||Jai Sri Gurudev || # SJB Institute of Technology (Affiliated to VTU, Accredited by NAAC with 'A' Grade, Approved by AICTE- New Delhi, Accredited by NBA) No. 67, BGS Health & Education City, Dr. Vishnuvardhana Road, Kengeri, Bangalore-560060. ## **Department of Civil Engineering** # Course Outcomes and CO-PO-PSO Articulation Matrix - Batch 2018-22 #### Semester-I/II | Subject: | Elem | ents of | civil e | enginee | ering a | | | | | Subj | ect Co | ode:18 | CV14 | | | |-----------------|------|-----------|---------|----------|---------|-----------|----------|----------|----------|----------|----------|----------|---------|------|-----| | | | | | | | Cou | rse Ot | itcome | S | | | | | | | | CO1 | Out | line the | variou | is field | s in Ci | vil En | gineeri | no and | ita im | monton | | | | | | | CO ₂ | Ana | lyse the | force | system | appli | ed to the | ha ctm | otumol - | 118 1111 | portano | e on in | nfrastri | icture. | | | | CO3 | Ana | lyse eff | ect of | forces | on sve | tem | ne su u | ciurai | nembe | ers und | er stati | c cond | ition. | | | | CO4 | Eva | luate the | e effec | t of cer | nter of | gravit | v and r | nom | 1 - C: | | | | | | | | CO5 | Ana | lyse the | force | system | and d | vnami | c cond | ition | t of in | ertia to | r giver | 1 struct | ure | | | | | | | | | | |)-PSO | | inσ | | | | | | | | COs | | | | | | | Os | тарр | S | | - | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 10 | | 1308 | | | CO1 | 2 | | | | | | <u> </u> | - | | 10 | -11 | 12 | I | 2 | _3 | | CO ₂ | 3 | 3 | | 5-20- | | | | | | | | | | | | | CO3 | 3 | 3 | | | | | | | | | | | | | | | CO4 | 3 | 3 | | | _ | | | | | | | | | | | | CO5 | 2 | 2 | | | | | | | | | | | - | | u . | | Average | 2.6 | 2.75 | | | -1 | | - | | | | | | | | | #### Semester-III | | | | | | | 2 | semes | ter-III | | | | | | 0.55 | | |-----------------|-------|--------------------|-----------------|---------------------|------------------------------|--|-------------------------------|----------------------------|----------------------------|---------|---------|----------|------------------|----------------|----------| | Subject: | Engin | eering | Mathe | matics | -III | | | | | Sub | iect C | ode:18 | MAT | 21 | | | | | | | | | Cou | rse O | utcom | es | | | | | 100 | | | CO1 | | | TOTAL. | | | signals | and | Fouri | er seri | | | | | | | | CO2 | Exp | ain the
g the F | gener
ourier | al linea
transfo | r syste | em theo
d z-trar | ry for | contin | ous - ti | me sig | nals an | d digita | ıl sign | al pro | cessing | | CO ₃ | Emp | loy ap | propria | ite num | nerical | metho | ds to s | olve al | gehrai | o and t | ***** | J 1 | | nontana. | | | CO4 | Tipp | y Ole | on s me | orem. | Diver | gence t | heorer | n and | Staken | thoone | | | equati
applic | ons.
cation | s in the | | CO5 | Utili | ze the | conce | ermals | of fur
function,
synth | nctional
onal ar
nesis an
CO-PO | l and s
id thei
d optii | olve thir varia
mizatio | e simp
tions
on of d | ole pro | blems | for calc | ulus of con | of var | iations. | | | | | | | | | Os | Mapp | ing | | | | | | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | | 10 | | | | PSO | ls | | CO1 | 3 | 2 | | - | 3 | 0 | , | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO2 | 3 | 2 | | 1000 | | | | | - | | - | - | | - | - | | CO3 | 3 | 2 | | | | | | - | | - | - | | | | | | CO4 | 3 | 2 | | | | | | | | | | | | | - | | CO5 | 3 | 2 | | | | | | | | | - | | | - | | | | | | | | | 1 | | 1 | | | | | | 1 | 1 | Page 1 of 20 Commen Head of Department | Subject: | Streng | gth of | Materia | ıls | | | | | | Sub | iect C | ode: 18 | PCV22 | , | | |-----------------|--------|--------------------|--------------------|---------|----------|----------|----------|----------|---------|-------------------------|---------|----------|--------|----------|---------| | | | | | | | Cou | rse Ou | itcom | AG . | | | | | | | | CO1 | Exp | lain th
es, tan | e basic
gential | concer | ots of s | tress a | nd stra | in, stre | ength o | f differ | rent m | aterials | exper | riencing | g axial | | CO2 | Eval | uate th | ne inter | nal for | ces and | l resist | ance m | echan | ism for | r one d | imensi | onal ar | ıd two | -dimen | sional | | CO ₃ | | | ending a | | earing | stresse | e induc | and day | | e de Montago de de Cons | | - | | | | | CO4 | Dete | rmine | slope a | nd def | lection | e in he | ome by | ed due | to rep | resent | ative I | oads or | ı beam | ıs. | | | CO ₅ | Estin | nate th | ne stren | gth of | torsion | memi | allis by | Jumpa | le inte | gration | metho | od. | | | | | | | | | | (| CO-PC |)-PSO | Mann | ing | ruts. | | | | | | | COs | | | | | | | Os | Tixepp | ing_ | | _ | | | PSOs | 10 | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | F-12 | | | CO ₁ | 3 | 3 | 1 | | | - | | | | 10 | 11 | 1000000 | 1 | 2 | 3 | | CO ₂ | 3 | 3 | 2 | | | | | | | - | | 3 | 3 | | | | CO3 | 3 | 3 | 2 | | | | - W-10 | | | | | 2 | 3 | | | | CO4 | 3 | 3 | 2 | | | | | | | | | 2 | 3 | | | | CO5 | 3 | - | | - | | | | | | | | 1 | 3 | | | | | | 3 | 2 | | | | | | | | | 1 | 3 | | | | Average | 3 | 3 | 1.8 | | | | | | | | | 1.8 | 3 | | | | Subject: | Fluid | Mech | anics | | | | | | | Sub | iect C | ode: 18 | CV22 | | | | |---|-------|--|---------|----------|-----------|-----------|---------|--------|----------|--------|---------|-------------|---------|------|--|--| | | | 1000 | | | | Con | rse Oı | itcom | AC | Dub | jeere | oue. 18 | C V 33 | | | | | CO1 | Iden | tify th | e prope | erties c | of fluid | 25 2 00 | ntinuu | m | CS | | | igari 🛌 🛌 | | | | | | CO ₂ | Solv | e Prot | olems o | n hydi | rostatic | inclu | ding pr | notice | 11! | | | | | | | | | CO3 | Dem | Solve Problems on hydrostatic, including practical applications Demonstrate apply the principles of continuity, moment and energy as apply to fluid Determine the flow measurements and various losses in flow through pipes | | | | | | | | | | | | | | | | CO4 | Dete | rmine | the flo | w mea | sureme | ente an | d vorio | ny, m | oment a | na en | ergy as | apply | to flui | d | | | | CO5 | | | | ., .,, | war offic | nis an | u vario | us 108 | ses in I | low th | rough | pipes | | | | | | | | | | | (| CO-PC |)-PSO | Man | nina | | | | | | | | | | | | | 101 | | A Section | Os | map | hrug | | | | | | | | | COs | 1 | 2 | 3 | 4 | 5 | | 7 | 0 | To | | | World World | | PSOs | | | | CO1 | 2 | 2 | 1 | 1 | 3 | 6 | 1 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | | CO2 | 2 | $\frac{2}{2}$ | 1 | 1 | | 1 | 1 | | 1 | - | 1 | 2 | 1 | 2 | | | | | | | 2 | 1 | 1 | 2 | 1 | | 1 | | 2 | 1 | 1 | 1 | | | | CO3 | 2 | 2 | 1 | | | 2 | | | 2 | | 2 | 1 | 1 | 1 | | | | CO4 | 2 | 2 | 1 | | 1 | 1 | 2 | | 1 | | 1 | 1 | | 1 | | | | CO5 | | | | | | | 2.2 | | | | 1 | 1 | 1 | 1 | | | | NAME OF THE PARTY | | | - | | | | | _ | 1 | | | 1 | () | | | | | ubject: | Dullul | ng Ma | teriais | and Co | onstruc | tion | | | | Subj | ect Co | de: 18 | CV34 | | | |-----------------|--------|---------------------|---------|---------|---------|----------|--------|---------|---------|----------|---------|-----------|----------|--------|-------| | | _ | | | | | Cou | rse Ou | itcome | S | | | | | | | | CO1 | Deve | elop kn
truction | owled | ge of n | nateria | l scien | ce and | behav | iour of | variou | s build | ling ma | iterials | used i | n | | CO ₂ | Ident | ify the | constr | uction | mater | ials red | mired | for the | accion | ed wor | 1. | - | | | | | CO ₃ | Prov | ide pro | cedura | l know | vledge | of the | simple | testing | assigii | ods of | K. | 4 1: | 1 | | | | CO4 | Adop | t suita | ble rep | air and | l main | tenanc | e work | to enh | ance d | lurabili | ty of h
| ı, illine | and co | ncrete | etc | | | | | | | (| CO-PC |)-PSO | Марр | ing | uraum | ty of b | unamg | ,S. | | | | COs | | | | | | 2000000 | Os | - 11 | - 0 | | | | | PSOs | 11.00 | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 13 | | CO ₁ | 2 | | | | | | | | 161 | | | | 2 | | | | CO2 | 2 | | | | | | 1 | | | | | | | - | | | CO3 | 2 | | | | | | 1 | | | | | | 2 | 1 | | | CO4 | 2 | | |
-TT |
_ | | | _ | |---------|---|--|---|---------|-------|------|---|---| | Average | 2 | | 1 |
 |
1 | | | | | | | | | | 1 | 1.66 | 1 | | | Subject: | Basic | Survey | ing | | | | | | | Subi | ect Co | ode: 12 | RCV35 | | - | |-----------------|-------|----------|--------|---------|----------|---------|----------|---------|----------|------------|---------|---------|---------|-------------|---| | | | | | | | Cou | rse Ou | itcome | 2 | | | | JC V 33 | 9) | - | | CO1 | Outl | ine the | funda | mental | princi | nles of | fsurve | vina | | | | | | | | | CO ₂ | Utili | ize line | ar and | angula | r meas | ureme | ent to s | olve ba | cio cui | T (Ox in a | 1.1 | | | - | _ | | CO3 | Mak | e use o | f geod | etic da | ta to so | lve cu | Imay n | mahlam | isic sui | veymg | g probl | ems | | | | | CO4 | Ana | lyze ob | tained | snatial | data a | nd cor | n vey p | hagen | IS 1 | | | | | | | | | | | | spatial | (data a | CO-PC | D-PSO | Mann | as and | volum | es | | | | | | COs | | | | | | | Os | mapp | ıng | | | | - | DOO | _ | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 10 | 11 | 10 | | PSOs | | | CO1 | 2 | 2 | 3F3 | - | - | - | 1 | O | 9 | 10 | 11 | 12 | 1 | 2 | | | CO2 | 2 | 2 | | - | | | | | | | | 1 | 2 | 2 | | | CO3 | 2 | 3 | | 2 | | | | | | | | | 2 | 2 | | | CO4 | 2 | | | 2 | | | | | | | | | 1 | 1 | | | | | 2 | | | | | 3 | 1 | | | | | 2 | 2 | | | CO5 | | a Land | | | | | | | | | | | | | | | Average | 2 | 2.2 | | 2 | | | 3 | 1 | | | | 1 | 1.7 | 1.7 | _ | | Subject: | Engir | eering | Geolo | gy | | | | | | Sub | iect Co | ode: 18 | CV36 | | | |--------------------------|----------------|------------------|--------------------|---------|----------------------|------------------|-------------------------|----------|---------|----------|----------|-------------------|---------|---------------|--------| | | | | | | | Cou | rse Ou | itcome | S | | | | | 8 | | | CO1 | App | ly geol | ogical | knowl | edge in | differ | rent civ | il engi | neerin | g pract | ice | | | | | | CO2 | acqu | ire kno | wledg | e on di | ırabilit
