

||Jai Sri Gurudev ||

SJB Institute of Technology

(Affiliated to VTU, Accredited by NAAC with 'A' Grade, Approved by AICTE- New Delhi, Accredited by NBA) No. 67, BGS Health & Education City, Dr. Vishnuvardhana Road, Kengeri, Bangalore-560060.

Department of Civil Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix - Batch 2018-22

Semester-I/II

Subject:	Elem	ents of	civil e	enginee	ering a					Subj	ect Co	ode:18	CV14		
						Cou	rse Ot	itcome	S						
CO1	Out	line the	variou	is field	s in Ci	vil En	gineeri	no and	ita im	monton					
CO ₂	Ana	lyse the	force	system	appli	ed to the	ha ctm	otumol -	118 1111	portano	e on in	nfrastri	icture.		
CO3	Ana	lyse eff	ect of	forces	on sve	tem	ne su u	ciurai	nembe	ers und	er stati	c cond	ition.		
CO4	Eva	luate the	e effec	t of cer	nter of	gravit	v and r	nom	1 - C:						
CO5	Ana	lyse the	force	system	and d	vnami	c cond	ition	t of in	ertia to	r giver	1 struct	ure		
)-PSO		inσ						
COs							Os	тарр	S		-			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	10		1308	
CO1	2						<u> </u>	-		10	-11	12	I	2	_3
CO ₂	3	3		5-20-											
CO3	3	3													
CO4	3	3			_										
CO5	2	2											-		u .
Average	2.6	2.75			-1		-								

Semester-III

						2	semes	ter-III						0.55	
Subject:	Engin	eering	Mathe	matics	-III					Sub	iect C	ode:18	MAT	21	
						Cou	rse O	utcom	es					100	
CO1			TOTAL.			signals	and	Fouri	er seri						
CO2	Exp	ain the g the F	gener ourier	al linea transfo	r syste	em theo d z-trar	ry for	contin	ous - ti	me sig	nals an	d digita	ıl sign	al pro	cessing
CO ₃	Emp	loy ap	propria	ite num	nerical	metho	ds to s	olve al	gehrai	o and t	*****	J 1		nontana.	
CO4	Tipp	y Ole	on s me	orem.	Diver	gence t	heorer	n and	Staken	thoone			equati applic	ons. cation	s in the
CO5	Utili	ze the	conce	ermals	of fur function, synth	nctional onal ar nesis an CO-PO	l and s id thei d optii	olve thir varia mizatio	e simp tions on of d	ole pro	blems	for calc	ulus of con	of var	iations.
							Os	Mapp	ing						
COs	1	2	3	4	5	6	7	0		10				PSO	ls
CO1	3	2		-	3	0	,	8	9	10	11	12	1	2	3
CO2	3	2		1000					-		-	-		-	-
CO3	3	2						-		-	-				
CO4	3	2													-
CO5	3	2									-			-	
						1		1						1	1

Page 1 of 20

Commen Head of Department

Subject:	Streng	gth of	Materia	ıls						Sub	iect C	ode: 18	PCV22	,	
						Cou	rse Ou	itcom	AG .						
CO1	Exp	lain th es, tan	e basic gential	concer	ots of s	tress a	nd stra	in, stre	ength o	f differ	rent m	aterials	exper	riencing	g axial
CO2	Eval	uate th	ne inter	nal for	ces and	l resist	ance m	echan	ism for	r one d	imensi	onal ar	ıd two	-dimen	sional
CO ₃			ending a		earing	stresse	e induc	and day		e de Montago de de Cons		-			
CO4	Dete	rmine	slope a	nd def	lection	e in he	ome by	ed due	to rep	resent	ative I	oads or	ı beam	ıs.	
CO ₅	Estin	nate th	ne stren	gth of	torsion	memi	allis by	Jumpa	le inte	gration	metho	od.			
					(CO-PC)-PSO	Mann	ing	ruts.					
COs							Os	Tixepp	ing_		_			PSOs	10
	1	2	3	4	5	6	7	8	9	10	11	12	1	F-12	
CO ₁	3	3	1			-				10	11	1000000	1	2	3
CO ₂	3	3	2							-		3	3		
CO3	3	3	2				- W-10					2	3		
CO4	3	3	2									2	3		
CO5	3	-		-								1	3		
		3	2									1	3		
Average	3	3	1.8									1.8	3		

