | rse Ou | | | | | | | | | | CO1 | Und | lerstan
able re | d the f | undam
ships. | ental c | ompon | ents of | traffic | engir | neering | and id | lentify | basic | traffic | | | CO2 | Con | duct d | ifferen | t types | of tra | ffic sur | veys ar | nd ana | lysis o | fcollec | ted da | ta usin | g stati | stical | | | CO3 | | | he inte | rsectio | n capa | city and | d analy | eie of | cianol | izad in | | | | | | | CO4 | Eva | luate tr | raffic in | mpacts | on en | vironm | ent and | traffi | o cofor | zeu m | ersect | ion, | | 11 | | | CO5 | Rece | ommei | nd suit | able tra | affic m | anagen | nent an | d dem | and m | y meas | ont m | 000000 | | | | | | | | | | (| CO-PO | -PSO | Mapn | ing | anagen | nent m | easures | 5 | - | - | | COs | | | 201 | | | South | Os | | | | | | |
PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | | | | | | | | | | | | 3 | - | | CO ₂ | 2 | 2 | | | | | | | | | | | | 2 | | | CO3 | 3 | 2 | 2 | | | | - 35/5-11 | 1 | | | | 1 | | 198 | _ | | CO4 | 2 | | I I | | | 2 | 2 | 1 | | - | | 1 | | 3 | | | CO5 | 2 | | | | | 1 | | | | | | 1 | | 2 | | | Average | 2 | 2 | 2 | | | 1.5 | | | | | | 1 | | 2 | | | rciage | | | | | | 1.5 | 2 | 1 | | | | 1 | | 2.4 | | | Subject: | Geote | chnica | l Engi | neerin | g Lab |) | | 1, 11 | | Subi | ect C | ode:17 | CVL57 | 7 | | |----------|-------|---------|---------|---------|----------|----------|--------|-----------|---------|---------|--------|--------|-------------|---------|-------| | | | | | | | Cou | rse O | utcome | S | | | | 0 1 113 1 | | | | CO1 | Phys | ical an | d inde | x prope | erties o | of the s | | | | | | | 11 12 12 13 | | _ | | CO2 | | | | | | | | identif | ication | n | | | | | - 777 | | CO3 | To d | etermi | ne OM | C and | MDD. | plan a | nd ass | ess fiel | d com | naction | nrom | om | | | | | CO4 | Shea | r stren | gth and | 1 consc | lidatio | on para | meter | s to asse | ess str | enoth a | nd def | ormati | on aha | rootori | ation | | CO5 | In-si | tu shea | r stren | gth cha | aracter | istics (| SPT- | Demons | stratio | n) | na dei | Oman | on cha | acteri | SUCS | | | | | | | | - No. | | Mapp | | , | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | 1 | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 1 3 | | CO1 | 3 | 3 | 3 | | | 2 | 1 | 3 | 3 | 1 | | 2 | 3 | 2 | | | CO2 | 3 | 2 | 2 | | | 1 | 1 | 3 | 3 | 1-1 | | 2 | 3 | 2 | - | | CO3 | 3 | 2 | 3 | | | | | 3 | 3 | | | 2 | 3 | 2 | - | | CO4 | 3 | 2 | 3 | | | | | 3 | 3 | | 1 | 3 | 2 | 1 | | | CO5 | 3 | 2 | 3 | | | | | 2 | 2 | | | 3 | 2 | 1 | | | Average | 3 | 2 | 3 | | | 1.5 | 1 | 2.2 | 2 | 1 | - | 2.5 | 2.5 | 2 | | | ubject: | Concrete and Highway Material Lab | Subject Code:17CVL58 | |-----------------|--|------------------------------| | | Course Outcor | nes | | CO1 | Determine quality and suitability of cement in c | construction work | | CO ₂ | Design appropriate concrete mix and determine | | | CO3 | Test the road aggregates and bitumen for their s | suitability as road material | | | | | | CO4 | Evaluate the soil suitability as a pavement subg | rade soil | Page **10** of **21** | | | | | | P | Os | | | | | | | DCO | | |---|-------|-------|------------------|-------------------|-----------------------------------|---|---|---|---|--|---|--|--|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Q | 0 | 10 | 44 | 10 | | PSUS | | | 3 | | | | | 1 | 1 | 1 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | 3 | | | | - | 1 | 1 1 1 | Til 1 | | | | | | 1 | | | 3 | | 1 | | | 1 | 1 | 1 | | | | | | 1 | | | 3 | | _ + | | | 1 | 1 | 1 | | | | | | 1 | | | 3 | | 1 | | | 1 | 1 | 1 | | | | | | 1 | | | | 3 3 3 | 3 3 3 | 3
3
1
3 | 3 1
3 1
3 1 | 3 3 3 1 3 | 1 2 3 4 5 6 3 1 1 3 1 1 3 1 1 3 1 1 | 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 | ## Semester-VI | Subject: | Const | ructio | n Man | ageme | ent and | d Entr | epren | eurshi | p | Sub | ject Co | de:170 | CV61 | | | |-----------------|---------------|---------|---------|---------|----------|----------|----------|----------|---------|---------|----------|---------|--------|-------------|----| | | | | 100.00 | | | Cou | rse Ou | itcome | S | | | | 7 1 01 | | - | | CO1 | Outl | ine the | constr | uction | manag | ement | proces | 26 | | | | | | | | | CO2 | Asse
dutie | ss vari | ous iss | ues tha | at are e | encoun | tered b | y ever | y profe | essiona | l in dis | chargin | ng pro | fession | al | | CO ₃ | Ident | ifying | the pro | ofessio | nal ob | ligation | ı effeci | tively y | with al | lobal o | -411 | | | | | | | | | | | (| CO-PC | -PSO | Mann | ina | obal of | itiook | | | | | | 00 | | | ê | | | 100000 | Os | mapp | mg | | | | | | | | COs | 1 | 2 | 3 | 1 | 5 | | 05 | | | | | | | PSOs | | | CO1 | 1 | | - | | 3 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO2 | 1 | -1 | | | 1 | | | 1 | 1 | | 1 | 1 | | 2 | | | | 1 | 1 | | | | | | | | | | | | 2 | | | CO3 | 1 | | | | | | | | | | 2 | 1 | | | | | Average | 1 | 1 | 1 | | 1 | | | 1 | 1 | | 1.5 | 1 | | 2 | | | | | 585 | | | | | | 1 1 | - 1 | I . | | 1 | | 2 | | | Subject: | Desig | n of St | eel Str | uctura | al Eler | nents | | | | Subj | ect Co | de:170 | CV62 | | | |-----------------|----------|-----------|-----------------|----------|---------|----------|-----------|---------|---------|------------|----------|--------|------|-------------|---| | | 1 | | | | | Cou | rse Ou | itcome | S | | | | | | | | CO1 | Expla | ain the | basic co | oncepts | of desi | gn of s | teel stri | ictures | and nla | astic ana | lvaia | | | | | | CO ₂ | Desig | gn of bo | olted an | d welde | ed conr | ections | 2 | 2014105 | and pie | istic alla | 11 y 515 | | | | | | CO3 | Desig | gn of ste | eel men | nbers si | piecte | d to axi | al load | | | - | | - | | | | | CO4 | Anal | yze and | design | of stee | l memi | ers un | ler flev | uro | | | | | | | | | | | | | 01 5000 | | CO-PC | | | ina | | | | | | | | COs | | | 010117 - 1011 - | | | | Os | марр | ing | | | | 1 | DOO | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 10 | 4.4 | 1 40 | 340 | PSOs | 1 | | CO1 | 3 | 3 | 3 | • | | U | | - | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO2 | 3 | | | | | | | 