terials. | y and | compet | tence o | f foun | dation | rocks, | and con | nfiden | ce end | ough t | | CO3 | comp | petent of | enough | for th | e safet | y, stab | ility, e | conom | y and | life of | the stru | ctures | that tl | ney | - | | CO4 | solve
are o | variou | us issu
infront | es rela | ted to g | ground | l water
er prob | exploi | ration, | build t | ıp dam | s, brid | ges, tı | nnels | whic | | | | | | | | | | | | | | | | | | | CO5 | apply | GIS, | GPS a | nd rem | ote sen | sing a | s a late | est tool | in diff | ferent c | ivil en | gineeri | ing co | nstruc | tion. | | CO5 | apply | GIS, | GPS a | nd rem | ote sen | ising a | s a late | st tool | | ferent c | ivil en | gineeri | ing co | nstruc | tion. | | | apply | GIS, | GPS a | nd rem | ote sen | sing a | s a late O-PSO Os | st tool | | ferent c | ivil en | gineeri | ing co | | | | COs | apply | GIS, | GPS at | nd rem | ote sen | sing a | s a late | st tool | | ferent c | ivil en | | ing co | PSO | | | | apply | GIS, | GPS a | nd rem | ote sen | sing a | s a late
D-PSO
Os | est tool | ing | | | 12 | | PSO 2 | | | COs | apply | GIS, | GPS a | nd rem | ote sen | CO-PC P | O-PSO Os 7 2 | est tool | ing | | | 12 2 | | PSO 2 2 | | | COs | apply 1 2 | 2 2 | GPS a | nd rem | ote sen | CO-PC PC 6 3 | s a late O-PSO Os 7 | est tool | ing | | | 12 | | PSO 2 | | | COs
CO1
CO2 | 1 2 2 2 | 2 2 2 | GPS a | nd rem | ote sen | CO-PC PC 6 3 2 | O-PSO Os 7 2 2 | est tool | ing | | | 12
2
2
2 | | PSO 2 2 2 2 2 | | | COs
CO1
CO2
CO3 | 1 2 2 2 2 | 2
2
2
2 | GPS a | nd rem | ote sen | CO-PC PC 6 3 2 2 | O-PSO Os 7 2 2 3 | est tool | ing | | | 12
2
2 | | PSO 2 2 2 2 | | | Subject: | Computer Aided Building Planning and Drawing | Subject Code: 18CVL37 | |----------|---|---| | | Course Outcomes | | | CO1 | Prepare, read and interpret the drawings in a professi | onal set up. | | CO2 | Know the procedures of submission of drawings and I for building. | Develop working and submission drawings | | CO3 | Plan and design are residential or public building as p | per the given requirements. | | | CO-PO-PSO Mapping | | | | | | Page **3** of **20** | | | | | | P | Os | | | | | | | PSOs | | |---|------------------|-------------------|-----------------------|--|--|-------------|---|-----------------|-------------------|---------------------|---------------|---------------|----------------------|------------------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 10 | 11 | 10 | | 1 505 | T = | | 1 | 2 3 | | | | 1 | | - | | 10 | 11 | 12 | | 2 | 3 | | 1 | | | | | 1 | | 1 | | | | 1 | 1 | | | | 1 | | | | | 1 | | 1 | | | | 1 | 1 | | | | 1 | | - | | | 1 | | 1 | | | | _1 | _1_ | | | | ֡ | 1
1
1
1 | 1 2
1 1
1 1 | 1 2 3
1 1
1 1 1 | 1 2 3 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 | POs 1 2 3 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 0 | 1 2 3 4 5 6 7 0 0 | 1 2 3 4 5 6 7 9 9 1 | 1 2 3 4 5 6 5 | 1 2 3 4 5 6 5 | 1 2 3 4 5 6 7 8 0 40 | 1 2 3 4 5 6 7 8 0 10 H | | - Lajeeti | Buildi | ng Ma | terials | Testin | g Labo | ratory | | | | Subj | ect Co | de: 18 | CVL3 | 8 | | |-----------|--------|---------------------|--------------------|------------------|--------------------|-----------------|-----------------|-------------|---------------|---------------------|-----------------|----------|--------|---------|-------| | | | | | | | Cou | rse Ou | itcome | es | | | | | 100 | | | CO1 | Appl | ly the l
rials u | basic k
nder th | nowle
e actio | dge of
on of te | Engin
nsion, | eering
compr | and Mession | lathem, bendi | atics to
ng, she | study
ar and | the be | havioi | r of bu | ildin | | CO2 | Estin | nate the | e hardr | iess an | d impa | ct strei | igth of | variou | s meta | ls such | as mil | d steel, | alumi | num, c | oppe | | COA | Eval | rata th | ol | . 1 | omny many a | | 300 | | | | | | | | | | CO3 | Lvan | | e pnysi | icai pro | opertie | s of ag | gregate | es and | their in | npact o | on cons | structio | n Indu | ıstry. | | | CO3 | Lvan | | e physi | icai pro | | | | | | npact o | on cons | structio | n Indu | ıstry. | | | | Lvan | uate in | e physi | ical pro | | CO-PC | | | | npact (| on cons | structio | n Indu | | | | COs | 1 | 2 | 3 | 4 | | CO-PC | -PSO | | | | | | n Indu | PSOs | _ | | | 1 2 | | | | (| Po-Po | -PSO | Mapp | ing
9 | npact o | on cons | structio | 1 | | 3 | | COs | 1 | 2 | | | (| Po-Po | -PSO | 8 2 | 9
3 | | | | 1 2 | PSOs | _ | | COs | 1 2 | 2 2 | | | (| Po-Po | -PSO | Mapp
8 | ing
9 | | | | 1 | PSOs | _ | ### Semester-IV | Subject: | Engin | eering | Mathe | matics | -IV | | 1000 | | | Sub | ject Co | ode:18 | MAT4 | 11 | | |-----------------|---------------|--------------------|--------------------------------|-------------------|--------------------|--------------------|-------------------|-----------------|--------------------|--------------------|--------------------|---------------------|-------------------|--------------------|-----------| | | | | | | | Cou | rse O | utcom | es | | | 1000 | | | - | | CO1 | - | TITUTUD | and sector | ivilval | HICHIC | IUS: | | | | | | | | | | | CO2 | Solv | eprobl | lems of
dinatesy | quant | um me | chanic | s empl
re's po | loying
lynom | Bessel
ials rel | 's funct | ion rel | ating to | o cycli
lar co | indrica
ordinat | l
te | | CO3 | the o | y and | the an | magne | tuc the | orv De | escribe | conto | rmal ar | nd hilim | compl
ear tra | ex potensform | entials
ation | in fiel
arising | d
in | | CO4 | prob | e prob
ability | lems or
distrib
or feasi | າ proba
utions | ability
and sto | distrib
ochasti | utions | relatin | o to di | gital ci | gnal pr
ultivar | ocessin | ng, De
rrelati | termie
on | joint | | CO5 | Dray
or re | v the v
jecting | alidity
the hy
elated t | of the pothes | hypoth
is, Def | esis pr
inetrar | isition | probal | bility n | n samp
natrix c | ling di
of a Ma | istribut
arkov c | ion in
hain a | accept
nd solv | ing
⁄e | | | | | | | | | | Mapp | | | | | | | 1999 | | COs | S | | | | | | Os | - PP | ****5 | | | - | | PSOs | _ | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | | | | | | | | 3,472 | | 12 | | 4 | 3 | | CO ₂ | 3 | 2 | | | | | | | | | | | | | | | CO3 | 3 | 2 | | | | | | | | | | | | | | | | 2 | 2 | 111 | | | | | | | | | | | | | | CO4 | 3 | 4 | | | | | | | | | | | | | | | CO4
CO5 | 3 | 2 | | | | | | | | | | | | | | | Subject: | Analys | sis of I | Determ | inate S | Structu | res | | | | Subi | ect Co | de: 18 | CV42 | | | |-------------------|----------------|----------|------------------|---------|---------|---------|-----------------------|-----------|----------|---------|----------|---------|----------|---------|------| | | | | | | | Cou | rse Ou | tcome | S | | | | · | | | | CO1 | Desc | ribe th | e basic | conce | pts of | structu | ral ana | lvsis a | nd typ | es of s | tructur | es | | | | | CO ₂ | Cons | truct I | nfluen | ce line | diagra | m for | various | movi | ng load | ls on d | etermi | nate be | ame at | ad truc | 000 | | CO3
| Dete | rmine 1 | the def | lection | of det | ermina | ite bea | ms by | mome | nt area | and co | njugat | e hean | ac met | bode | | CO4 | Appl
trusse | y energ | gy prin | ciples | to dete | rmine | the de | flectio | n of de | termin | ate bea | ms, be | nt fran | nes an | d | | CO5 | Appl
suspe | y the c | oncept
cables | s of E | nginee | ring M | echani | cs to d | etermi | ne the | stress r | esultar | its of a | rches | and | | | | | | | - | 70 DO | and the second second | | | | | | | | | | | | | | | (| CO-PC | -PSO | Mapp | ing | | | | 10.99 | | | | COs | | | | | | | os | Mapp | ing | | | | | PSOs | N. | | COs | 1 | 2 | 3 | 4 | 5 | | | Mapp
8 | ing
9 | 10 | 11 | 12 | 1 | PSOs | 3 | | COs | 1 3 | 2 | 3 | 4 | - | P | os | | | 10 | 11 | 12 | 1 2 | S13/ | | | | 1 3 3 | - 75 | 3 | 4 | - | P | os | | | 10 | 11 | 12 | 1 2 2 | S13/ | | | CO1 | _ | 3 | 3 | 4 | - | P | os | | | 10 | 11 | 12 | 2 | S13/ | | | CO1 | 3 | 3 | 3 | 4 | - | P | os | | | 10 | 11 | 12 | 2 2 | S13/ | | | CO1
CO2
CO3 | 3 | 3 3 | 3 | 4 | - | P | os | | | 10 | 11 | 12 | 2 | S13/ | | | Subject: | Applie | d Hyd | lraulics | 1 | | | | · · · | | Subi | iect Co | de: 18 | CVA2 | | | |-----------------|---------------|---------|---------------------|--------|----------|--------|--------|--------|---------|------|----------|--------|-----------------|--------|---| | | | | | 888 | | Cou | rse Ou | itcome | S | | | | | | | | CO1 | Princ
Buoy | iples o | of dime
and floa | nsiona | al analy | sis to | design | the hy | draulio | mode | l, to kr | own th | ne con | cept o | f | | CO ₂ | | gn the | | | | | | | | | | | | | | | CO3 | | | the co | ncent | of imp | act of | iet | | | | | - | | | | | CO4 | Desig | gn of c | entrifu | gal pu | mps | uct OI | joi | | | | | | | | | | | | | | | | CO-PC |)-PSO | Mann | ing | | | | V.