Subject:	Fluid	Mech	anics							Sub	iect C	ode: 18	CV22			
		1000				Con	rse Oı	itcom	AC	Dub	jeere	oue. 18	C V 33			
CO1	Iden	tify th	e prope	erties c	of fluid	25 2 00	ntinuu	m	CS			igari 🛌 🛌				
CO ₂	Solv	e Prot	olems o	n hydi	rostatic	inclu	ding pr	notice	11!							
CO3	Dem	Solve Problems on hydrostatic, including practical applications Demonstrate apply the principles of continuity, moment and energy as apply to fluid Determine the flow measurements and various losses in flow through pipes														
CO4	Dete	rmine	the flo	w mea	sureme	ente an	d vorio	ny, m	oment a	na en	ergy as	apply	to flui	d		
CO5				., .,,	war offic	nis an	u vario	us 108	ses in I	low th	rough	pipes				
					(CO-PC)-PSO	Man	nina							
				101		A Section	Os	map	hrug							
COs	1	2	3	4	5		7	0	To			World World		PSOs		
CO1	2	2	1	1	3	6	1	8	9	10	11	12	1	2		
CO2	2	$\frac{2}{2}$	1	1		1	1		1	-	1	2	1	2		
			2	1	1	2	1		1		2	1	1	1		
CO3	2	2	1			2			2		2	1	1	1		
CO4	2	2	1		1	1	2		1		1	1		1		
CO5							2.2				1	1	1	1		
NAME OF THE PARTY			-					_	1			1	()			

ubject:	Dullul	ng Ma	teriais	and Co	onstruc	tion				Subj	ect Co	de: 18	CV34		
	_					Cou	rse Ou	itcome	S						
CO1	Deve	elop kn truction	owled	ge of n	nateria	l scien	ce and	behav	iour of	variou	s build	ling ma	iterials	used i	n
CO ₂	Ident	ify the	constr	uction	mater	ials red	mired	for the	accion	ed wor	1.	-			
CO ₃	Prov	ide pro	cedura	l know	vledge	of the	simple	testing	assigii	ods of	K.	4 1:	1		
CO4	Adop	t suita	ble rep	air and	l main	tenanc	e work	to enh	ance d	lurabili	ty of h	ı, illine	and co	ncrete	etc
					(CO-PC)-PSO	Марр	ing	uraum	ty of b	unamg	,S.		
COs						2000000	Os	- 11	- 0					PSOs	11.00
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	13
CO ₁	2								161				2		
CO2	2						1							-	
CO3	2						1						2	1	

CO4	2			 -TT	 _			_
Average	2		1	 	 1			
					1	1.66	1	

Subject:	Basic	Survey	ing							Subi	ect Co	ode: 12	RCV35		-
						Cou	rse Ou	itcome	2				JC V 33	9)	-
CO1	Outl	ine the	funda	mental	princi	nles of	fsurve	vina							
CO ₂	Utili	ize line	ar and	angula	r meas	ureme	ent to s	olve ba	cio cui	T (Ox in a	1.1			-	_
CO3	Mak	e use o	f geod	etic da	ta to so	lve cu	Imay n	mahlam	isic sui	veymg	g probl	ems			
CO4	Ana	lyze ob	tained	snatial	data a	nd cor	n vey p	hagen	IS 1						
				spatial	(data a	CO-PC	D-PSO	Mann	as and	volum	es				
COs							Os	mapp	ıng				-	DOO	_
COS	1	2	3	4	5	6	7	8	0	10	11	10		PSOs	
CO1	2	2	3F3	-	-	-	1	O	9	10	11	12	1	2	
CO2	2	2		-								1	2	2	
CO3	2	3		2									2	2	
CO4	2			2									1	1	
		2					3	1					2	2	
CO5		a Land													
Average	2	2.2		2			3	1				1	1.7	1.7	_