3 | | | | 3 | 3 | | | | | | 3 | 3 | | | | | 3 | | | | 3 | 3 | | | | CO3 | 3 | 3 | 3 | | | | | 3 | | | | 3 | 3 | 1800 | | | CO4 | 3 | 3 | 3 | | | | | 3 | | | | 3 | | | | | Average | 3 | 3 | 3 | | | | | 3 | | | | | 3 | | | | 0 | till and | | | | | | 6 | 3 | | | | 3 | 3 | 8 | | | Subject: | Highway Engineering | Subject Code: 17CV63 | |----------|---|---------------------------------------| | | Course Outcomes | | | CO1 | Understand the importance and characteristics of road t alignment based on planning principles and surveys. | | | CO2 | Apply aspects of road geometrics and suitably design resystems. | oad geometric elements and drainage | | CO3 | Evaluate engineering properties of the material and proconstruction. | vide suitable guidelines for pavement | | | | | | CO4 | Analyse the highway economics and impart the knowle | edge on highway economics | Page 11 of 21 | COs | | | r | | | P | Os | | | | | | | PSOs | - | |-----------------|---|---|---|---|---|---|-------|---|---|----|----|----|-----|-------------|---| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 2 | 9 | 10 | 44 | 40 | | 1 503 | _ | | CO ₁ | 2 | | | | | | | 0 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₂ | 2 | 3 | 2 | | | | 1,500 | 1 | | | | | | 2 | | | CO3 | 2 | 2 | | | | | | 1 | | | | | | 3 | | | CO4 | 2 | 1 | | | | | | | | | | | | 2 | | | Average | 2 | 2 | 2 | | | | | 1 | | | | | | 2 | | | | 4 | | | | | | | 1 | | | | | 111 | 2 | | | ~unject. | Water | r Supp | ly & 7 | reatn | ent E | nginee | ring | | | Sub | iect Co | ode:170 | CV64 | | | |-------------------|---------------|--------------------|-------------------|---|---------|---------
--|----------|---------|----------|---------|----------|---------|------------------|-------| | | | | | | | Cou | rse Ou | itcome | S | | | | | | | | CO1 | Anal
the e | lyze the | e varia
lesign | tion of
period | water | demar | nd and | to estir | nate w | ater re | quirem | ent for | a con | munit | y at | | CO2 | | tify the | | | | ipply a | ınd to a | pply p | roper s | sampli | ng tech | niques | for th | e analy | sis c | | CO3 | Appl | y drink | cing w | ater au | ality s | tandar | ds and | to illus | trata a | nolitati | | lysis o | C | | | | CO4 | Desi | gn a co
e requi | mpren | ensive | water | treatm | ent and | d distri | bution | systen | n to pu | rify and | d distr | r.
ibute v | vater | | CO5 | | gn prop | | | | | r raw a | nd tre | ated w | ator | | | | | | | | | | | | (| CO-PC |)-PSO | Mapp | ing | aici | | | | | | | | | | | 100000000000000000000000000000000000000 | | | ALC: NO COMPANY | | | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOc | | | COs | 1 | 2 | 3 | 4 | 5 | 6 P | Os 7 | 8 | 9 | 10 | 11 | 12 | 1 | PSOs | _ | | COs | 1 2 | 2 2 | 3 | 4 | 5 | 100 | STATE OF THE PARTY | 8 | 9 | 10 | 11 | 12 | 1 | 2 | _ | | | 1 2 2 | I TOO I TOO | 3 | 4 | 5 | 100 | STATE OF THE PARTY | 8 | 9 | 10 | 11 | 12 | 1 | 2 | _ | | CO1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 1 | 2 2 2 | _ | | CO1 | 2 | 2 2 2 | 3 | 4 | 5 | 100 | STATE OF THE PARTY | 8 | 9 | 10 | 11 | 12 | 1 | 2
2
2
2 | 3 | | CO1
CO2
CO3 | 2 2 | 2 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 1 | 2 2 2 | _ | | Subject: | Solid | Waste | Mana | gemen | ıt | | | | - | Subj | ect Co | de:170 | CV651 | | | |-----------------|-------|-----------|---------|---------|--------|---------|---------|---------|---------|---------|--------------------|--------|-------|------|---| | | | | | | | Cour | rse Ou | itcome | S | | Harrisonn Saltanie | | | | | | CO1 | Ana | lyze exi | sting s | solid w | aste n | nanagen | nent s | ystem a | and to | identif | v their | drawh | acks | | - | | CO2 | Eva | luate dif | ferent | eleme | nts of | solid w | aste m | nanagei | nent s | vstem | , then | aramor | acks. | | - | | CO3 | Sug | gest suit | able s | cientif | ic met | hods fo | r solid | waste | manac | rement | eleme | nte | | | | | CO4 | Des | ign suita | ible pr | ocessii | ng sys | tem and | l evalu | ate dis | posal s | sites. | CICIIIC | 1113. | | | | | | | | | | | СО-РО | | | | | | | | | | | COs | | | | | | | Os | | | | | | | PSOs | | | 003 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 1 | 2 | | | | 1 | 1 | | | | | 1 | | 2 | - | | CO ₂ | 1 | 2 | | | 1 | 1 | 1 | | | | | 1 | | 2 | - | | CO3 | 1 | 1 | | | | 1 | 1 | | | | | 1 | | 2 | - | | CO4 | 1 | 2 | | | - 3700 | 2 | 1 | | | | | 1 | | 2 | | | Average | -1 | 1.75 | | | 1 | 1.25 | 1 | | | | | 1 | | 2 | | | Subject | Matrix Methods of Structural Analysis | Subject Code:17CV652 | |---------|---|---| | | Course Outcom | | | CO1 | Evaluate the structural systems and apply the consimple problems. | cepts of flexibility and stiffness matrices for | | CO2 | Identify, formulate and solve engineering problem | ns with respect to flexibility matrices as | Page 12 of 21 | CO3 | Iden
to co | tify, fo
ntinuo | rmulat
us bea | e and s | solve e | nginee | ring pr | oblem | s with | respect | to stif | fness r | natrice | es as ap | plied | |---------|---------------|--------------------|------------------|---------|---------|---------|--------------------|-------|--------|---------|-------------|-----------|---------|----------|-------| | CO4 | Iden | tify, fo | rmulat | e and s | olve e | nginee | ring pr
and tru | oblem | s with | respect | to dire | ect stiff | ness n | nethod | as | | | т | | | | | |)-PSO | | ing | | | | | | | | COs | | | | | | 1000000 | Os | | _0_ | | - Prilitary | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 10 | 11 | 12 | - | 1 303 | | | CO1 | 3 | 3 | | | | | - | - | | 10 | 11 | 12 | _ I | 2 | 3 | | CO2 | 3 | 3 | | | | | | | | | | | 2 | | | | CO3 | 3 | 3 | | | | | - | | | | | | 2 | | | | CO4 | 3 | 3 | | | | | | | | | | | 2 | | | | Average | 3 | 3 | - | | | - | | | | | | | 2 | 30 TH 30 | | | 8* | | | | | | | | | | | | | 2 | | | | Subject: | Alteri | iate Bi | uilding | mate | rials | | | | | Subj | ect Co | de:170 | CV653 | | | |------------------|--------|----------|---------|---------|---------|----------|---------|---------|----------|---------|--------|---------|-------|---------|------| | | | | | | | Cou | rse Ou | itcome | S | | | | | 94.