24 - 10 - | - | | | COs | | | -0 | | | | Os | TT | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 1308 | | | CO1 | 1 | 1 | | | | | 2 | | | 10 | - 11 | 12 | | | 3 | | CO ₂ | 2 | 1 | | | - | | 2 | | | | | ,, | | 2 | | | CO3 | 2 | 1 | | | | | | | | | | | | 2 | | | CO4 | 1 | 1 | | | | | 2 | | | | | | | 2 | | | | 1.5 | 1 | | | | | 2 | | | | | | | 2 | | | Average | 1.3 | 1 | | | | | 2 | | N. | 0 | | | | 2. | | | Subject: | Concr | ete Tec | hnolo | gy | | | | | | Subi | ect Co | de: 18 | CV44 | | | |--|-------|--------------------|---------|----------|---------|----------|----------|----------|---------|---------|---------|----------|---------|---------|----| | | | | | | 3500 | Cou | rse Ou | ıtcome | S | | | | | | | | CO1 | Unde | erstand | mater | ial cha | racteri | stics ar | nd their | r influe | ence or | micro | etructi | ire of c | onarat | | | | CO ₂ | Disti | nguish | concr | ete beh | avior l | based o | on its f | resh an | d hard | ened n | roperti | 01 0 | onciel | е. | | | CO3 | Desi | gn of d
essiona | ifferen | it types | of con | ncrete | mixes | for req | uired f | resh ar | d hard | ened p | roperti | es usin | ıg | | THE CONTRACTOR OF CONTRACT | | | | | | CO-PC |)-PSO | Марр | ing | | | | | | | | COs | | | | | | | Os | | - 6 | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | | | | | | 14 | 2 | 4 | 3 | | CO ₂ | 2 | 2 | | | | | | | - 1378 | | | | | | | | CO3 | 2 | 2 | 2 | 2 | | | | 2 | | | | | 2 | | | | Average | 2 | 2 | 2 | | | | | 1000 | | | | | 2 | | | | Average | 2 | 2 | 2 | 2 | | | | 2 | | | | | 2 | | | | Subject: A | Advan | ced Su | rveyin | ıg | | | | | | Subj | ect Co | de: 18 | CV45 | | | |-----------------|----------|---------|-------------------|---------|---------|----------|-------------|-----------|----------|----------|--------|---------|--------|-----------|-------| | | | | | | | | rse Ou | | | | | | | | 2.30 | | CO1 | App | ly the | knowl | edge o | f geon | netric p | rincipl | es to a | rrive a | t surve | ving n | roblem | C | | - | | CO ₂ | Ana | lyse th | e obta | ined ge | eo-spat | tial dat | a to an | propri | te eno | ineerin | o prob | lame | 3 | - | | | CO ₃ | Desi | gn and | d imple | ement | the dif | ferent 1 | vnes o | f curve | es for | deviatir | a type | ofalia | ·nmon | ta | - | | CO4 | Proc | ess an | d perf
instrur | orm ar | nalysis | to sur | vey pr | oblems | for C | apture | d geod | etic da | ta wit | h the i | ise o | | | | | | | - | TO DO | TOO | 7.5 | | | | | | | | | | | | | | • | LU-PU | -PSO | Mapp | ing | | | | | | | | COs | | | | | | | PSO
Os | Mapp | ing | | - | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | | | Mapp
8 | ing
9 | 10 | 11 | 12 | 1 | PSOs | - | | COs | 1 2 | 2 2 | 3 2 | 4 | 1 | P | | | | 10 | 11 | 12 | 1 2 | PSOs | 3 | | | 1 2 2 | | | 4 | 1 | P | | | | 10 | 11 | | 1 2 | PSOs
2 | - | | CO1 | 8/0/2012 | 2 | 2 | 4 | 1 | P | | | | 10 | 11 | 2 | 2 | PSOs | - | | CO1 | 2 | 2 2 | 2 2 | 2 | 1 | P | | | | 10 | 11 | | 200 | PSOs
2 | - | | Subject: | water | Suppl | y and ' | Freatm | ent En | gineer | ing | | | Subi | ect Co | ode: 18 | CV46 | | | |-----------------|----------------|----------|---------|------------------|----------|---------|---------|----------|---------|----------|---------|----------|-------------------|---------|-------| | | | | | | | Cou | rse Ou | itcome | S | | | 3401 10 | C 1 10 | | | | CO1 | Estin | nate av | erage | and pe | ak wat | er den | and fo | r a cor | nmuni | 17 | | | | | | | CO2 | Ident
water | ify the | sourc | es of w | ater su | ipply a | nd to a | pply p | roper s | amplir | ng tech | niques | for the | e analy | sis o | | CO3 | Appl | y drinl | cing w | ater qu | ality st | andar | ds and | to illus | trata a | valitati | | lysis of | | | | | CO4 | Desig | sii a cc | unpren | ensive
red qu | water | treatm | ent and | d distri | bution | system | to pu | rify and | water
d distri | ibute | | | CO5 | Desig | gn proj | oer con | veyan | ce syst | ems fo | r raw a | and tre | ated w | ator | | | | | -201 | | | | | | | (| O-PC |)-PSO | Mapp | ing | atci. | | | | | | | COs | | | | | | | Os | T.F. | 8 | | | | | PSOs | _ | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 1503 | 3 | | CO1 | 2 | | | | | | 3 | | | 10 | | 1 | | 2 | 3 | | CO ₂ | 2 | | 2 | | | | 3 | | | | | 1 | | 2 | | | CO3 | 1 | 1 | | 1 | | | 3 | | | - | | 1 | | 2 | | | CO4 | 1 | | | | | | | | | | | 1 | | 2 | | | Average | 1.5 | 1 | 2 | 1 | | | 3 | | | | | 1 | | 2 | | | rorage | 1.5 | 1 | | 1 | | | 3 | | | | | 1 | | 2 | | | Subject: | Engin | eering | Geolo | gy Lab | orator | y | | | | Sub | ect Co | ode: 18 | CVL4 | 17 | | |-----------------|-------|-------------------|---------|----------|---------|----------|---------|---------|----------|---------|---------|---------|---------|----------|--------| | | | | | | | Cou | rse O | utcom | es | | | | | • | | | CO1 | Iden | tify the | mine | rals, ro | cks an | d utiliz | ze them | effect | tively i | n civil | engine | ering p | mostic | | | | CO2 | mei | pret an | ia unae | erstand | the ge | ologic | al con | ditions | of the | area fo | or impl | ementa | tion o | f civil | | | CO3 | Inter | | bsurfa | ce info | rmatic | n such | as thi | ckness | of soil | , weath | nered z | one, de | epth of | f hard 1 | rock | | CO4 | Acqu | ire tec
struct | hnique | es in th | e inter | pretati | on of I | LAND | SAT In | nagerie | s to fi | nd out | the lin | eamen | ts and | | THE SECOND | | | | | | |)-PSO | Mapr | oing | | | | | - | | | COs | | | | | | | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | | | | | 2 | 2 | | 2000 | 2 | | 1 | 8270 | 2 | _ | | CO ₂ | 2 | | | | | 2 | 2 | | 177 | 2 | | 1 | | 2 | - | | CO3 | 2 | | | | | 2 | 2 | | | 2 | | 1 | | 5000 | | | CO4 | 2 | | | | | 2 | 2 | | | 2 | | 1 | | 2 | | | | | | - | | | | | | | 4 | | 1 | | 2 | l | | Subject: F | luid M | 1echai | nics La | borato | ry | | | | | Subj | ect Co | de: 18 | CVL4 | 8 | 7516 | |------------|--------|--------
---------|---------|---------|--------|-----------|--------|--------|-----------------|---------|---------|---------|-------------|-------| | | | | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Prop | erties | of flui | ds and | use of | vario | us instru | ıment | for fl | uid flo | w mea | curama | nto | | | | CO2 | Wor | king o | f hydr | aulic n | nachine | es und | er vario | us cor | dition | s of we | rking | and the | in abo | raatari | 4: | | -1,3=7 | | | | | (| CO-PC |)-PSO | Mapp | ing | S OI WC | nking . | and the | ii Ciia | ractern | stics | | COs | | | | | 10000 | | Os | | - | 200 0 00 | | | | PSOs | | | CO3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | 1 | | | | | 1 | | 1 | | | CO2 | 2 | 2 | | | | | 2 | | | | | 1 | | 1 | | | Average | 2 | 2. | | | | | 1.5 | | | | - | 1 | | 1 | | ### Semester-V | Subject: | Const | uction | Manag | ement | and E | ntrepre | neursh | ip | 50 16 | Sub | ject Co | de: 18 | CV51 | | | |-----------------|---------------|------------|---------|----------|---------|---------|---------|---------|------------------|--|-----------|---------|--------|-------------|-----| | 1 | | | | | | Cou | rse Ou | itcome | e e | | 1000 | ue. 10 | CVJI | | | | CO1 | Outl | ine the | constru | iction 1 | manag | ement | nrocess | r | | | | | | - | | | CO2 | Asse
dutie | ss vario | ous iss | ues tha | it are | encoun | tered b | y ever | y profe | ssiona | l in disc | chargin | g prof | esiona | 1 | | CO3 | Ident | ifying | the pro | fessio | nal obl | igation | effect | ively v | with al | sha1 | 41 1 | | | | | | | | | | | (| CO-PC |)-PSO | Mann | ing | obai ou | tlook | | | | | | 200 | | | | | | | | марр | ıng | | | | | | | | COs | 1 | 2 | 2 | | | F | Os | | | | | | | PSOs | | | 001 | 1 | _ <u>L</u> | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 1 | | | | 1 | | | 1 | 1 | | 1 | 1 | | | - 3 | | CO ₂ | 1 | 1 | | | | | 000 | - | | | 1 | 1 | | 2 | | | CO3 | 1 | | | | | | | - | | | L | | | _ 2 | | | Average | 1 | 1 | | - | | | | | | | 2 | 1 | | 2 | | | Average | 1 | 1 | | | _ 1 | | | 1 | 1 | | 1.5 | 1 | | 2 | | | Subject: | Allaly | 313 01 | maeter | mmate | Struct | tures | | | | Sub | ject C | ode: 18 | CV52 | | | |--------------------------|------------------|---------------------|-------------------|---------------|-------------------|--------------------|------------|---------|---------|----------|----------|----------|------------------|--------|-------| | | | | | | (LOX | Cou | rse O | ıtcom | es | | | Over | | | - | | CO1 | Dete
defle | rmine
ection | the sup | oport n
l. | nomen | ts of in | detern | ninate | beams | and rig | gid fran | nes usi | ng slo | pe | | | CO2 | Dete
sway | rmine
using | the sup | port n | noment
ributio | ts of in
n meth | determ | inate 1 | oeams | and rig | id fran | nes wit | h non- | -sway | and | | CO3 | Cons
Kani | struct b
's meth | ending
nod. | g mom | ent and | l shear | force | diagrai | ns for | contin | uous be | eams a | nd rigi | d fram | es by | | CO4 | Cons | truct b | ending
ibility | momo