Subject:	Engir	eering	Geolo	gy						Sub	iect Co	ode: 18	CV36		
						Cou	rse Ou	itcome	S					8	
CO1	App	ly geol	ogical	knowl	edge in	differ	rent civ	il engi	neerin	g pract	ice				
CO2	acqu	ire kno	wledg	e on di	ırabilit terials.	y and	compet	tence o	f foun	dation	rocks,	and con	nfiden	ce end	ough t
CO3	comp	petent of	enough	for th	e safet	y, stab	ility, e	conom	y and	life of	the stru	ctures	that tl	ney	-
CO4	solve are o	variou	us issu infront	es rela	ted to g	ground	l water er prob	exploi	ration,	build t	ıp dam	s, brid	ges, tı	nnels	whic
CO5	apply	GIS,	GPS a	nd rem	ote sen	sing a	s a late	est tool	in diff	ferent c	ivil en	gineeri	ing co	nstruc	tion.
CO5	apply	GIS,	GPS a	nd rem	ote sen	ising a	s a late	st tool		ferent c	ivil en	gineeri	ing co	nstruc	tion.
	apply	GIS,	GPS a	nd rem	ote sen	sing a	s a late O-PSO Os	st tool		ferent c	ivil en	gineeri	ing co		
COs	apply	GIS,	GPS at	nd rem	ote sen	sing a	s a late	st tool		ferent c	ivil en		ing co	PSO	
	apply	GIS,	GPS a	nd rem	ote sen	sing a	s a late D-PSO Os	est tool	ing			12		PSO 2	
COs	apply	GIS,	GPS a	nd rem	ote sen	CO-PC P	O-PSO Os 7 2	est tool	ing			12 2		PSO 2 2	
COs	apply 1 2	2 2	GPS a	nd rem	ote sen	CO-PC PC 6 3	s a late O-PSO Os 7	est tool	ing			12		PSO 2	
COs CO1 CO2	1 2 2 2	2 2 2	GPS a	nd rem	ote sen	CO-PC PC 6 3 2	O-PSO Os 7 2 2	est tool	ing			12 2 2 2		PSO 2 2 2 2 2	
COs CO1 CO2 CO3	1 2 2 2 2	2 2 2 2	GPS a	nd rem	ote sen	CO-PC PC 6 3 2 2	O-PSO Os 7 2 2 3	est tool	ing			12 2 2		PSO 2 2 2 2	

Subject:	Computer Aided Building Planning and Drawing	Subject Code: 18CVL37
	Course Outcomes	
CO1	Prepare, read and interpret the drawings in a professi	onal set up.
CO2	Know the procedures of submission of drawings and I for building.	Develop working and submission drawings
CO3	Plan and design are residential or public building as p	per the given requirements.
	CO-PO-PSO Mapping	

Page **3** of **20**

					P	Os							PSOs	
1	2	3	4	5	6	7	8	0	10	11	10		1 505	T =
1	2 3				1		-		10	11	12		2	3
1					1		1				1	1		
1					1		1				1	1		
1		-			1		1				_1	_1_		
֡	1 1 1 1	1 2 1 1 1 1	1 2 3 1 1 1 1 1	1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 6	POs 1 2 3 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 6 7 0	1 2 3 4 5 6 7 0 0	1 2 3 4 5 6 7 9 9 1	1 2 3 4 5 6 5	1 2 3 4 5 6 5	1 2 3 4 5 6 7 8 0 40	1 2 3 4 5 6 7 8 0 10 H

- Lajeeti	Buildi	ng Ma	terials	Testin	g Labo	ratory				Subj	ect Co	de: 18	CVL3	8	
						Cou	rse Ou	itcome	es					100	
CO1	Appl	ly the l rials u	basic k nder th	nowle e actio	dge of on of te	Engin nsion,	eering compr	and Mession	lathem, bendi	atics to ng, she	study ar and	the be	havioi	r of bu	ildin
CO2	Estin	nate the	e hardr	iess an	d impa	ct strei	igth of	variou	s meta	ls such	as mil	d steel,	alumi	num, c	oppe
COA	Eval	rata th	ol	. 1	omny many a		300								
CO3	Lvan		e pnysi	icai pro	opertie	s of ag	gregate	es and	their in	npact o	on cons	structio	n Indu	ıstry.	
CO3	Lvan		e physi	icai pro						npact o	on cons	structio	n Indu	ıstry.	
	Lvan	uate in	e physi	ical pro		CO-PC				npact (on cons	structio	n Indu		
COs	1	2	3	4		CO-PC	-PSO						n Indu	PSOs	_
	1 2				(Po-Po	-PSO	Mapp	ing 9	npact o	on cons	structio	1		3
COs	1	2			(Po-Po	-PSO	8 2	9 3				1 2	PSOs	_
COs	1 2	2 2			(Po-Po	-PSO	Mapp 8	ing 9				1	PSOs	_