 | | | CO1 | Disc | uss cor | ncept o | f Energ | gy in b | uildin | g mate | rials | | | - | | | | | | CO ₂ | Desc | ribe th | e elem | ents of | struct | ural m | asonry | iais | | | | 100 100 | | | | | CO3 | Class | sify alt | ernate | buildin | g mat | erials a | and tec | hnolog | | | | | | | -342 | | CO4 | Inter | act the | availal | ble ma | chiner | ies for | produc | tion of | f Altar | nate bu | ildina | | 1 | | | | | | | | | (| CO-PC |)-PSO | Mapp | ing | nate bu | nuing | materi | als. | | -072 | | COs | | | | | | | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | | | | 1 | 1 | | <u> </u> | 10 | 4.1 | 12 | | L | - | | CO ₂ | 3 | 2 | | | | 1 | 1 | | | | | | 2 | | _ | | CO3 | 3 | 2 | | | | 1 | 1 | | | | | | 2 | | | | CO4 | 3 | 2 | | | | 1 | 1 | | | | | | 2 | | | | - NAME OF STREET | | | | | | 1 | 1 | | | | | | 2 | | | | Average | 3 | 2 | | | | 1 | 1 | | | | 1 22 | - 200 | 2 | - | | | Subject: | Water | Reso | urce N | Ianage | ement | | | | | Subj | ect Co | de:170 | CV661 | | | |-----------------|-------|----------|---------|--------|---------|---------|---------|--------|------|------|--------|--------|-------|-------|---| | | | | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Judg | e surfa | ce and | groun | dwater | resou | rces | | 11.5 | -31 | | | | - 0.5 | | | CO2 | Addı | ess the | issues | of wa | ter res | ources | manag | rement | 1 | | | | | - | | | CO3 | Desc | ribe th | e legal | frame | work c | of wate | r polic | V | | | | | | | - | | CO4 | Class | sify the | metho | ods of | water l | arvest | ing pra | ctices | | | | | - | | | | | | | | | | |)-PSO | | | | | | | | | | COs | | | | | | | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | 1 | 2 | 2 | | | | | | 1 | | 1 | | | CO ₂ | 1 | 2 | | 1 | 2 | 2 | | | | | | 2 | | 1 | | | CO3 | 1 | 2 | | 1 | 2 | 2 | | | | - | | | | 1 | | | CO4 | 1 | 1 | | 1 | 1 | 1 | | 1899 | | | | 2 | | 2 | | | Average | 1 | 2 | | 1 | 2 | 2 | | | | - | | 2 | | 2 | | | irrage | 1 | 2 | | 1 | | | | | | | | 2 | | 2 | | | Subject: | Numerical Methods and Applications | Subject Code:17CV663 | |----------|--|------------------------------------| | | Course Outcon | mes | | CO1 | Clear perception of the power of numerical techn | niques, ideas. | | CO2 | Demonstrate the applications of these techniques management and other engineering fields | s to problems drawn from industry, | | CO3 | Acquire the necessary basic concepts of a few nu | merical methods | | CO4 | Analyze and solving numerically different kinds | of problems | | | | | | | (| CO-PC |)-PSO | Марр | ing | | | | | S- | - | |-----------------|---|-----|---|-----|------|-------|-------|--------|-------|------|----|------|-----|------|---| | COs | | | | | | | Os | and of | m u l | TWUT | | 1001 | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | CO1 | 3 | 1 | | | | | | | | AU. | 11 | 14 | 1 | Z | 3 | | CO ₂ | 3 | 3 | 2 | 1 | 10.5 | | | | | | | | 2 | | | | CO3 | 3 | 3 | | - | | | - | | | | | | _2_ | 2 | | | CO4 | 3 | 3 | 2 | 1 | | - | | | | | | 1 | 2 | | | | | 2 | | | | | | | | | | | | 2 | 2 | | |
Average | 3 | 2.5 | 2 | 1.5 | | | | | | | | 1 | 2 | 2 | | | Subject: | Softwa | are App | plicatio | n Lab | | | | | | Subj | ect Co | de:170 | CVL67 | 7 | - | |----------|-------------|---------------------|--------------------|---------------------|-----------------|---------|----------|--------|-------|--------|---------|--------|--------|---------|---------| | | 100 00 | | | | | Cour | rse Ou | tcome | S | | | | | | | | CO1 | Use of time | of softy
for cor | ware sk
npletic | cills in
on of w | a profe
ork. | essiona | ıl setup | to aut | omate | the wo | ork and | thereb | y redu | ice cyc | le | | | | | | | (| CO-PO | -PSO | Марр | ing | | | _ | | | - Louis | | COs | | | | s | | | Os | | | | | | | PSOs | _ | | 0.00 | | | | | | | | | | | | | | | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 3 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | | Exten | sive su | irvey I | project | t | | | | | Subj | ect Co | de:170 | CVL6 | 8 | | |---------------------------------|---------------|--------------------|-------------|----------|-----------------------|--|------------------------------------|----------|--------|----------|----------|----------|----------------------------|--------------------|------| | | | | | | | | | ıtcome | | | | | | | | | CO1 | App | ly surv | eying l | knowle | edge ar | id tool | s effect | tively 1 | or the | project | | | | | | | CO2 | Unde | erstand
rds co | and a | pply ta | sk, env | ironm | ental g | oals, r | espons | ibility, | task fo | orces, v | vorkin | g in te | ams | | CO3 | Appl | lication
nunica | of inc | lividua | l effec | tivenes | s, skil | ls in te | am and | l or go | al setti | ng, tim | e man | ageme | nt, | | CO4 | Profe | essiona | l, Etiq | uettes a | at worl | place | , meet | ings an | d gene | ral | | | | _ | | | CO5 | Estal | olishing | g trust- | based | relatio | nships | in tear | ns and | organi | zation | al envi | ronmer | nt. | | | | ~~~ | Orie | ntation | toward | ds conf | flicts in | team | and or | ganiza | tional | anviror | mont | undorg | tondin | 00 00 | | | CO6 | of co | nflicts, | , resolu | itions a | and tec | hnique | es | gamza | ionai | | iment, | unders | tanun | gs, soi | urce | | CO6 | of co | nflicts, | , resolu | itions a | and tec | hnique | es | Mapp | | | intent, | unders | tanun | 185, 501 | urce | | | of co | nflicts, | , resolu | itions a | and tec | hnique
C O-PC | es | | | | iment, | unders | tandii | | | | CO ₆ | of co | nflicts, | resolu
3 | itions a | and tec | hnique
C O-PC | es
)-PSO | | | 10 | 11 | 12 | 1 | PSOs | | | | of co | ntlicts, | , resolu | itions a | and tec | hnique
CO-PC
P | es
D-PSO
Os | Марр | ing | | | | | PSOs | | | COs | of co | ntlicts, | , resolu | itions a | and tec | hnique
CO-PC
P | Os 7 | Марр | ing | | | | 1 | PSOs 2 | | | COs | 1 2 | nflicts, | , resolu | itions a | 5 2 | hnique
CO-PC
P
6
2 | Os 7 2 | Марр | ing | | | | 1 2 | PSOs 2 2 2 | | | COs CO1 CO2 | 1 2 2 | nflicts, | , resolu | itions a | 5 2 2 | hnique
CO-PC
P
6
2
2 | PSO Os 7 2 2 2 | Марр | ing | 10 | 11 | 12 | 1 2 2 | PSOs 2 2 2 2 2 | | | COs CO1 CO2 CO3 | 1 2 2 2 2 | nflicts, | , resolu | itions a | 5 2 2 2 2 | P
6
2
2
2 | Os 7 2 2 2 2 2 | Марр | ing | 10 | 11 | 12 | 1
2
2
2
2
2 | PSOs 2 2 2 2 2 2 2 | | | COs
CO1
CO2
CO3
CO4 | 1 2 2 2 2 2 2 | nflicts, | , resolu | itions a | 5
2
2
2
2 | hnique
CO-PC
P
6
2
2
2 | PSO
Os
7
2
2
2
2 | Марр | ing | 10 | 11 | 12 | 1
2
2