metho | ent and | shear | force (| diagran | ns for | continu | ious be | eams ar | nd rigi | d fram | es by | | | | | | 100000 | | | | | | | | | | | | | CO5 | Anal | yse co | ntinuo | ıs bear | ns, rigi | id fram | es and | plane | trusses | s by sy | stem st | iffness | metho | od. | - | | CO5 | Anal | yse co | ntinuo | ıs bear | | | | | | s by sy | stem st | tiffness | metho | od. | | | | Anal | yse co | ntinuoı | is bear | | CO-PO | | | | s by sy | stem st | iffness | metho | | | | COs | 1 | 2 | ntinuoi | us bear | | CO-PO | -PSO | | | s by sy. | stem st | iffness | metho | PSOs | 1 | | COs | | 1 | | | (| CO-PO | -PSO
Os | Mapp | ing | | | | 1 | PSOs | 3 | | COs | 1 | 2 | | | (| CO-PO | -PSO
Os | Mapp | ing | | | | 1 2 | PSOs | 1 | | COs | 1 3 | 2 3 | | | (| CO-PO | -PSO
Os | Mapp | ing | | | | 1
2
2 | PSOs | 1 | | COs
CO1
CO2 | 1 3 3 | 2
3
3 | | | (| CO-PO | -PSO
Os | Mapp | ing | | | | 1
2
2
2 | PSOs | 1 | | COs
CO1
CO2
CO3 | 1
3
3
3 | 2
3
3
3 | | | (| CO-PO | -PSO
Os | Mapp | ing | | | | 1
2
2 | PSOs | 1 | | Subject: | Design | of RC | Struct | ural E | lemen | ts | | | | Subj | ect Co | de: 18 | CV53 | | | |-----------------|--------|--|---------|--------|---------|---------|---------|---------|---------|--------|---------|--------------|---------|------|---| | | | | | | | Cou | rse Ou | itcome | S | | | | | | | | CO1 | Appl | Apply the design philosophies and principles of the codal provisions. | | | | | | | | | | | | | | | CO ₂ | Anal | Apply the design philosophies and principles of the codal provisions. Analyse and design of the beam elements for flexure, shear and torsion. | | | | | | | | | | | | | | | CO3 | Anal | yse and | d desig | n of t | he slat | and s | taircas | e usino | the k | nowled | ge of | odal n | rovigio | | - | | CO ₄ | Desig | gn of th | he colu | ımn aı | nd foot | ting us | ing the | e desig | n princ | inles | ge or c | Jouan p. | OVISIC | nis. | | | | | | | | | | | Mapp | | rpics | | | | | | | COs | | | | | | | Os | | | | | - 17 - X - 1 | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | Page 8 of 20 | CO1 | 2 | 1 | | | | | | |----------|------|---|-----|---|------|---|--| | CO2 | 3 | 3 | 3 | 3 | 1 | 2 | | | CO3 | 3 | 2 | 3 | 3 | 2 | 2 | | | CO4 | 3 | 2 | 3 | 3 | 2 | 2 | | | Average | 2.75 | 2 | 25 | 3 | 2 | 2 | | | riverage | 2.13 | | 2.5 | 3 | 1.75 | 2 | | | Subject: | Dasic | Geote | chnica | I Engi | neerin | g | | | | Subj | ect Co | de: 18 | CV54 | | | |-----------------|-------|----------|---------|----------|---------|----------|----------|---------|--------|---------|---------|---------|--------|------|---| | | | 4 | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Ident | ify the | type o | f soil l | pased o | on phy | sical pr | opertie | 20 | | | _ | | | | | CO ₂ | Inter | pret the | hydra | ulic co | onduct | ivity o | f the so | ile | 73 | | | | | | | | CO ₃ | Com | pute th | e effec | tive st | resses | of the | soil str | oto | | | | | | - | | | CO4 | Evalu | ate the | e engin | eering | prope | rties ar | nd failu | ire beh | aviour | of soil | in terr | ns of s | hear a | nd | | | | | | | | (| CO-PC | -PSO | Mapp | ing | | | | - | | | | COs | | | | | | - 12 | Os | | | | | | | PSOs | - | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 1 | - | | | | _ | | | | L . | | _ | | 10 | LL | 14 | | 2 | 3 | | CO1 | 3 | 2 | | | | | | | | | | | _ | 22.7 | _ | | CO1 | 3 | 1-153 | | | 1 | | | | | | | | 2 | | | | CO ₂ | 3 | 2 | | | 1 | | | | | | | | 2 | | | | CO2
CO3 | 3 | 2 2 | | | 1 | | | | | | | | | | | | CO ₂ | 3 | 2 | | | 1 | | | | | | | | 2 | | | | Subject: | Munic | ipal V | Vastev | vater I | Engine | ering | | | | Subj | ect Co | de: 18 | CV55 | | | |----------|----------------|---------|---------|---------|---------|----------|----------|------------------|----------|----------|---------|-------------------|----------|-----------|-----| | | | 200 | | | | Cou | rse Ou | tcome | S | | | | | | | | CO1 | Estin
appu | nate th | e wast | e water | r and s | torm w | aterd 1 | lows | and ap | ply the | conce | pt of se | wer | | | | CO2 | Desig
proce | gn the | differe | nt unit | operat | tions a | nd unit | proces | sses in | volved | in was | te wate | er trea | tment | | | CO3 | Appl | y the c | oncept | and d | esign c | of vario | ous phy | sico-c | hemics | al and l | oiologi | cal trea | tmont | | | | CO4 | Appl | y the c | oncept | of var | ious a | dvance | waste | water | and lo | w-cost | treatm | ent pro | cess for | or rura | 1 | | | , and | | | | (| O-PC | DOO | | UEO | | | | | | | | | | | | | | O-I C | 1-P5U | Mapp | ing | | | | | | | | COs | | - | | | | | Os | Mapp | ing | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | | | Марр
8 | ing
9 | 10 | 11 | 12 | 1 | PSOs
2 | T : | | COs | 1 2 | 2 | 3 | 4 | | P | Os | | | 10 | 11 | 12 | 1_ | 2 | [3 | | | 1 2 2 | 2 | 3 | 4 | | P | Os
7 | | | 10 | 11 | 12 | 1 | 2 2 | | | CO1 | - | 2 | = | 4 | | P | Os 7 3 3 | | | 10 | 11 | 1 1 | 1 | 2 2 2 | 3 | | CO1 | - | 1 | = | 1 | | P | Os 7 3 | | | 10 | 11 | 12
1
1
1 | 1 | 2 2 | 3 | | subject: | Highway Engineering | Subject Code: 18CV56 | |----------|--|--| | | Course Outco | omes | | CO1 | Understand the importance & characteristics of and propose alignment based on planning princ | road transport system, classification of roads | | CO2 | Apply aspects of road geometrics and suitably of systems. | design road geometric elements and drainage | | CO3 | Evaluate the engineering properties of the mate pavement construction. | rials and provide suitable guidelines for | | CO4 | Analyse the highway economics and impart the | knowledge on highway financing concents. | Page 9 of 20 | | | | | | (| CO-PC | -PSO | Mapp | ing | | 2- | | | - | | |-----------------|------|---|----|---|---|-------|------|------|-----|----|----|-----|---|------|---------| | COs | - | | | | | | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 1 2 | | CO ₁ | 3 | | | | | | | | | 10 | | 1.2 | | 2 | 3 | | CO ₂ | 3 | | 2. | | | | | 1 | | | | | | 2 | | | CO3 | 3 | | | | | | 1 | 1 | | | | | | 2 | | | CO4 | 2 | | | - | | | 1 | 1 | | | | | | 2 | | | | 2 75 | | 2 | | | | | | | | 1 | | | 2 | 0.1==== | | Average | 2.75 | | 2 | | | | 1 | 1 | | | 1 | | | 2 | | | Subject: S | urveyi | ng Prac | ctice | | | | | | 8: | Subj | ect Co | de: 18 | CVL5 | 7 | | |-----------------
------------------|-------------|-------------|---------|--------|----------|---------|----------|---------|---------|---------|-----------|---------|--------------|-----| | | | | | | | Cou | rse O | utcome | S | | | | | - | _ | | CO1 | Appl | y the b | asic r | rincip | les of | Engine | erino | survey | for lin | ear and | langul | D# ## 0.0 | | 2007 | | | CO ₂ | Mak | e use of | ffield | proce | edures | require | ed for | a profes | cciona | Car and | angui | ai illea | surem | ents | | | CO3 | Choc | se app | ropria | ate tec | hnique | s, skill | ls and | conven | tional | survey | ing ins | trumen | ts nece | essary | for | | | | | | | (| CO-PC |)-PSO | Марр | inσ | | | | | | | | | | | | | | | ~ ~ | TATOOLIA | иши 🚐 | | | | | | | | COs | | | | | | | POs | тирр | ····s | - | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | | | 8 | 9 | 10 | 11 | 12 | 1 | PSOs | T - | | COs | 1 1 | 2 | 3 | 4 | т — | H | POs 7 | 8 | 9 | 10 | 11 | 12 | 1 | PSOs | T - | | | 1
1
1 | 2
1
2 | 3
1
1 | 4 | т — | H | POs 7 2 | 8 2 | 9 2 | 10 | 11 | 12 | 1 | PSOs 2 1 | T - | | CO1 | 1
1
1
2 | 2
1
2 | 3
1
1 | 4 | т — | H | POs 7 | 8 | 9 | 10 | 11 | 12 | 1 | PSOs 2 1 1 1 | 3 | | Subject: (| concre | ete and | Highv | vay M | aterials | s Labo | ratory | | | Subj | ect Co | de: 18 | CVL5 | 8 | | |-----------------|--------|--------------------|---------|---------|----------|----------|---------|----------|---------|----------|------------|---------|--------|------|---| | | | | | | | Cou | rse Ou | tcome | S | | 33800 | 130 | | | | | CO1 | Dete | rmine | quality | and s | uitabil | ity of o | ement | in con | structi | on wor | k | - | - | | | | CO ₂ | Desi | gn app | propria | te conc | rete m | ix and | detern | nine w | orkahi | lity and | ctrone | th of a | onarat | ^ | | | CO3 | Test | the roa | ad agg | regates | and b | itumer | for the | eir suit | ahility | as roa | d mate | riol | oncrei | е | | | CO4 | Eval | uate th | e soil | suitabi | lity as | a pave | ment s | uhorad | le soil | as Iva | u mate. | liai | | | - | | | | | | | | |)-PSO | | | 1.20 | CE TOTAL | | | | | | Cos | | | | | | | os | | - | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | | | | 1 | 1 | 1 | | | A-00-030-1 | | | 1 | - | | CO ₂ | 3 | | | | | 1 | 1 | 1 | | | | | | 1 | | | CO3 | 3 | | 1 | | | 1 | 1 | 1 | | | | | | 1 | | | CO4 | 3 | | - | | | 1 | 1 | 1 | | | | | | 1 | | | Average | 3 | er er allege er er | | | | 1 | 1 | 1 | | | | | | _ 1 | | ### Semester-VI | Subject: | Desig | n of st | eel str | uctura | l elem | ents | - 100 | | | Sub | iect Co | de: 18 | CV61 | | | |-----------------|-------|----------|---------|----------|---------|---------|---------|---------|---------|--------|----------|---------|---------|----------|----| | | | | | | | Cou | rse Ou | itcome | es | M. 155 | | | | N 1971 N | _ | | CO1 | Exp | lain the | e basic | s conce | epts of | steel s | tructur | es, ste | el code | provis | ions a | nd plas | tic bel | havior | of | | CO ₂ | Desi | gn of t | olted a | and we | lded c | onnect | ions | | | | | | | | - | | CO3 | Desi | gn of c | compre | ssion r | nembe | rs bui | lt-un c | olumn | c and a | olumn | | | | | | | CO4 | Anal | yze an | d desig | gn of st | teel me | embers | under | flevur | and C | olumn | s splice | es | | | | | | | | | | | CO-PC | | | | | | | | | | | COs | | | | | | | Os | гирр | | | - | | Farm | PSOs | | | 000 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | - | rsus | | | CO ₁ | 3 | 3 | 3 | | | | | 3 | | 10 | 11 | 12 | | 2 | 3 | | CO ₂ | 3 | 3 | 3 | | | | | | | - | | 3 | 3 | | | | CO3 | 3 | 3 | 3 | F- F | | | | 3 | | | | 3 | 3 | | | | CO4 | 3 | 3 | 3 | | | | | 3 | | | | 3 | 3 | | | | Average | 3 | 3 | 3 | | | | | 3 | | | | 3 | 3 | | | | relage | 3 | 3 | 3 | | | | | 3 | | | | 3 | 3 | | | | Subject: | Appli | ed Geo | otechn | ical E | nginee | ring | | | | Subi | ect Co | de: 18 | CV62 | | | |----------|-------|---------|---------|----------|---------|----------|---------|---------|---------|---------------|----------|---------|--------|---------|-------| | | | | | | | Cou | rse Ou | tcome | S | | × | | 0 1 02 | | | | CO1 | Exec | ute ge | otechn | ical sit | e inve | stigatio | n prog | ram fo | r diffe | rent civ | ıil engi | incorin | ~ ~~: | | | | CO2 | ESUI | nate st | resses | in soils | s, load | carryin | ng capa | city of | shalle | w and y soils | deen f | oundat | ion an | d resul | ting | | CO3 | Eval | uate th | e safet | v facto | rs aga | inst fai | lure of | slopes | and h | earing | failma | - F C- | 1 | - | -0.55 | | CO4 | Pred | ict the | distrib | ution o | f later | al pres | sure be | hind th | e retai | ining w | volle | or rou | ndatio | n | | | | | | | | (| CO-PC |)-PSO | Mapn | ing | ming w | alls | | | | | | COs | | | | | | | Os | R R | - 8 | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | | 2 | | | | | | 10 | | 12 | 2 | - | 3 | | CO2 | 3 | 2 | | 2 | 1 | | - | | | | | | | | _ | | CO3 | 3 | 2 | 2 | 2. | | | | | | | | | 2 | | | | CO4 | 3 | 2 | | 2 | 1 | | | | | | | | 2 | | | | Average | 3 | 2 | 2 | 2 | 1 | | | | | | | | 2 | | | | Subject: | Hydro | ology a | nd Irr | igatio | n Engi | ineerir | ıg | | and an analysis of the same | Subj | ect Co | de: 18 | CV63 | | | |-----------------|-------|-----------|----------|---------|------------------------|---------|---------|----------|--|----------|----------|---------|--------|---------|---| | | | | | | | | rse Ou | | | | | | | | | | CO1 | Unde | erstand | the im | portan | ce of l | vdrolo | ogy and | l its co | mnone | ente | | | | | | | CO ₂ | Meas | sure pr | ecipitat | tion an | d anal | vze the | data a | nd ana | lyze tl | ne losse | e in n | ecinite | tion | | | | CO3 | Estin | nate ru | noff an | d deve | lop un | it hydr | norani | 15 | ij Zo ti | 10 10330 | os in pi | сстрпа | tion. | | - | | CO4 | quan | tity irri | gation | water | require | ement | and fre | dilenci | of in | rigation | forvio | | | | | | | | | | | (| CO-PC | -PSO | Mapp | ing | igation | i ior va | rious c | rops. | 1012 | | | COs | | | | | | 79-70 | Os | | | | | | | PSOs | s | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | 2 | 2 | | | | | 2 | - | 2 | + | | CO2 | 2 | 2 | | | 80 - 11 - 1 | 2 | 2 | | | - | - | 2 | | 2 | + | | CO3 | 2 | 2 | | | | 2 | 2 | | | | | | | (35-56) | - | | CO4 | 2 | 2 | | | | 2 | 2 | - | | | | 2 | 780.00 | 2 | | | Average | 2 | 2 | - | | | | | 2 | | | | 2 | | 2 | | | Average | 2 | 2 | | | | 2 | 2 | | | | | 2 | | 2 | 1 | Page **11** of **20** | CO1 Evaluate the structural systems and apply the concepts of flexibility and stiffness matrices simple problems. CO2 Identify, formulate and solve engineering problems with respect to flexibility matricies as applied to continuous beams, frames and trusses. CO3 Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses. CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO6 PO6 PSO Mapping CO6 PO6 PSO Mapping CO7 PO7 PSO Mapping CO8 PO8 PSOS AU 2 3 3 4 5 6 7 8 9 10 11 12 1 2 CO1 3 3 3 | Subject: 1 | viatrix | Metho | ds of S | tructura | al Anal | ysis | | | | Sub | ject Co | ode: 18 | CV64 | 1 | - |
--|---------------|---------|---------------------|------------------|----------|-------------|------------------|-------------------|------------------|---------|---------|----------|----------|--------|----------|------| | Identify, formulate and solve engineering problems with respect to flexibility matricies as applied to continuous beams, frames and trusses. CO3 Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses. CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO-PO-PSO Mapping CO5 POS POS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 CO2 3 3 3 | | _ | | | | | Cou | rse Ou | itcome | S | | | | | | | | CO3 Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses. | CO1 | 31111 | hie hic | orems | • | | | | | | | | | | | | | Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses. CO4 | CO2 | Ide: | ntify, f
lied to | ormula
contin | ite and | solve eams, | engine
frames | ering p | problem | ns witl | n respe | ct to fl | exibilit | y matr | ricies a | S | | CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO-PO-PSO Mapping PSOs PSOs 1 | CO3 | Ide | itify, f | ormula | ite and | solve | engine | ering p | roblen | ns with | respec | ct to st | iffness | matric | cies as | | | COs POs PSOs CO1 3 3 4 5 6 7 8 9 10 11 12 1 2 CO2 3 3 3 2 2 2 CO3 3 3 2 2 2 Average 3 3 3 2 2 | CO4 | Ider | itify, fo | ormula | te and | solve o | engine
frames | ering p
and tr | roblen
usses. | | respec | et to di | rect sti | ffness | metho | d as | | CO1 3 3 4 5 6 7 8 9 10 11 12 1 2 CO2 3 3 3 CO3 3 3 CO4 CO4 3 CO4 3 CO4 | | _ | | | | | CO-PO | -PSO | Mapp | ing | | | | | | - | | 1 2 3 4 5 6 7 8 9 10 11 12 1 2 CO1 3 3 2 2 2 CO2 3 3 2 2 CO3 3 3 2 2 Average 3 3 3 2 | COs | | | | | | P | Os | | | | | | | PSO | - | | CO1 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | T - | 3 | | CO2 3 3 3 2 2 2 2 3 3 3 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | CO1 | 3 | 3 | | | | | | HES. | (450) | 120 | ** | 1.24 | 2 | 4 | 3 | | CO3 3 3 3 2 2 2 Average 3 3 3 2 2 | CO2 | 3 | 3 | | | | | | | | | | | | | | | CO4 3 3 Average 3 3 2 | COZ | | | | | | 1387 | | | | | | | 2 | | ı | | Average 3 3 | C110 1996 199 | 3 | 3 | | | | | | | | | | | ^ | | | | | CO3 | | | | | | | | | | | | | | | | | Subject: 1 | Railw: | ays, H | arbou | r, Tun | neling | and A | irpor | ts | | Subj | ect Co | de: 18 | CV64 | 5 | | |-----------------|--------|----------|-------------------|------------------|---------------------|------------------|---------|----------|----------|---------|---------|----------|---------|----------|------| | | | | | | | | rse Ou | | | | | | | | - 10 | | CO1 | Out | line the | e impo
ts in R | rtance
ailway | of plans and A | ning,
Airport | constru | iction | aspects | and n | ainten | ance o | fvario | us | | | CO2 | Des | ign and | d plan | railway | y syste
isual ai | m, airr | ort lay | out, fa | cilities | requir | ed for | run-wa | ıy, tax | iway a | nd | | CO3 | App | ly desi | ign fea | tures o | f featu | res of | tunnels | s, harbo | ours in | cluding | g neces | sary na | vigat | ional ai | ids | | | | | | | (| CO-PO | -PSO | Марр | ing | Tontal | onside | ciation. | | | | | COs | | | | | | 77. | Os | | 0 | | | | | PSOs | - | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 3 | | | | | 1 | | | | | | 12 | | 2 | 3 | | CO2 | 3 | 2 | | | | 1 | | 1 | | | | | | | | | CO3 | 3 | 2 | | | | 1 | | 1 | | | - | | | 2 | | | Average | 3 | 2 | | | | 1 | | 1 | | | | | | 1 | | | 5 | | | | | 10 | 1 | 1 | 1 | | 10 56 | | V. III | | 1.6 | | | Subject: | Solid | Waste | Mana | gemen | it | | | | | Subj | ect Co | de: 18 | CV64: | 2 | | |-----------------|-------|------------|----------|----------|---------|--------|---------|--------|----------|-------|--------|--------|-------|------|-------| | | | | | | | Cou | rse Ou | tcome | S | | | 0.7 | | | | | CO1 | Anal | yze ex | isting S | SWM s | system | & to i | dentify | their | drawba | icks | | | | | - 100 | | CO ₂ | Eval | uate di | fferent | eleme | nts of | SWM | system | S | | · · · | | | | | | | CO ₃ | Sugg | est sui | table n | nethods | s for S | WM el | ements | 3 | | | | | - | | | | CO4 | Desig | gn suita | able pr | ocessin | ng syst | em & | evaluat | e disp | osal sit | es | | | | | | | | | | - | | (| CO-PC | -PSO | Mapp | ing | .03 | | | | | | | COs | | | | | | 120 | Os | | | | | | | PSOs | - | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | A Property | | | | | 3 | | | | | 3 | | 3 | _ | | CO ₂ | 2 | | | | | | 3 | | | 1000 | | 3 | - | 3 | | | CO3 | 2 | | | - 1947 · | | | 3 | | W | | | 3 | | | | | CO4 | 3 | | | | | | 3 | | | | | | | 3 | | | | | | | - | | | ر ا | | | | | 3 | | 3 | | Romesam | Average 2.75 | | | | |--------------|---|---|---| | 2.70 | 3 | 3 | 3 | | Subject: | Traff | ic Eng | ineerii | ıg | | | | | | Sub | iect C | ode: 18 | CV65 | :2 | | |-----------------|-------|----------|----------|----------|---------|---------|---------|--------|-----------------|---------|----------|---------|------|------|-----| | | | | | | | Cou | rse O | utcom | es | | | | CVU | 12 | | | CO ₁ | Und | erstand | l and ic | lentify | the fu | ındame | ntal co | mpone | ents of | traffic | enging | Onin a | | | | | CO2 | Coll | ection | and an | alysis 1 | traffic | survey | data. | | | dame | engine | ering | | | | | CO3 | | | 200 | | | s types | | | SON AND SON | | | | | | | | CO4 | Eval | uate tra | affic in | pacts | on env | vironm | ent and | traffi | ons