Semester-IV

Subject:	Engin	eering	Mathe	matics	-IV		1000			Sub	ject Co	ode:18	MAT4	11	
						Cou	rse O	utcom	es			1000			-
CO1	-	TITUTUD	and sector	ivilval	HICHIC	IUS:									
CO2	Solv	eprobl	lems of dinatesy	quant	um me	chanic	s empl re's po	loying lynom	Bessel ials rel	's funct	ion rel	ating to	o cycli lar co	indrica ordinat	l te
CO3	the o	y and	the an	magne	tuc the	orv De	escribe	conto	rmal ar	nd hilim	compl ear tra	ex potensform	entials ation	in fiel arising	d in
CO4	prob	e prob ability	lems or distrib or feasi	າ proba utions	ability and sto	distrib ochasti	utions	relatin	o to di	gital ci	gnal pr ultivar	ocessin	ng, De rrelati	termie on	joint
CO5	Dray or re	v the v jecting	alidity the hy elated t	of the pothes	hypoth is, Def	esis pr inetrar	isition	probal	bility n	n samp natrix c	ling di of a Ma	istribut arkov c	ion in hain a	accept nd solv	ing ⁄e
								Mapp							1999
COs	S						Os	- PP	****5			-		PSOs	_
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2								3,472		12		4	3
CO ₂	3	2													
CO3	3	2													
	2	2	111												
CO4	3	4													
CO4 CO5	3	2													

Subject:	Analys	sis of I	Determ	inate S	Structu	res				Subi	ect Co	de: 18	CV42		
						Cou	rse Ou	tcome	S				·		
CO1	Desc	ribe th	e basic	conce	pts of	structu	ral ana	lvsis a	nd typ	es of s	tructur	es			
CO ₂	Cons	truct I	nfluen	ce line	diagra	m for	various	movi	ng load	ls on d	etermi	nate be	ame at	ad truc	000
CO3	Dete	rmine 1	the def	lection	of det	ermina	ite bea	ms by	mome	nt area	and co	njugat	e hean	ac met	bode
CO4	Appl trusse	y energ	gy prin	ciples	to dete	rmine	the de	flectio	n of de	termin	ate bea	ms, be	nt fran	nes an	d
CO5	Appl suspe	y the c	oncept cables	s of E	nginee	ring M	echani	cs to d	etermi	ne the	stress r	esultar	its of a	rches	and
					-	70 DO	and the second second								
					(CO-PC	-PSO	Mapp	ing				10.99		
COs							os	Mapp	ing					PSOs	N.
COs	1	2	3	4	5			Mapp 8	ing 9	10	11	12	1	PSOs	3
COs	1 3	2	3	4	-	P	os			10	11	12	1 2	S13/	
	1 3 3	- 75	3	4	-	P	os			10	11	12	1 2 2	S13/	
CO1	_	3	3	4	-	P	os			10	11	12	2	S13/	
CO1	3	3	3	4	-	P	os			10	11	12	2 2	S13/	
CO1 CO2 CO3	3	3 3	3	4	-	P	os			10	11	12	2	S13/	

Subject:	Applie	d Hyd	lraulics	1				· · ·		Subi	iect Co	de: 18	CVA2		
				888		Cou	rse Ou	itcome	S						
CO1	Princ Buoy	iples o	of dime and floa	nsiona	al analy	sis to	design	the hy	draulio	mode	l, to kr	own th	ne con	cept o	f
CO ₂		gn the													
CO3			the co	ncent	of imp	act of	iet					-			
CO4	Desig	gn of c	entrifu	gal pu	mps	uct OI	joi								
						CO-PC)-PSO	Mann	ing				V. 24 - 10 -	-	
COs			-0				Os	TT						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	1308	
CO1	1	1					2			10	- 11	12			3
CO ₂	2	1			-		2					,,		2	
CO3	2	1												2	
CO4	1	1					2							2	
	1.5	1					2							2	
Average	1.3	1					2		N.	0				2.	