2 | PSOs 2 2 2 2 2 | | #### Semester-VII | Subject: | | orban s | enter IIII | uustila | ii was | | | | | Sub | ject Co | ode:17 | CV71 | | 277 | |--------------------------|-------------|---------|------------|---------|---------|-----------|----------------|-----------|----------|-----------|---------|---------|--------|------------------|-----| | 001 | T=- | | aw o | | | Cou | rse O | itcome | S | | | | | | | | CO1 | Desi | gn mu | nicipal | and in | dustria | al sewa | ige trea | atment | nlant | | | | | | | | CO ₂ | Estin | nate th | e degr | ee and | type o | f treatr | nent fo | or disno | sal R | ecvolo | and so | use tec | Late. | | | | CO ₃ | Ana | yze w | astewa | ter cha | racteri | stics | -10110 10 | or dispe | bai. IX | ccycle | and re | use tec | nnique | S | | | CO4 | Reco | gnize | the cor | nmon | physic | al, che | mical, | and bid | ologica | al unit o | perati | ons end | counte | red in | | | CO5 | Com | munic | ate wit | h stake | holde | rs' sew | age an | d indu | strial e | ffluent | c | | | - | | | | | | | | - | CO-PC | DCO | BAT- | , | 111uciii, | 3 | | | | | | | | | | | | | 1-120 | Mapp | ing | | | | | | | | COs | | | | | | 0000 | 0s | Mapp | ing | | - 1.WE | | | DSO | | | COs | 1 | 2 | 3 | 4 | 5 | 0000 | | Mapp
8 | | 10 | 11 | 12 | 1 | PSOs | - | | COs | 1 3 | 2 2 | 3 3 | 4 2 | r | 6 | Os 7 | | ing
9 | 10 | 11 | 12 | 1 | 2 | - | | | 1
3
2 | 2 | 3 | 2 | r | 6
2 | Os 7 2 | | | 10 | 11 | 12 | 1 | 2 | - | | CO1 | 2 | 2 2 | | 2 2 | r | P 6 2 2 2 | Os 7 2 2 2 | | | 10 | 11 | 12 | 1 | 2 | - | | CO1
CO2
CO3 | 50 | 2 2 2 | 3 2 | 2 | r | 6
2 | Os 7 2 2 2 2 2 | | | 10 | 11 | 12 | 1 | 2 | 3 | | CO1
CO2
CO3
CO4 | 2 | 2 2 | 3 | 2 2 | r | P 6 2 2 2 | Os 7 2 2 2 | | | 10 | 11 | | 1 | 2
2
2
2 | - | | CO1
CO2
CO3 | 2 | 2 2 2 | 3 2 | 2 2 | r | P 6 2 2 2 | Os 7 2 2 2 2 2 | | | 10 | 11 | | 1 | 2 2 2 | _ | | Jesig | n of RC | CC an | d Steel | l Struc | ctures | | | | Subj | ect C | ode:170 | CV72 | | | |-----------|----------------------|--|--|--
---|--|---|---|---|--|--|--|--|--| | | | | | | Cou | rse Ou | itcome | S | | | | | | | | Ap
foo | ply basi
ting and | c knov
l retain | wledge
ning wa | of lim
all. | it state | metho | od and | design | RC str | ructure | s such | as cor | nbined | | | Ad | opt coda | al prov | isions. | profes | ssional | ethics | and de | esion v | vater to | nka on | d norte | 1 € | | | | Eva | aluate th | e forc | es acti | ng on s | steel ro | of trus | ss and | design | by fol | lowing | the ac | dal | es. | | | Ana | alyse an | d desi | gn stee | el struc | tures s | uch as | plate a | nd oar | try gir | der co | g me co | oai pr | ocedur | e. | | 38 | | | | (| CO-PC |)-PSO | Mapp | ing | my gn | uci ca | Tymg I | IIOVIII | g loads | • | | | | | | | | | | - 8 | | - 17 m | | | PSOs | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 7503860 MB050 | T 3 | | 2 | 2 | 3 | | | | 107 | 3 | | 10 | | 1 | 2 | | -3 | | 2 | 3 | 3 | | | - | | | | | 369 3 | 2 | 0.500 | - | ⊢ | | 2 | 2 | 3 | | | | | - 5 | | | | | | | _ | | 2 | 2 | 3 | | | 100.75 | | | | | | 1 | | | _ | | 2 | 2.25 | 3 | | | | | 3 | | | | 1.5 | 2 | | | | | Ap foo Add Eva Ana | Apply basi footing and Adopt code Evaluate the Analyse and 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Apply basic know footing and retain Adopt codal prove Evaluate the force Analyse and desired and the second | Apply basic knowledge footing and retaining we Adopt codal provisions. Evaluate the forces action Analyse and design steed and the footing and the forces action and the footing retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and retaining we have a supplied to the footing and footi | Apply basic knowledge of lim footing and retaining wall. Adopt codal provisions, profest Evaluate the forces acting on standard Analyse and design steel structory. 1 2 3 4 5 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 3 | Apply basic knowledge of limit state footing and retaining wall. Adopt codal provisions, professional Evaluate the forces acting on steel ro Analyse and design steel structures s CO-PO P 1 2 3 4 5 6 2 2 3 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 3 2 2 2 3 3 2 3 2 3 | Apply basic knowledge of limit state methor footing and retaining wall. Adopt codal provisions, professional ethics Evaluate the forces acting on steel roof trus Analyse and design steel structures such as CO-PO-PSO POS 1 2 3 4 5 6 7 2 2 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | Apply basic knowledge of limit state method and footing and retaining wall. Adopt codal provisions, professional ethics and designate the forces acting on steel roof trusss and Analyse and design steel structures such as plate a CO-PO-PSO Mapper POs 1 2 3 4 5 6 7 8 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Apply basic knowledge of limit state method and design footing and retaining wall. Adopt codal provisions, professional ethics and design versuluate the forces acting on steel roof trusss and design Analyse and design steel structures such as plate and gar CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Apply basic knowledge of limit state method and design RC state footing and retaining wall. Adopt codal provisions, professional ethics and design water taxible Evaluate the forces acting on steel roof trusss and design by fol Analyse and design steel structures such as plate and gantry gir CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Apply basic knowledge of limit state method and design RC structure footing and retaining wall. Adopt codal provisions, professional ethics and design water tanks an Evaluate the forces acting on steel roof trusss and design by following Analyse and
design steel structures such as plate and gantry girder can CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 11 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Apply basic knowledge of limit state method and design RC structures such footing and retaining wall. Adopt codal provisions, professional ethics and design water tanks and portate Evaluate the forces acting on steel roof trusss and design by following the code Analyse and design steel structures such as plate and gantry girder carrying recopy records and the structures of the structures of trusts and design by following the code Analyse and design steel structures such as plate and gantry girder carrying recopy recopy records and the structures of trusts and design by following the code Analyse and design steel structures such as plate and gantry girder carrying recopy recopy records and the structures of trusts and design by following the code Analyse and design by following the code Analyse and design steel structures such as plate and gantry girder carrying recopy re | Course Outcomes Apply basic knowledge of limit state method and design RC