c safety | / measi | ures | | | | | | CO5 | | | | | | anagen | | | | | | asures | | | - | | | | | | | | CO-PC | | | | | | | | | | | COs | | T | | | | | Os | PK | | | | | | PSOs | - | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | | | | CO1 | 3 | | | | | | | | | 10 | 11 | 12 | _ +_ | 2 | _ 3 | | CO ₂ | 2 | 2 | | | | | | | | | | | | 1 | | | CO3 | 3 | 2 | 2 | | | | | 1 | | | | | | 1 | | | CO4 | 2 | | _ | | | 2 | 2 | 1 | | | | 1 | | 1 | | | CO5 | 2 | | | | | | 2 | | | | | 1 | | 1 | | | Average | 2 | 2 | 2 | | | 1 | | | | | | 1 | | 1 | | | | 4 | - 2 | /. | | | 1.5 | 2 | 1 1 | | | All-re-d | 401 | | | | | Subject: | Occup | pation | al heal | lth and | l safet | y | | | | Sub | ject Co | ode: 1 | RCV65 | 3 | | |-----------------|-------|-------------------|-----------------|-----------------|------------------|---------|---------|---------|---------|----------|----------|--------|---------|----------|-----| | | | | | | | Cou | rse O | utcome | es | | | | 27890 | <i>3</i> | | | CO1 | Iden | tify ha | zards i | n the w | orkpla | ace tha | t pose | danger | to hes | lth and | cofot | of atl | | | | | CO ₂ | Cont | rol un | safe, u | nhealth | v haza | rds an | d prop | ose to | elimin | ote her | orda | 01 011 | iers. | | | | CO3 | Cone | erent a
y regu | nalysis | of a p | otentia | l safet | y or he | alth ha | zard c | iting th | e occu | pation | al heal | th and | - H | | CO4 | Disc | uss the | role o
worke | f healtlers and | h and s
manag | afety i | n the v | workpl | ace per | rtaining | g to res | ponsib | ilities | of | | | CO5 | Ident | ify the | decisi | ions rec | quired | to mai | ntain p | rotecti | on of | environ | ment v | vorkpl | ace asv | well as | | | | | | | | (| CO-PC |)-PSO | Mapp | ing | | | | | | - M | | COs | | | | | | | Os | | 8 | | - | | | PSOs | į | | X 13 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 1 | 2 | 2 | | | 00 Dan | 2 | 2 | 2 | 2 | | 2 | 2 | - | 3 | | CO ₂ | 1 | 2 | 2 | | | | 2 | 2 | 2 | 2 | _ | 2 | 2 | | | | CO3 | 1 | 2 | 2 | | | | 2 | 2 | 2 | 2 | | 2000 | 200 | | | | CO4 | 2 | 2 | 1 | | | | 5500 | | _ | - | | 2 | 1 | | | | | - | ~ | - | | | | 1 | 1 | 1 | 1 | | 1 | 1 | | | | | 2 | 2 | 1 | | 85.0 | | 1 | 1 | 1 | 1 | | 1 | 1 | | | | CO5 | 2 | _ | | | | | 1 | | V | | | - | - | | | | Subject: | Softwa | re App | lication | Lab | | | | | - | Subi | ect Co | de: 18 | CVII C | | | |-----------------|----------|-------------------|----------|---------------------|--------|---------|----------|--------|--------|--------|---------|--------|--------|---------|----| | | | | | D RESE | | Cou | rse On | itcome | 9 | Duloj | cci Ct | ue. 18 | CATO | 0 | | | CO1 | Use time | of soft
for co | ware sl | kills in
on of w | a prof | essiona | al setup | to aut | tomate | the wo | ork and | thereb | y redu | ice cyc | le | | | | | | | (| CO-PC |)-PSO | Марр | ing | | | | | | - | | COs | | | | | | 1 | Os | | | | | | | PSOs | | | | _ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 1503 | 1 | | CO ₁ | 1 | 2 | 2 | | 3 | 1 | | 2 | 2 | 10 | 2 | 12 | _ 1 | L | 3 | | Average | 1 | 2 | 2 | | 2 | + | | | | | 3 | 2 | 2 | | | | riviage | 1 | | 1 2 | 1 | 1 3 | | | 1 2 | 2 | 1 | 2 | 0 | ^ | | | | Subject: | Envir | onme | ntal
E | ıginee | ring I | ab | | | | Sub | ect C | ode:18 | CVL | | - 10 | |-----------------|-------------|-----------------|--------------|---------|---------|----------|---------|--------|---------|---------|--------|----------|---------|--------|------| | - | | | Dec. | | | | rse Oı | | | | | | | 20-116 | | | CO1 | Acq
para | uire c
meter | apabili
s | ty to c | onduct | exper | iments | and e | stimate | the co | ncenti | ration c | of diff | erent | | | CO ₂ | Con | pare | the resu | ılt wit | h stanc | lards a | nd disc | nice h | sed or | the n | Irnogo | of1 | | | | | CO3 | Dete | ermine | e type o | f treat | ment o | legree | of trea | tment | for wa | ter and | ryests | or anai | ysis | | | | CO4 | Iden | tify th | ne parai | neter | to be a | nalvse | d for s | tudent | projec | t work | waste | water. | | | | | CO5 | | *** | | | | inary 50 | u ioi s | tuacin | projec | t WOIK | m env | ironme | ental s | tream | | | | | | | | (| CO-PC |)-PSO | Mapi | oing | | | | | | | | COs | | | | | // | | Os | | | | | |)
 | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 1 | 2 | | | 2 | | 2 | 2 | | | | 3 | 3 | | CO ₂ | 2 | 2 | | | | 2 | 2 | 2 | 1 | 2 | | | | 3 | _ | | CO3 | 2 | 2 | 2 | 2 | | 2 | 2 | 2 | - | 1 | | | | - | | | 000 | | | _ | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | 3 | | 3 | | | CO4 | 2 | 2 | 2 | 2 | /. | | | | | | | | | 2 | | | Subject: | Extens | ive Sur | vey Pro | oject /C | Camp | | | | | Subj | ect Co | ode: 18 | CVL6 | 8 | | |-----------------|--------------|------------------|-----------------|-------------------|------------|---------|--------------------|-------------|----------|---|--------------------|---------------|-------------------|----------------|------| | | | | | | | | rse Ou | | | | | 3333 | | | | | CO1 | App | y Surv | eying | knowl | edge a | nd too | ls effec | tively | for pro | iects | | - | | | | | CO2 | Undo
towa | erstand | ling Ta
mmon | sk env | ironm | ent, Go | oals, re | sponsi | bilities | Task | focus,
1s, tecl | workin | g in T
ind bel | eams
havior | al | | CO3 | Appl
time | icatior
manag | of inc | lividua
, comn | l effec | tivenes | ss skill
d pres | s in tea | ım and | organi | zation | al conte | ext, go | al sett | ing, | | CO4 | Profe | ssiona | l etiqu | ettes a | t work | place. | meetin | g and | renera | , <u>, </u> | | | | | | | CO5 | Estal | lishin | g trust- | based | relatio | nshins | in tear | ns & o | roaniz | ational | enviro | nment | | | | | CO6 | Oriei | itation | towar | ds con | flicts in | n team | and or | ganiza | tional | enviror | ment, | Unders | standir | ng sou | rces | | | | | , com. | 100 105 | | |)-PSO | | | | | - | | <u> </u> | | | Cos | | | | | | P | os | | | | | | | PSOs |); | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | | | | 2 | 2 | 2 | | | | | 2 | 2 | 2 | | | CO ₂ | 2 | 2 | | | 2 | 2 | 2 | | | | | 2 | 2 | 2 | | | | 2 | | | | 2 | 2 | 2 | | | | | 2 | 2 | 2 | | | CO ₃ | | | - | | 11 37 36 3 | 2 | 2 | 2 | | 2 | 2 | 1 | $\frac{2}{2}$ | 2 | - | | CO3 | 2 | 199 | | | | | | | | | _ 4 | 1 | 2 | | | | | 9-8 | | | | | | 2 | 2 | | | | 2 | 2 | | - | | CO4
CO5 | 2 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | CO4 | 2 2 | 2 | | | 2 | | 2
2
2 | 2
2
2 | | 2 | 2 | 2
2
1.8 | 2 2 2 | | | #### Semester-VII | Quantity | Surve | eying | and Co | ntract | t Mana | ageme | nt | | | 18C | V71 | | - | | | |-----------------|-------|---------|-----------|----------|---------|----------|--------|-----------|---------|----------|---------|------------|---|------|---| | | | | | | | Cou | rse O | utcome | c c | | | - | | | | | CO1 | Estin | nate t | he quant | tities o | f diffe | rent ite | ems of | work fo | or road | de and l | mildin | 0.0 | | | | | CO ₂ | Deve | elops s | specifica | ation f | or civi | Engir | neerin | o worke | and n | roposo | oto | gs
.1 · | | | | | CO3 | Inter | pret c | ontract o | locum | ent of | domes | tic an | d intern | and p | lepare | rate an | aiysis | | | | | CO4 | Deve | lop v | aluation | report | s of bu | ilding | 'S | u micilia | auona | constr | uction | works | | | | | | | | | . | | 0.00 | 7 | Mappi | inσ | | | | | | | | Cos | | | | | | | os | upp | mg . | | - | | | PSOs | | | * | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 2 | | | 1 | 1 | 1 | | 10 | 2 | 12 | | 1 | | | CO ₂ | 3 | | 3 | | | 1 | | 2 | | 1 50 10 | | - | | 1 | | | CO3 | 2 | 2 | | | | 1 | 8 | | | | 2 | 1 | | 1 | | | CO4 | 2 | 2 | 3 | - | | 1 | | 2 | | | 2 | 1 | | 1 | | | Average | 2.5 | 2 | 2.25 | | | 1 | 1 | 2 | | | 2 | 1 | | _1 | | | | | 4 | 2.23 | | | 1 | L | 1.75 | | | 2 | 1 | | 1 | | | Subject: | DESIC | IN OF R | CC A | ND S | TEEL | STRU | JCTUI | RES | | Subj | ect Co | ode: 18 | CV72 | | | |-----------------|---------------|---------------------|------------------|----------|---------|---------|---------|---------|---------|-------------|---------|---------|--------|---------|-------| | | | | | | | Cour | se Ou | tcome | S | | | | | | | | CO1 | Appl
footi | y basic king and re | nowle