Subject:	Concr	ete Tec	hnolo	gy						Subi	ect Co	de: 18	CV44		
					3500	Cou	rse Ou	ıtcome	S						
CO1	Unde	erstand	mater	ial cha	racteri	stics ar	nd their	r influe	ence or	micro	etructi	ire of c	onarat		
CO ₂	Disti	nguish	concr	ete beh	avior l	based o	on its f	resh an	d hard	ened n	roperti	01 0	onciel	е.	
CO3	Desi	gn of d essiona	ifferen	it types	of con	ncrete	mixes	for req	uired f	resh ar	d hard	ened p	roperti	es usin	ıg
THE CONTRACTOR OF THE CONTRACT						CO-PC)-PSO	Марр	ing						
COs							Os		- 6					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2										14	2	4	3
CO ₂	2	2							- 1378						
CO3	2	2	2	2				2					2		
Average	2	2	2					1000					2		
Average	2	2	2	2				2					2		

Subject: A	Advan	ced Su	rveyin	ıg						Subj	ect Co	de: 18	CV45		
							rse Ou								2.30
CO1	App	ly the	knowl	edge o	f geon	netric p	rincipl	es to a	rrive a	t surve	ving n	roblem	C		-
CO ₂	Ana	lyse th	e obta	ined ge	eo-spat	tial dat	a to an	propri	te eno	ineerin	o prob	lame	3	-	
CO ₃	Desi	gn and	d imple	ement	the dif	ferent 1	vnes o	f curve	es for	deviatir	a type	ofalia	·nmon	ta	-
CO4	Proc	ess an	d perf instrur	orm ar	nalysis	to sur	vey pr	oblems	for C	apture	d geod	etic da	ta wit	h the i	ise o
					-	TO DO	TOO	7.5							
					•	LU-PU	-PSO	Mapp	ing						
COs							PSO Os	Mapp	ing		-			PSOs	
COs	1	2	3	4	5			Mapp 8	ing 9	10	11	12	1	PSOs	-
COs	1 2	2 2	3 2	4	1	P				10	11	12	1 2	PSOs	3
	1 2 2			4	1	P				10	11		1 2	PSOs 2	-
CO1	8/0/2012	2	2	4	1	P				10	11	2	2	PSOs	-
CO1	2	2 2	2 2	2	1	P				10	11		200	PSOs 2	-

Subject:	water	Suppl	y and '	Freatm	ent En	gineer	ing			Subi	ect Co	ode: 18	CV46		
						Cou	rse Ou	itcome	S			3401 10	C 1 10		
CO1	Estin	nate av	erage	and pe	ak wat	er den	and fo	r a cor	nmuni	17					
CO2	Ident water	ify the	sourc	es of w	ater su	ipply a	nd to a	pply p	roper s	amplir	ng tech	niques	for the	e analy	sis o
CO3	Appl	y drinl	cing w	ater qu	ality st	andar	ds and	to illus	trata a	valitati		lysis of			
CO4	Desig	sii a cc	unpren	ensive red qu	water	treatm	ent and	d distri	bution	system	to pu	rify and	water d distri	ibute	
CO5	Desig	gn proj	oer con	veyan	ce syst	ems fo	r raw a	and tre	ated w	ator					-201
					(O-PC)-PSO	Mapp	ing	atci.					
COs							Os	T.F.	8					PSOs	_
	1	2	3	4	5	6	7	8	9	10	11	12	1	1503	3
CO1	2						3			10		1		2	3
CO ₂	2		2				3					1		2	
CO3	1	1		1			3			-		1		2	
CO4	1											1		2	
Average	1.5	1	2	1			3					1		2	
rorage	1.5	1		1			3					1		2	