structures such as corfooting and retaining wall. Adopt codal provisions, professional ethics and design water tanks and portal fram Evaluate the forces acting on steel roof trusss and design by following the codal provisions and design steel structures such as plate and gantry girder carrying moving CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 3 3 3 3 3 5 2 2 2 2 3 3 5 5 2 2 2 2 | Apply basic knowledge of limit state method and design RC structures such as combined footing and retaining wall. Adopt codal provisions, professional ethics and design water tanks and portal frames. Evaluate the forces acting on steel roof trusss and design by following the codal procedur Analyse and design steel structures such as plate and gantry girder carrying moving loads CO-PO-PSO Mapping POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 2 3 3 3 1 2 2 2 2 3 3 3 2 2 2 2 2 3 3 3 2 2 2 2 2 3 3 3 3 | | Subject: | Hydro | logy a | nd Irrig | gation | Engine | ering | | | | Sub | ect Co | de:170 | CV73 | | | |-----------------|---------------|--------------|-------------------|---------|----------|---------|----------------------|----------|----------|----------|---------|----------|---------|---------|----------| | | _ | | | | | | rse Ou | | | | | - | | ***** | | | CO ₁ | Unde | erstand | the im | portan | ice of l | ydrolo | ogy and | d its co | mpone | ents. | | | | | | | CO2 | Desc
losse | ribe fo
s | rms of | precip | itation | , its m | easurei | nent a | nd ana | lyse the | e preci | pitation | data | precipi | atio | | CO3 | Estin | nate ru | noff ar | d deve | elop un | it hyd | rograpl | ns. | | | V no | - | | - | | | CO4 | Disci | uss the | benefi
ater an | ts of I | rigatio | n and | its diff
gation f | erent n | nethod | s and e | valuat | e the qu | uantity | of | | | CO5 | Estin | nate ca | nal cap | acity, | design | the ca | nal and | d com | oute the | e reserv | voir ca | nacity | | | | | | | | | 4.2 | (| CO-PC |)-PSO | Mapp | ing | | on ou | pacity | | | | | COs | | | Y | | | P | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | | | | | | 2 | 3 | 2 | | | 172 | 2 | | 1 | | | CO ₂ | 2. | 2 | 1 | | | 1 | 2 | | | | | 1 | | | Alless e | Page 15 of 21 | CO3 | 2 | 2 | 1 | | | 1 2 | | | | | |---------|------|------|-----|---|----------|-----|-----|-----|-----|-----| | CO4 | 2 | 2 | 2 | 1 | 2 | 2 | - | 100 | 1 | 1 | | CO5 | 3 | 3 | 2 | 1 | <u> </u> | 2 | 1 | | 1 | 2 | | Average | 2.25 | 2.25 | 1.5 | 1 | 1 | 2 | | | 1 | 2 | | 8- | 2.23 | 2.23 | 1.3 | 1 | 1.6 | 2.2 | 1.5 | | 1.2 | 1.4 | | | Grou | nu vv. | ater & | Hyara | aulics | _ | | | | Sub | ject C | ode:17 | CV74 | 2 | | |-------------------------------------|--|--|--------------------------------|-------------------------|------------------
--|--|---|--------------------------------------|--------------------------|----------|-----------------|-----------------------|-------------|----------| | 001 | In. | | | | | Coı | irse O | utcome | es | | | | | | - | | CO1 | Find | the cl | naracter | istics | of Aqu | ifers | | | | | | | | 3 | - | | CO2 | Estin | nate the | he quan | tity of | groun | dwater | by va | rious n | nethod | s | - P. J | | | | | | CO3 | Loca | ite the | zones (| of grou | ındwat | er reso | ources | | | | | | | | | | CO4 | Sele | ct suit | able me | thod t | o augn | nent gr | oundw | ater sto | orage | | | | | | | | | | | | | (| CO-P | O-PSO | Марр | oing | | | | | | | | COs | | | | | | F | Os | | | | - | - | | PSO | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | ,
 3 | | CO1 | 3 | | | | | 2 | 2 | | | 10 | 11 | 2 | 1 | 2 | -3 | | CO ₂ | 2 | | | | | | 2 | | | - | <u> </u> | 2 | | 2 | - | | CO3 | 3 | 2 | | | 2 | 2 | 3 | | | | | 2 | | | - | | CO ₄ | 2 | 2 | | | | 2 | 2 | | | | - | 2 | | 2 | - | | Average | 3 | 2 | | | 2 | 2 | 2 | - | | | | 2 | | 2 | | | CO1 | Desci | ribe th | e basics | of ho | use plu | umbin | rse Ou
g and v | vaste w | ater co | allectic | | | CV743
al. | | | | CO1
CO2 | Desci | ibe th | e basics
basics
e issues | or Hea | at Vent | umbin | g and v | vaste w | ater co | ollectio | n and | disposa | al. | | | | CO2 | Discu
Desci
harve | ibe th
sting. | e issues | or Hea | respect | umbin
ilation
t to qu | g and want and A | vaste water of water | ater co
ditioni
r, rain | ollectio | n and | disposa | al. | | | | CO2
CO3
CO4 | Desci
harve
Identi | ribe the sting. fy req | e issues | or Hea | respect | umbing ilation to qual | g and value and A antity of | vaste wir Conof wate | ater co
ditioni
r, rain | ollectio | n and | disposa | al. | | | | CO2 | Desci
harve
Identi | ribe the sting. fy req | e issues | or Hea | therma | umbing ilation to qualify to qualify a company to gineeri | g and value and A antity of fort in large servers | vaste water Constitution of water building vices. | vater co
ditioni
r, rain
gs | ollectio | n and | disposa | al. | | | | CO2
CO3
CO4
CO5 | Desci
harve
Identi | ribe the sting. fy req | e issues | or Hea | therma | umbing ilation to qual comparts of the compart | g and value and A antity of fort in large server. | vaste wir Conof wate | vater co
ditioni
r, rain
gs | ollectio | n and | disposa | al. | top | | | CO2
CO3
CO4 | Desci
harve
Identi | ribe th
sting.
Ify req
in the | uirement various | with
nts of
types | therma
of eng | umbingilation to qual complete | g and value and A antity of fort in lang servers of the serve | vaste water Conference of water building vices. | vater co
ditioni
r, rain
gs | ollectic
ng.
water | n and o | disposa | al.
d roof | e top PSOs | | | CO2
CO3
CO4
CO5 | Descri
harve
Identi
Expla | ribe th sting. If y require the | e issues | or Hea | therma | umbingilation to qualify quali | g and value and A antity of fort in lang serve-PSO Os | vaste water Constitution of water building vices. | vater co
ditioni
r, rain
gs | ollectio | n and | disposating and | al. d roof | top | 3 | | CO2
CO3
CO4
CO5 | Describarve Identi Expla | ribe the sting. If y require the sting of t | uirement various | with
nts of
types | therma
of eng | umbing cilation to qual communication of the | g and value and A antity of fort in lang server PSO Os 7 2 | vaste water Conference of water building vices. | vater co
ditioni
r, rain
gs | ollectic
ng.
water | n and o | disposating and | al. d roof | e top PSOs | 3 | | CO2 CO3 CO4 CO5 COs CO1 | Describarve Identi Expla | ribe the sting. If y require the sting in t | uirement various | with
nts of
types | therma
of eng | umbin cilation to qualification for the qualification of qualificati | g and value and A antity of fort in lang serve. PSO Os 7 2 2 | vaste water Conference of water building vices. | vater co
ditioni
r, rain
gs | ollectic
ng.