taining | dge o | f limit | state r | nethod | and d | esign l | RC stru | ictures | such a | s com | bined | | | CO ₂ | Adop | ot codal p | rovisio | ons, p | rofess | ional e | thics a | nd des | ion w | ter ten | lea and | | C | | | | CO ₃ | Evalu | ate the fo | orces a | ecting | on ste | el roo | ftruse | and de | eign b | v follo | KS and | portal | Trame | S | | | CO4 | Anal | yse and d | esign | steel s | structu | res su | h ac n | late an | d cont | y 10110 | wing t | ne coda | u proc | edure | | | | | | | | C | O-PO | -PSO | Mappi | ing | ry gnu | ers car | rying n | novin | g loads | | | COs | | | | | | PO | 210 | 1 1 | -0 | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | 3 | | | | | 3 | | | | 1 | 2 | - | 3 | | CO2 | 2 | 3 | 3 | | | | | 3 | | THE RESERVE | | 2 | | | _ | | CO3 | 2 | 2 | 3 | | | | | 3 | | | | | 2 | | | | CO4 | 2 | 2 | 3 | | - | | - | 90845 | | | | 2 | 2 | | | | Average | 2 | | | \vdash | | | | 3 | | | | 1 | 2 | | | | Average | | 2.25 | 3 | | | | | 3 | | | | 1.5 | 2 | | 337.5 | | Subject: | Air P | ollutio | n and | Contr | rol | | | | | Sub | ject C | ode:18 | CV73 | 2 | | |-----------------|---------|----------|---------|----------|---------|---------|---------|---------|---------|----------|---------------|--------|------|------|---| | | W Estan | | | | | Cou | rse Ou | itcome | es | | Caracia Santa | | 0,75 | | - | | CO1 | Ider | ntify ar | nd clas | sify th | e sourc | ces of | air pol | lutants | | | | | | | | | CO ₂ | Pred | lict the | effect | s of ai | r pollu | tants o | n hum | an hea | lth and | d envir | onmer | ıt. | | | | | CO3 | App | ly and | relate | the sig | gnifica | nce of | variou | s air n | ollutio | n disne | ersion | models | | | - | | CO ₄ | Ana | lyze th | e air q | uality | and re | late wi | ith air | polluti | on regi | ulation | 0131011 | models | | - | | | CO5 | Des | ign var | rious a | ir pollu | ution c | ontrol | equipr | nent a | nd eva | luate it | s use | | | | | | | | | | | | CO-PC | -PSO | Марр | ing | | | | - | | | | COs | | | | | | P | Os | | | | | | | PSOs | 8 | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 3 | 2 | | | | 2 | 2 | | | | | 2 | | 2 | - | | CO ₂ | 3 | 2 | | | | 2 | 2 | | | | | 2 | | 2 | | | | 3 | 2 | | | | 2 | 2 | | | | 10
N 17 | 2 | | 2 | | | CO ₃ | 1 2 | _ | | | | | | | | | | | | | | Page 15 of 20 | CO5 | 3 | 2 | | 1 2 | | | |---------|---|---|---|-----|---|-----| | | 3 | 2 | | | 2 | 3 | | Average | 5 | | 2 | 2 | | 2.7 | | | 0 | | | | 2 | 5 | | | raven | nent M | lateria | als and | Cons | tructio | n | | | Sub | iect C | ode: 18 | CV73 | 13 | | |-------------------|-------------|----------|---------------------|----------|-----------------|------------------|-------------------|----------------------------|---------|---------|---------|---------------|----------|----------------|-------| | | | | | | | Cou | rse O | utcome | S | | | | | | | | CO1 | | uate an | t Uy U | Jiluuci. | 1112 100 | uncai | ests as | ner | 1120 | manific | - nei | 200 | | | | | CO2 | LOIH | nulate t | ne pro | portion | ns of d | itteren | CIZAC | of ago | ranta | to | t grada | tion cri | iteria f | or vari | ious | | CO3 | Diffe | erent hi | ghway | const | ruction | equip | ment v | with the | ir suit | ability | and ad | laptabil | ity in | variou | S | | CO4 | Com | petent t | to ada _l | pt suita | ible mo | odern t | echniq | ues and | d equip | ment i | for spe | edy and | d econ | omic | | | | Exec | uto the | aamat. | | 0 | | | | | | | | | | | | CO5 | contr | ol tests | at dif | ferent s | of em
stages | bankm
of pave | ent, flo
ement | exible, | rigid p | aveme | nt and | perform | n requ | ired q | ualit | | CO5 | contr | ol tests | at dif | ferent s | stages | or pave | ement | constru | iction | aveme | nt and | perform | n requ | ired q | ualit | | | contr | ol tests | at dif | ferent s | stages | CO-PO | ement | exible,
constru
Mapp | iction | aveme | nt and | perform | n requ | | | | COs | contr | ol tests | at dif | ferent s | stages | CO-PO | -PSO | constru | iction | | + | | | PSOs | | | | | | at dir | rerent s | (| CO-PO | -PSO
Os | Mapp
8 | ing | aveme | nt and | performula 12 | n requ | PSOs 2 | | | COs | | 2 | at dir | rerent s | (| CO-PO | -PSO
Os | Mapp | ing | | + | | | PSOs 2 2 | | | COs | 1
1 | 2 2 | at dir | 4 | (| CO-PO | -PSO
Os | Mapp
8 | ing | | + | 12
1
1 | | PSOs 2 2 2 2 | | | COs
CO1
CO2 | 1
1
1 | 2 2 | at dir | 4 | (| CO-PO | -PSO
Os | Mapp
8 | ing | | + | 12
1
1 | | PSOs 2 2 2 2 2 | | | COs CO1 CO2 CO3 | 1
1
1 | 2 2 | 3 | 4 | (| CO-PO | -PSO
Os | Mapp
8 | ing | | + | 12
1
1 | | PSOs 2 2 2 2 | | | Subject: | Envir | onmen | t Prot | ection | and I | Manage | ement | -
NAC | | Subj | ect Co | de: 18 | CV75: | 3 | | |----------|---------------|-----------------|--------------------|-------------------|-------------------|-------------------|---------|---------|----------|------------|---------|----------|---------|--------|----| | | | | | | | | | itcome | | | | | 9 | / | - | | CO1 | Deve
syste | lop an
ms to | d apply
interna | y engir
tional | neeriną
enviro | g know
nmenta | ledge i | in corp | orate a | nd env | ironmo | ental m | anage | ment | - | | CO2 | Choc | se and opmer | imple | ment p | olluti | on prev | ention | and w | aste m | inimiza | ation o | ptions | for sus | tainab | le | | CO3 | Lead
envir | pollut
onmen | ion pre
tal ma | ventio
nagem | n asse
ent sy | ssment
stems f | team a | ad devo | elop, in | npleme | ent ma | intain a | ınd aud | lit | | | | | | | | | CO-PO | | | | | | | | | | | | | | - 11111 | | | P | | | | | | | | | | | COs | | | | | | | | | | | | | | PSOG | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | PSOs | _ | | COs | 3 | 3 | 3 | 4 | 5 | 6 2 | 7 2 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | _ | | | 1
3
3 | | 3 | 4 | | - | 7 | | | 2 | 11 | 2 | 1 | 2 | _ | | CO1 | | 3 | 3 | 4 | 2 | 2 | 7 2 | 2 | 2 | 150,009,77 | 11 | | 1 | 2 | 3 | | Subject: 1 | Urban 1 | l ransı | ortati | on and | Plann | ing | | | | Sub | ect Co | ode: 18 | CV74 | 5 | | |-------------------|---------|---------|---------|---------|---------------------|----------|-----------|----------|---------|----------|----------|-----------|---------|----------|------| | | | | | | | Cou | rse Ou | itcome | es | | | | | | - | | CO1 | | | | | | s and c | onduct | necess | ary sur | | | the dat | | | | | CO2 | Deve | lop tra | vel der | nand m | odels to
land us | o deteri | mine fu | ture tri | p gener | ation ra | te, trip | distribu | tion ar | nd mode | el | | CO3 | Identi | fy urb | an tran | sport c | orridor | s and v | alidate t | the dev | alonad | madal | C 1 | g term tr | | | | | | -X711 | | | - | (| CO-PC |)-PSO | Mann | ing | moder | or iong | term tr | anspor | tation p | lan. | | COs | | | | | | 100 | POs | | -8 | | | | 7 | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Q | 10 | 11 | 12 | | 1303 | _ | | CO1 | 3 | | | | | | - | - | | 10 | 11 | 12 | | 2 | 3 | | CO2 | 2 | 2 | | | | 1 | | | | | 1 | | | 1 | | | Light Service Co. | 2 | 2 | | | | 1 | | | | - | 1 | | | 2 | | | CO3 | | 1 4 | 6 | | | 1 | | | | | 1 | | | 2 | | | CO3
Average | 2.3 | 2 | | | | 4 | | | | | | | | | | | Subject: | Geote | chnic | al Engi | ineeri | ng La | borate | ry | | | Sub | ect C | ode:18 | CVL | 77 | | |---|---------------|-----------------------|-------------|---------|---------|---------|----------|--------|---------|--------|---------|---------|---------|--------|-----| | | | | | | | Cou | rse Ou | ıtcom | es | | | | | | | | CO1 | Acqu | iire ca
neters | pability | y to co | onduct | experi | ments | and es | stimate | the co | ncentra | ation o | f diffe | erent | | | CO ₂ | Com | pare t | he resu | lt with | stand | ards ar | nd disc | nee ho | sed on | the nu | | · C - 1 | and the | | | | CO3 | Dete | rmine | type of | treat | nent d | eoree | of treat | ment | for wet | or end | ipose (| or anar | ysis | | | | CO4 | Ident | ify th | e paran | eter to | he ar | alveed | of tical | udent | noicet | er and | waste | water. | | | | | CO5 | | - | - I - water | | o oo ar | iaryset | 1 101 31 | uuciii | project | work | in envi | ronme | ntal s | tream | | | | | | | | (| CO-PC |)-PSO | Mapi | ping | | | | | | - | | COs | | CO-PO-PSO Mapping POs | | | | | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | PSOs 2 | 3 | | CO ₁ | 3 | 2 | 1 | 2 | | | 2 | | 2 | 2 | | 12 | 10-00 | 3 | - | | CO ₂ | 2 | 2 | | | | 2 | 2 | 2. | 1 | 2 | | | | | 100 | | CO3 | 2 | 2 | 2 | 2 | | 2 | 2 | 2 | 1 | 1 | | | | 3 | _ | | CO4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | | | 3 | | | 100000000000000000000000000000000000000 | - | | | | | | | | | - | | 3 | | 2 | | | CO ₅ | | | | | | | | | - | | | | | | | | Subject: | Comp | iter A | ided D | etailing | g of St | ructur | es | | | Subj | ect Co | de:18 | CVL7 | 6 | | |-----------------|-------|--|---------|----------|---------|---------|---------|--------|---------|-------|--------|-------|------|---|----------| | | | | | | | Cou | rse Ou | tcome | s | | | | | | | | CO1 | Acqu | ire pro | oficien | cy ove | r softv | vare sk | tills | | | | | | - | | | | CO ₂ | Out 1 | ine the | princ | iples as | s per c | odal p | rovisio | n | | | | | | | | | CO3 | Deve | lop de | tailed | workin | g dray | ving o | f RC a | nd Ste | al etru | turec | | | | | | | | | ************************************** | | | | | | Mapp | | iuics | 1300 | | | | | | COs | | | | | | | 200 | | | | PSOs | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | | | No. | | 1 | 2 | 3 | 200 | | | 2 | 3 | 1 | | | CO ₂ | 3 | 3 | 3 | | | | | 3 | | | | 2 | 3 | 1 | - | | CO3 | 3 | 3 | 3 | | | | | 3 | | - | | 2. | | 1 | <u> </u> | | Averag | 2.6 | 3 | | | | | | | | | | | _3 | 1 | | | e | 6 | 3 | 3 | | | 1 | 2 | 3 | | | | 2 | 3 | 1 | | Comment ### Semester-VIII | Subject: | Design | n of Pr | e-Stres | sed Co | ncrete | Eleme | ents | | | Subj | ect Co | de: 18 | CV81 | | | |-----------------|--------|---------|----------|---------|---------|---------|-------|-----------|---------|---------|------------------|--------|--------|-------|-----| | | - | | | | | Cou | rse O | utcome | S | | - An | | - , -, | | | | CO ₁ | Iden | tify su | itable n | nateria | ls and | metho | ds of | prestress | sing. | | | | | - | | | CO ₂ | | | | | | | | in the p | | - | | | | | | | CO3 | Anal | yse an | d desig | n the p | re-stre | essed c | oncre | te memb | pers fo | r Flexu | eams.