Subject:	Engin	eering	Geolo	gy Lab	orator	y				Sub	ect Co	ode: 18	CVL4	17	
						Cou	rse O	utcom	es					•	
CO1	Iden	tify the	mine	rals, ro	cks an	d utiliz	ze them	effect	tively i	n civil	engine	ering p	mostic		
CO2	mei	pret an	ia unae	erstand	the ge	ologic	al con	ditions	of the	area fo	or impl	ementa	tion o	f civil	
CO3	Inter		bsurfa	ce info	rmatic	n such	as thi	ckness	of soil	, weath	nered z	one, de	epth of	f hard 1	rock
CO4	Acqu	ire tec struct	hnique	es in th	e inter	pretati	on of I	LAND	SAT In	nagerie	s to fi	nd out	the lin	eamen	ts and
THE SECOND)-PSO	Mapr	oing					-	
COs							Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					2	2		2000	2		1	8270	2	_
CO ₂	2					2	2		177	2		1		2	-
CO3	2					2	2			2		1		5000	
CO4	2					2	2			2		1		2	
			-							4		1		2	l

Subject: F	luid M	1echai	nics La	borato	ry					Subj	ect Co	de: 18	CVL4	8	7516
						Cou	rse Ou	tcome	S						
CO1	Prop	erties	of flui	ds and	use of	vario	us instru	ıment	for fl	uid flo	w mea	curama	nto		
CO2	Wor	king o	f hydr	aulic n	nachine	es und	er vario	us cor	dition	s of we	rking	and the	in abo	raatari	4:
-1,3=7					(CO-PC)-PSO	Mapp	ing	S OI WC	nking .	and the	ii Ciia	ractern	stics
COs					10000		Os		-	200 0 00				PSOs	
CO3	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2					1					1		1	
CO2	2	2					2					1		1	
Average	2	2.					1.5				-	1		1	

Semester-V

Subject:	Const	uction	Manag	ement	and E	ntrepre	neursh	ip	50 16	Sub	ject Co	de: 18	CV51		
1						Cou	rse Ou	itcome	e e		1000	ue. 10	CVJI		
CO1	Outl	ine the	constru	iction 1	manag	ement	nrocess	r						-	
CO2	Asse dutie	ss vario	ous iss	ues tha	it are	encoun	tered b	y ever	y profe	ssiona	l in disc	chargin	g prof	esiona	1
CO3	Ident	ifying	the pro	fessio	nal obl	igation	effect	ively v	with al	sha1	41 1				
					(CO-PC)-PSO	Mann	ing	obai ou	tlook				
200								марр	ıng						
COs	1	2	2			F	Os							PSOs	
001	1	_ <u>L</u>	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1				1			1	1		1	1			- 3
CO ₂	1	1					000	-		 	1	1		2	
CO3	1							-			L			_ 2	
Average	1	1		-							2	1		2	
Average	1	1			_ 1			1	1		1.5	1		2	

Subject:	Allaly	313 01	maeter	mmate	Struct	tures				Sub	ject C	ode: 18	CV52		
					(LOX	Cou	rse O	ıtcom	es			Over			-
CO1	Dete defle	rmine ection	the sup	oport n l.	nomen	ts of in	detern	ninate	beams	and rig	gid fran	nes usi	ng slo	pe	
CO2	Dete sway	rmine using	the sup	port n	noment ributio	ts of in n meth	determ	inate 1	oeams	and rig	id fran	nes wit	h non-	-sway	and
CO3	Cons Kani	struct b 's meth	ending nod.	g mom	ent and	l shear	force	diagrai	ns for	contin	uous be	eams a	nd rigi	d fram	es by
CO4	Cons	truct b	ending ibility	momo metho	ent and	shear	force (diagran	ns for	continu	ious be	eams ar	nd rigi	d fram	es by
				100000											
CO5	Anal	yse co	ntinuo	ıs bear	ns, rigi	id fram	es and	plane	trusses	s by sy	stem st	iffness	metho	od.	-
CO5	Anal	yse co	ntinuo	ıs bear						s by sy	stem st	tiffness	metho	od.	
	Anal	yse co	ntinuoı	is bear		CO-PO				s by sy	stem st	iffness	metho		
COs	1	2	ntinuoi	us bear		CO-PO	-PSO			s by sy.	stem st	iffness	metho	PSOs	1
COs		1			(CO-PO	-PSO Os	Mapp	ing				1	PSOs	3
COs	1	2			(CO-PO	-PSO Os	Mapp	ing				1 2	PSOs	1
COs	1 3	2 3			(CO-PO	-PSO Os	Mapp	ing				1 2 2	PSOs	1
COs CO1 CO2	1 3 3	2 3 3			(CO-PO	-PSO Os	Mapp	ing				1 2 2 2	PSOs	1
COs CO1 CO2 CO3	1 3 3 3	2 3 3 3			(CO-PO	-PSO Os	Mapp	ing				1 2 2	PSOs	1