water | n and o | disposaring and | al. d roof 1 2 2 | e top PSOs | 3 | | CO2 CO3 CO4 CO5 COs CO1 CO2 | Describarve Identi Expla | ribe the sting. If y require the sting of th | uirement various | with
nts of
types | therma
of eng | ilation to qualification of to qualification of the | g and value and A antity of fort in lang serve-PSO Os 7 2 2 2 2 | vaste water Conference of water building vices. | vater co
ditioni
r, rain
gs | ollectic
ng.
water | n and o | disposaring and | 1 2 2 2 | e top PSOs | 3 | | CO2 CO3 CO4 CO5 COs CO1 CO2 CO3 | Describarve Identi Expla | ribe the sting. Ify require the sting of | uirement various | with
nts of
types | therma
of eng | umbing cilation to qual to qual company compan | g and value and A antity of fort in lang serve-PSO Os 7 2 2 2 2 2 2 2 2 | vaste water Conference of water building vices. | vater co
ditioni
r, rain
gs | ollectic
ng.
water | n and o | disposaring and | 1
2
2
2
2 | e top PSOs | 3 | | CO2 CO3 CO4 CO5 COs CO1 CO2 CO3 CO4 | Describation Descr | ribe the sting. If y require the sting of th | uirement various | with
nts of
types | therma
of eng | ilation to qualification of to qualification of the | g and value and A antity of fort in lang serve-PSO Os 7 2 2 2 2 | vaste water Conference of water building vices. | vater co
ditioni
r, rain
gs | ollectic
ng.
water | n and o | disposaring and | 1 2 2 2 | e top PSOs | 3 | | Subject: | Urbar | Tran | sporta | tion a | nd Pla | nning | | | | Subj | ect Co | de:170 | CV751 | | | |----------|--------------|---------------------|---------------------|------------------|-------------------|---------|----------|---------
---------|------------|----------|----------|---------|--------|-----| | | | | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Iden
requ | tify url
ired fo | oan trai
r Urbai | nsport
n Tran | proble
sport P | ms. Do | esign, o | conduc | t and a | dminis | strate s | urveys | to pro | vide d | ata | | CO2 | Estir | nate ur | ban tra
d use c | ivel de | mand | to deve | elop tri | p gene | ration | models | and to | rip dist | ributio | n rate | for | | CO3 | Plan | urban | transpo | ort net | works | based o | on mod | lal cho | ice and | didenti | fy urb | an tran | cnort c | owide | | | CO4 | Valid | late the | e devel | loped r | nodel | for lon | g term | transp | ortatio | n plan | ily ulb | an uan | sport c | orrido | rs | | | | | | | | | | Mapp | | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | 01 | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | | | | 1 | | | 7.80 | T. Section | | | | 2 | | | CO2 | 3 | 1 | | 1 1 | | | | |---------|-----|---|---|----------|----------------|---|---| | CO3 | 3 | 1 | 1 | 1 | | 1 | 2 | | CO4 | 1 | | | 1 1 | | 1 | 2 | | Average | 2.5 | 1 | | 1 1 10 1 | CALLED WILLIAM | 1 | 2 | | - 8 | | | | 1 | | 1 | 2 | | Subject: | Rehal | oilitat | ion and | Retro | fitting | g of St | ructur | es | | Subj | ect Co | de:170 | CV753 | 3 | | |-----------------|-------|---------|-----------|---------|---------|---------|----------|----------|---------|---|---------|----------------|-----------|-------------|---| | | | | | | | Cou | rse Ou | tcome | s | | | | 0 1 1 0 0 | | | | CO1 | Unde | erstan | d the car | use of | deterio | oration | of con | crete s | tructu | roc | | - | - | | | | CO ₂ | Asse | ss the | damage | of dif | ferent | types | of strue | ctures | and ro | 000000000000000000000000000000000000000 | . 1 (1 | Marian Control | | | | | CO ₃ | Sum | mariz | e the pri | nciple | s of re | nair an | d rehel | bilitati | and rec | comme | nd the | necess | ary so | lution | | | CO4 | Reco | gnize | ideal m | aterial | for di | fforont | ropoir | onder | OH OI S | tructure | es
· | | | | | | | | 0 | 10001111 | atoriai | 101 (1) | CO-PC | PSO | Mapp | ing | ng tech | inique | | | | | | CO | | | | | | | Os | mapp | ıng | | | | | - | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 4.0 | | PSOs | | | CO1 | 2 | 2 | | | - | - | | 0 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO2 | 2 | 2 | 3 | | | - | _ | | | | | | 2 | | | | CO3 | | | | | | 1 | | 1 | | | | | 2 | | | | | 2 | _ 2 | 2 | | | 1 | | 1 | | | | | 2 | | | | CO ₄ | 2 | 2 | 2 | | | | | | | | 1 | | 2 | | | | Average | 2 | 2 | 2.33 | | | 1 | | 1 | - | | 1 | | 2 | | | | Subject: | Envir | onme | ntal En | ginee | ring L | ab | | | | Subi | ect Co | de:170 | CVI.7 | 6 | | |-----------------|-------|------------------|----------|---------|---------|----------|---------|---------|----------|----------|---------|-----------|---------|------|------| | | | | | | | Cou | rse Ou | tcom | es | | | | , , | | | | CO1 | Acqu | ire ca
neters | pability | to co | nduct e | experin | nents a | nd est | imate t | he cond | centrat | ion of o | differe | ent | | | CO ₂ | Com | oare tl | ne resul | t with | standa | rds and | d discu | ss has | ed on t | he nurr | ose of | analys | :_ | | | | CO3 | Deter | mine | type of | treatn | nent de | gree o | ftreatr | nent fo | or wate | r and w | vacteur | allalys | IS | | | | CO4 | Ident | ify the | param | eter to | be an | alvsed | for stu | dent n | roject v | work in | envir | aici. | ol otro | | | | CO5 | | | | | | ary o ca | 101 514 | dont p | Toject | WOIK III | CHVIIC | Jiiiieiii | ai stre | am | 1100 | | | | | | | (| CO-PC |)-PSO | Mapr | ing | | | | | - | - | | COs | | | | | | A Towner | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | CO1 | 3 | 2 | 1 | 2 | | | 2 | | 2 | 2 | | | - | 3 | - | | COI | | | | | | | | | | | | | | | | | CO2 | 2 | 2 | 1 | | | 2 | 2 | 2 | 1 | | | | Die Co | 2 | | | | 2 | 2 | 2 | 2 | | 2 | - | 2 | 1 | 2 | | | | 3 | | | CO2 | | | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 1 | | | 2 | | 3 | | | CO2