ire and | Shear | Streng | oth | | | CO4 | | | | | | | | d block | | | | | Suone | ,uii. | | | | | | | | (| CO-PC |)-PSC | Mapp | ing | C men | iders. | | | | | | COs | | | | | | 0000 | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 1 3 | | CO ₁ | 2 | 2 | | | | 1000 | | | | 10 | | 14 | 1 | | 3 | | 72132411 | 3 | 3 | 2 | 100 | | | _ | 2 | | | | | 2 | | | | CO ₂ | 1 2 | | | | 102.00 | | | | | | | | 2 | | | | | | 3 | 3 | | W 35 | | | 2 | 12000 | | | 2 | | | | | CO3 | 2 | 3 | 3 | | | | | 3 | | | | | 2 | | | | | | 3 | 3 | | | | | 3 2 | | | | | 2 | | | | Subject: | Rehal | oilitat | ion and | l Retr | ofittin | g of S | tructu | res | | Subj | ect Co | ode:18 | CV82 | 4 | | |---|-------|----------|----------|---------|----------|--------|------------------------|---------|---------|---------|--------|---------|---------|---------|---| | | | | | | | Cou | rse Ou | tcome | S | | | | 0 1 02 | | | | CO1 | Unde | erstan | d the ca | use of | deteri | oratio | n of co | ncrete | structi | irec | | - | | | | | CO ₂ | Asse | ss the | damag | e of di | fferent | types | of str | ictures | and re | comm | and th | | | 1 | 9 | | CO3 | Sum | mariz | e the pr | inciple | es of re | nair a | nd reh | hilitat | ion of | ctmietu | ena m | e neces | ssary s | olution | n | | CO4 | Reco | gnize | ideal n | nateria | l for d | fferen | t renai | r and r | otrofit | ing to | les : | | | | | | | | <u> </u> | | | (C | O-PO | PSO | Mapp | ing | ing tec | nniqu | 9 | _ | | | | COs | | | | | | | Os | | | | - | | | PSOs | | | COLUMN TO THE REAL PROPERTY OF THE PERTY | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 2 | 2 | | | | | | | | | | 1.24 | 2 | - | 3 | | CO2 | 2 | 2 | 3 | | | 1 | 100 | 1 | - | | - | | | | _ | | CO3 | 2 | 2 | 2 | | | 1 | 7. F IR. 13 | 1 | | | | | 2 | | _ | | CO4 | 2 | 2 | 2 | | | 1 | | L L | | | | | 2 | | | | AND THE REAL PROPERTY. | | | _ | | | | | | | | 1 | l | 2 | | | | Averag | 2 | 2 | 2.3 | | | 1 | | 1 | | | | | 1000 T | | | | e | | | 3 | | | 1 | | 1 | | |
1 | | 2 | | | | Subject | Paven | ient D | esign | | | | | | | | Subje | ect Cod | le: 18 | CV825 | | |-----------------|----------------|--|----------|---------|----------|---------|---------|---------|----------|---------|----------|---------|--------|----------|-----| | | _, | | | | | | rse Ou | | | | | | | | _ | | CO1 | Syste
Airfi | ematica
eld). | ally ge | nerate | and co | mpile | require | d data | 's for c | lesign | of pave | ement (| Highv | vay & | | | CO ₂ | Anal | yze str | ess, sti | ain and | d defle | ction b | v Bou | ssinesc | ı's Bu | rmister | r's and | Weste | ranard | l'a thaa | w 7 | | CO3 | Desi | Analyze stress, strain and deflection by Boussinesq's, Burmister's and Westergaard's theory Design rigid pavement and flexible pavement conforming to IRC58-2002 and IRC37-2001. | | | | | | | | | | | | | | | CO4 | Evalu | late th | e perfo | rmanc | e of the | e pavei | ment a | nd also | devel | ops ma | intena | nce sta | temen | t based | on | | | | | | | (| CO-PO | -PSO | Марр | ing | | | | 3/// | _ | | | | | | | | | | Os | | | | 12-12-12 | | | PSOs | | | COs | | | 0020 | | E | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 7 | | COs | 1 | 2 | 3 | 4 | 5 | U | , | U | | | | | | | | | COs | 3 | 2 | 2 | 4 | 3 | 0 | , | 1 | | 10 | | 124 | | 1 | • | Page **18** of **20** | CO ₃ | 2 | 2 | 2 | 2 | | | | | | |-----------------|------|---|---|------|--|--|---|------|--| | CO4 | | 2 | | 3 | | | 2 | 2 | | | Average | 2.33 | 2 | 2 | 2.66 | | | | 1 75 | | | | | | | | | | 2 | 1.75 | | | Subject: | Intern | ship/Pr | ofessio | onal Pr | actice | | | | | Subj | ect Co | de: 18 | CV84 | | | |-----------------|--------|----------------|---------|---------|----------|---------|---------|---------|----------|--------|--------|--------|------|----------|---| | | 4 | excuse | | | | Cou | rse O | utcome | es | | | | | | | | CO ₁ | Asse | ss inte | rests a | nd abil | ities in | 1 their | field o | f study | 7 | | | | - | | | | CO ₂ | Lear | n to ap | preciat | e worl | c and i | ts func | tion in | the ec | Onomy | 7 | | - | | | | | CO3 | Deve | lop co | mmun | ication | , inter | person | al and | other o | critical | skille | | _ | | | | | | | and the second | | | | CO-P | D-PSO | Mapi | oing | SKIIIS | | | | | | | COs | | | | | | 2000 | Os | A R | | | 770 | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | 3 | | CO ₂ | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | <u> </u> | - | | CO3 | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | | | | | Average | 2 | 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | | | Subject: | Proje | ct Phase | II | | | | | | | Subj | ect Co | ode: 18 | CVP8 | 3 | | |-----------------|-------|----------|---------|---------|-----------|---------|----------|---------|---------|---------|--------|-----------|--------------|-------|----------| | | | | | | N/14 AC-1 | | rse Ou | | | | | | day is solom | | | | CO1 | For | nulate t | he pro | ject of | bjective | by de | tailed l | iteratu | re revi | ew | | | | | | | CO ₂ | Con | duct the | expe | riment | al/analy | tical v | work to | achie | ve the | objecti | vec | | | | | | CO3 | Prep | oare the | detaile | ed rep | ort base | d on t | he expe | erimen | tal/ana | lytical | work | | | | | | CO4 | Con | nmunica | te and | prese | nt the n | roject | at diff | erent n | latform | ne | WOIK | | | | | | | | | | _ | C | O-PC |)-PSO | Mapp | ing | 113 | | | | | 1100 | | COs | | | | | | | Os | | | | | | - Marine | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 3 | | 1 | 1 | | | | | | | (27-28-7) | 3 | 3 | <u> </u> | | CO ₂ | | | | 3 | 2 | | | | | | | | 3 | 3 | | | CO3 | 2 | 2 | 2 | 2 | 3 | | 1 | | | 3 | | | 3 | 3 | | | CO4 | 2 | 2 | 2 | 2 | 3 | | 1 | | | 3 | | | 3M | 10.55 | | | Average | 2 | 2.33 | 2 | 2 | 2.25 | | 1 | | | | | | 3 | 3 | | | an orașe | | 2.55 | 4 | | 2.23 | | I | | | 3 | | | 3 | 3 | | | ubject: S | Semin | ar | | | | | | | | Subj | ect C | ode:18 | CVS8 | 6 | | |-----------------|-------|-----------------------|---------|---------|---------|---------|--------|---------|---------|----------|---------|---------|---------|---------|-----| | | | | | | | | rse Ou | | | | | | | | - | | CO ₁ | Wo | rk in a | ctual v | vorkin | g envi | ronme | nt and | utilize | techni | cal res | ources | | | - | | | CO2 | Fine | d appro | opriate | sourc | es that | can be | e sumn | narised | l, give | oral pr | esenta | tions r | elated | to the | wor | | CO3 | | | indepe | | | | | 27.00 | | | | | | -24-27 | _ | | CO4 | | | | | | | data. | knowl | edge a | nd resu | ilts of | engine | ering | tudios | - | | CO5 | Den | nonstra | ate the | ability | to ass | sess an | d repo | rt | -ugo u | 110 1050 | 1113 01 | ongine | cring . | studies | | | | | | | | | | | - 17 | ing | | - | | *** | | | | COs | | CO-PO-PSO Mapping POs | | | | | | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 2 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2 | _ | | CO ₂ | 2 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | CO3 | 2 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2 | | | CO4 | 2 | | | | | 2 | 2 | 2 | | | | 2 | 2 | 2. | | | | 2 | | | | | 2 | 2 | 2 | | 1 1100 | | 2 | 2 | 2 | | | CO5 | 4 | | | | | | 1 2 | | | | i | 4 | 4 | / | 1 | Page 19 of 20