CO3 | 2 | 2 | | | 2 | | - | - | 1 2 | | | 3 | | | | | Subject: | Compu | ter Ai | ded De | etailing | g of Str | ucture | S | | | Subj | ect Co | de:170 | CVL7 | 7 | | |-----------------|--------|---------|----------|----------|----------|---------|--------|---------|----------|------|--------|--------|---|------|----------| | | | | | | | Cou | rse Ou | tcome | S | | | | S 77 % 1/202 | 2 | | | CO1 | Acqu | ire pro | ficiend | cy in so | oftware | skills | 61 | | 200 | | | | | | | | CO ₂ | Outlin | ne the | princi | oles as | per co | dal pro | vision | | | | | | | | | | CO3 | Devel | op de | tailed v | workin | g draw | ing of | RC an | d Steel | struct | ures | | | THE COLUMN TWO IS NOT | | | | | | | | | | |)-PSO | | | ures | | | | | - | | COs | | | | | | | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | T 3 | | CO1 | 2 | | | | | 1 | 2 | 3 | 3 27 700 | | | 2 | 3 | 1 | <u> </u> | | CO2 | 3 | 3 | 3 | | | | | 3 | | | - | 2 | 3 | 1 | \vdash | | CO3 | 3 | 3 | 3 | | | W | | 3 | | | | 2 | 3 | 1 | - | | Average | 2.66 | 3 | 3 | | | 1 | 2 | 3 | | | | 2 | 3 | 1 | - | Page **17** of **21** | | Projec | t Phase | e I | | | | | | | Sub | iect C | ode:17 | CVP7 | Q | | |---------------------------------|----------------------------|------------------|----------|-----------------|-----------|--------------------------------|--------------------------------------|--------------|-----------|---------|--------------------|-----------------------------|----------------------------|------------------------|------| | | | | | | | Cou | rse Ou | ıtcom | S | | | 340.17 | O 11 / | | | | CO1 | App | ly Surv | eying | knowl | edge a | nd too | s effec | tively | for pro | iects | | | | - | | | CO2 | towa | erstand | ling Ta | sk env | ironme | ent. Go | als re | sponsi | rilities | Tools | focus,
is, tecl | workin
nnical a | g in T | eams | al | | CO3 | Appl
time | ication
manag | of inc | lividua
comn | l effec | tivenes | ss skill | s in tea | m and | organi | zation | al conte | ext, go | al sett | ing, | | CO ₄ | Profe | ssiona | l etiqu | ettes a | t work | place | meetin | o and | tanarol | 3. | | _ | | | _ | | CO5 | Estab | olishing | g trust- | based | relatio | nshins | in tear | ne & o | raania | otional | | nment | Was Et al | | | | CO6 | Offer | namon | toward | is con | flicts ir | i team | and or | oaniza | tional a | enviror | ment | Inder | standir | or com | 2000 | | | or co | nflicts, | , Confl | ict res | olution | styles | and te | chnia | es | | ancin, | Onders | manun | ig soui | CCS | | | of co | nflicts, | Confl | ict res | Julion | styles | and te | chniqu | es | | | Onders | - Candin | | ces | | COs | 01 00 | nflicts, | , Confl | ict res | Julion | Styles
CO-PC | and te
D-PSO
Os | chniqu | es | | | Onders | standin | | | | COs | 1 | nflicts, | , Confl | ict reso | Julion | Styles
CO-PC | and te | chniqu | es | | | | 1 | PSOs | | | COs | 1 2 | minets, | Com | ict res | C | Styles
CO-PC | ond te | Mapp
Mapp | es
ing | 10 | 11 | 12 | 1 | PSOs 2 | | | | 1 | minets, | Com | ict res | 5 | P
6
2 | Os 7 | Mapp
Mapp | es
ing | | | 12
2 | 1 2 | PSOs 2 2 | | | CO1 | 1 2 | 2 | Com | ict res | 5 2 2 2 | P 6 2 2 | ond te
D-PSO
Os
7
2
2 | Mapp
Mapp | es
ing | | | 12
2
2 | 1
2
2 | PSOs 2 2 2 2 | | | CO1 | 1
2
2
2 | 2 | Com | ict res | 5 2 | P 6 2 2 2 2 | 7 2 2 2 2 | Mapp
8 | es
ing | 10 | 11 | 12
2
2
2 | 1
2
2
2 | PSOs 2 2 2 2 2 2 | | | CO1
CO2
CO3
CO4 | 1
2
2
2
2 | 2 | Com | ict res | 5 2 2 2 | Styles CO-PC P 6 | 7 2 2 2 2 2 2 | Mapp
8 | es
ing | | | 12
2
2
2
2 | 1
2
2
2
2 | PSOs 2 2 2 2 2 2 2 | | |
CO1
CO2
CO3
CO4
CO5 | 1
2
2
2
2
2 | 2 | Com | ict res | 5 2 2 2 | Styles CO-PC P 6 2 2 2 2 2 2 2 | and te D-PSO Os 7 2 2 2 2 2 | Mapp 8 2 2 | es
ing | 10 | 11 | 12
2
2
2
1
2 | 1
2
2
2
2
2 | PSOs 2 2 2 2 2 2 2 2 2 | | | CO1
CO2
CO3
CO4 | 1
2
2
2
2 | 2 | Com | ict res | 5 2 2 2 | Styles CO-PC P 6 | 7 2 2 2 2 2 2 | Mapp
8 | es
ing | 10 | 11 | 12
2
2
2
2 | 1
2
2
2
2 | PSOs 2 2 2 2 2 2 2 | | #### Semester-VIII | Subject: | Quan | tity Su | ırveyin | g and | Contr | acts N | Ianag | ement | | Subj | ect Co | de:170 | CV81 | * | | |-----------------|-------|---------|------------|---------|---------|----------|--------------|------------|---------|----------|---------|---------|------|------|-----| | | | | | | | Cou | rse O | utcome | S | | | 7 | | | | | CO1 | Estin | nate th | e quant | ities o | f diffe | rent ite | ems of | work fo | or road | de and l | avildi | | | | | | CO ₂ | Deve | lop sp | ecificat | ions f | or Civi | 1 Engi | neerin | g works | and r | aronono | mata a | igs | | | | | CO3 | Inter | pret co | ontract of | locum | ents of | fdome | etic at | nd interr | anu p | olepare | rate ai | nalysis | | | | | CO4 | Deve | lop va | luation | report | s of bi | ildino | c al | id iiiteii | iation | ai cons | ruction | n work | S | | | | | | | | | | | | Марр | ing | | | | | | | | COs | | | | | | | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 3 | 2 | 2 | | | 1 | 1 | 1 | - | | 2 | | | 1 | - 3 | | CO ₂ | 3 | | 3 | | | 1 | | 2 | | | 2 | 4 | | | | | CO3 | 2 | 2 | | | | 1 | | | | - | | 1 | | 1 | | | CO4 | 2 | 2 | 3 | | | 1 | | 2 | | | 2 | 1 | | 1 | | | | | 80.70 | 1774 | - | | 1 | | 2 | | | 2 | 1 | | 1 | | | Average | 2.5 | 1.5 | 2.25 | | | 1 | 1 | 1.75 | | | 2 | 1 | | 1 | | | Subject: | Design | n of Pr | e-Stres | ssed C | oncre | te Elei | nents | | | Subj | ect Co | de:170 | CV82 | | | |--|--------|--|----------|----------|---------|---------|---------|-----------|---------|---------|---------|--------|--------|------|-----| | The state of s | | The state of s | | | | Cou | rse O | utcomes | 3 | | | | | - | | | CO1 | Ident | tify the | suitabl | le mate | erials, | metho | ds. and | d system | is of n | restres | sing | | | - | | | CO ₂ | Anal | yse the | stresse | es, loss | es, an | d defle | ections | in the p | re-str | essed b | eame | | | | | | CO ₃ | Anal | yse and | d design | n the p | re-stre | ssed c | oncret | te memb | ers fo | r Flevi | re and | Chaor | Ctrone | | | | CO4 | Anal | yse and | d design | n the C | compo | site se | ction f | for Flexi | ire an | d Shear | r Stren | oth | Sueng | gui. | | | | | | | | | | | Mappi | | u onea | Such | gui. | 1750 | | | | COs | | | | | | | Os | | 0 | - 19 | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 2 | 2 | | | | | | | | | | | 2 | | - 3 | | CO ₂ | 3 | 3 | 2 | | | | | 2 | W | | | | 2 | | | | CO3 | 2 | 3 | 3 | | | | | 3 | | | | | | | | | CO4 | 2 | 3 | 3 | | | | | 2 | | | | | 2 | | | | Average | 2.25 | 2.75 | 2.67 | | E | | | 2.33 | | | | | 2 | | | | Subject: | Hydra | ulic St | ructu | res | | | | | | Subj | ect Co | de:170 | CV832 | 2 | | |-----------------|-------|----------|--------|----------|---------|---------|----------|---------|---------|---------|--------|--------|---------------|------|--------| | | | | | | | Cou | rse Ou | tcome | S | | | | es in eastern | | | | CO1 | Anal | yse the | stabil | ity of g | gravity | dams | and de | sign th | e dam | | | | | | | | CO ₂ | Estin | nate the | quan | tity of | seepag | e thro | ıgh ear | th dan | IS | | 11.500 | | | | | | CO3 | Desig | gn spill | ways a | and apr | rons fo | r vario | us dive | ersion | works | | | | | | _ | | CO4 | Selec | t a part | icular | type o | f canal | regul | ation w | orks fo | or cana | al work | S. | | | - | | | | | | | | | | -PSO | | | ar Work | | | | | | | COs | | | | | | 18310 | Os | | - | | ra#55# | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 3 | 3 | 3 | 1 | 9-16-2 | 2 | | | | | 1 | | 2 | 1 | | | CO ₂ | 2 | 2 | 2 | 1 | - 3/E-0 | | 1 | | | | 1 | (80) | 2 | 1 | - | | CO3 | 2 | 2 | 1 | | | | | | | | | 1 | 2 | 1 | | | CO4 | 2 | 2 | 2 | | | 2 | P. 24. 0 | | | | | 1 | | | | | Average | 2.75 | 2.75 | 2 | 1 | | 2 | 1 | | | | 1 | 1 | 2 | 1 | CHIPS: | | Subject: | Paven | nent D | esign | | | | 318 X | | | Sub | ect Co | de:170 | 71/833 | <u> </u> | _ | |-------------------|----------------|-----------------|----------|---------|----------|---------|---------|----------|--------|---------|--------|---------|--------|----------|-----------| | الأعطية | | | | | 25.5 | Cou | rse O | utcome | S | | | | | | | | CO1 | Syste
Airfi | ematica
eld) | ally ge | nerate | and co | mpile | require | ed data | for de | sign of | paven | nent (H | ighwa | y & | - | | CO ₂ | Anal | yze str | ess, sti | rain an | d defle | ction h | v Rou | ssines | 'c D., | icto | ,2 1 | *** | | | | | CO3 | Desig | n rigi | d pave | ment a | nd flex | ible no | Veme | nt confe | S, Du | rinste | rs and | Weste | rgaard | 's thec | ry. | | CO4 | Lvan | iaic in | e berre | rmanc | e or the | e pave | ment a | nd also | devel | ops ma | intena | nce sta | temen | t based | l
l on | | | | | | | (| CO-PC | -PSO | Марр | ing | | | | | | _ | | COs | | | | | | | Os | | | | | | | | | | COS | | y -311 | | | | | | | | | | | | PSOs | - | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | PSOs | _ | | CO1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | - | 9 | 10 | 11 | 12 | 1 | 2 | _ | | | 1 | 2 | 3 | | 5 | 6 | 7 | 8 2 | 9 | 10 | 11 | 12 | 1 | 2 | _ | | CO1 | 1 | 2 | | 3 | 5 | 6 | 7 | - | 9 | 10 | 11 | 12 | 1 | 2 2 2 | _ | | CO1
CO2
CO3 | 1 | 1 | 3 | | 5 | | 7 | - | 9 | 10 | 11 | 12 | 1 | 2 | _ | | CO1 | 1 | 1 | | | 5 | 2 2 | 7 | - | 9
 10 | 11 | 12 | 1 | 2 2 2 | 3 | | Subject: | Intern | ship | | | | | | | | Subj | ect Co | de:170 | CV84 | | _ | |-----------------|--------|---------|----------|---------|----------|---------|----------|---------|---------|--------|--------|--------|------|------|---| | | | | | | | | rse Oı | | | | | | | - | _ | | CO1 | Asse | ss inte | rests aı | nd abil | ities in | their | field or | study | | | - | | | | _ | | CO ₂ | Lear | n to ap | preciat | e worl | c and i | ts func | tion in | the ec | onomy | , | - | | | | | | CO3 | Deve | lop co | mmun | ication | , inter | person | al and | other c | ritical | skills | | _ | | | - | | | | | | | | |)-PSO | | | JIIII | | | - | | - | | COs | | | | | | | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | _ | | CO2 | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | | | CO3 | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | | | Average | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | | | Subject: | Proje | ct Phase | e II | | | | | | | Subj | ect Co | ode: 17 | CVP | 35 | | |-----------------|-------|---|---------|---------|----------|--------|----------|---------|---------|---------|--------|---------|-------|------|---| | | | 1100 | | | | Cou | rse Ou | tcome | s | | | | | - | | | CO1 | For | nulate t | he pro | ject o | bjective | e by d | etailed | literat | ire rev | riew | | | | | | | CO ₂ | Con | duct the | e expe | rimen | tal/anal | vtical | work t | o achie | eve the | object | ives | | 10000 | | _ | | CO3 | Prep | are the | detail | ed rep | ort base | ed on | the exr | erime | ntal/an | alvtica | Lwork | | _ | | | | CO4 | Con | nmunica | ate and | d prese | ent the | projec | t at dif | ferent | nlatfor | ms | I WOIN | | - | | _ | | | | | | | | |)-PSO | | | 1113 | _ | | | | | | COs | | 200000000000000000000000000000000000000 | | | | P | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 2 | 3 | | 1 | 1 | | | | | | | | 3 | 3 | | | CO2 | | | | 3 | 2 | | | | | | | | 3 | 3 | - | | CO3 | 2 | 2 | 2 | 2 | 3 | | 1 | - | | 3 | | | 3 | 3 | | | CO4 | 2 | 2 | 2 | 2 | 3 | | 1 | | | 3 | | | | - | | | Averag | 2 | 2.3 | 2 | 2 | | | 1 | | | 3 | | | 3 | 3 | | | e | 2 | 3 | 2 | 2 | 2.2 | | | | | | | | 3 | 3 | | | Subject: | Semin | ar | | | | | | 200 | | Sub | ect Co | ode:17 | CVS86 | 5 | | |-----------------|---|---------|----------------------|----------|---------|---------|---------|----------|---------|-----------------|---------|--|---------|---|----| | | | | | | | Cou | rse Oi | itcome | es | | | 2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | | | | | CO1 | Worl | k in ac | tual wo | orking | enviro | nment | and ut | ilize te | chnica | l resou | rcec | | | | | | CO2 | Find | approp | oriate s
ted into | ources | that c | an be s | summa | rised, į | give or | al pres | entatio | ns rela | ted to | the wo | rk | | CO3 | | | ndeper | | | | | | | 3 | | | | | | | CO4 | | | | | | | lata kr | owled | ge and | results | ofon | ~inasu! | | 1. | | | CO5 | Dem | onstrat | e the a | bility t | o asses | ss and | report | io wicu | ge and | resum | or en | gmeen | ng stud | aies | | | | ur en | | | | | |)-PSO | Mapp | ing | | | - | | | | | COs | | | | | | | Os | | - 6 | | | | | PSOs | | | | 1_ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | _ 2 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2 | _ | | CO ₂ | 2 | | | | 8 | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | CO3 | 2 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | CO4 | 2 | | | | | 2 | 2 | 2 | | | | 3000 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | CO5 | 2 | | | | | 2 | 2 | 2 | | - | | 2 | 2 | 2 | | | Average | 2 | | | | - | | | N-9 | | Table 11 Bellin | | 2 | 2 | 2 | | | 2.0146 | 4 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2 | |