Subject:	Design	of RC	Struct	ural E	lemen	ts				Subj	ect Co	de: 18	CV53		
						Cou	rse Ou	itcome	S						
CO1	Appl	Apply the design philosophies and principles of the codal provisions.													
CO ₂	Anal	Apply the design philosophies and principles of the codal provisions. Analyse and design of the beam elements for flexure, shear and torsion.													
CO3	Anal	yse and	d desig	n of t	he slat	and s	taircas	e usino	the k	nowled	ge of	odal n	rovigio		-
CO ₄	Desig	gn of th	he colu	ımn aı	nd foot	ting us	ing the	e desig	n princ	inles	ge or c	Jouan p.	OVISIC	nis.	
								Mapp		rpics					
COs							Os					- 17 - X - 1		PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	

Page 8 of 20

CO1	2	1					
CO2	3	3	3	3	1	2	
CO3	3	2	3	3	2	2	
CO4	3	2	3	3	2	2	
Average	2.75	2	25	3	2	2	
riverage	2.13		2.5	3	1.75	2	

Subject:	Dasic	Geote	chnica	I Engi	neerin	g				Subj	ect Co	de: 18	CV54		
		4				Cou	rse Ou	tcome	S						
CO1	Ident	ify the	type o	f soil l	pased o	on phy	sical pr	opertie	20			_			
CO ₂	Inter	pret the	hydra	ulic co	onduct	ivity o	f the so	ile	73						
CO ₃	Com	pute th	e effec	tive st	resses	of the	soil str	oto						-	
CO4	Evalu	ate the	e engin	eering	prope	rties ar	nd failu	ire beh	aviour	of soil	in terr	ns of s	hear a	nd	
					(CO-PC	-PSO	Mapp	ing				-		
COs						- 12	Os							PSOs	-
	1	2	3	4	5	6	7	8	9	10	11	12	1	1	-
		_				L .		_		10	LL	14		2	3
CO1	3	2											_	22.7	_
CO1	3	1-153			1								2		
CO ₂	3	2			1								2		
CO2 CO3	3	2 2			1										
CO ₂	3	2			1								2		

Subject:	Munic	ipal V	Vastev	vater I	Engine	ering				Subj	ect Co	de: 18	CV55		
		200				Cou	rse Ou	tcome	S						
CO1	Estin appu	nate th	e wast	e water	r and s	torm w	aterd 1	lows	and ap	ply the	conce	pt of se	wer		
CO2	Desig proce	gn the	differe	nt unit	operat	tions a	nd unit	proces	sses in	volved	in was	te wate	er trea	tment	
CO3	Appl	y the c	oncept	and d	esign c	of vario	ous phy	sico-c	hemics	al and l	oiologi	cal trea	tmont		
CO4	Appl	y the c	oncept	of var	ious a	dvance	waste	water	and lo	w-cost	treatm	ent pro	cess for	or rura	1
	, and				(O-PC	DOO		UEO						
						O-I C	1-P5U	Mapp	ing						
COs		-					Os	Mapp	ing					PSOs	
COs	1	2	3	4	5			Марр 8	ing 9	10	11	12	1	PSOs 2	T :
COs	1 2	2	3	4		P	Os			10	11	12	1_	2	[3
	1 2 2	2	3	4		P	Os 7			10	11	12	1	2 2	
CO1	-	2	=	4		P	Os 7 3 3			10	11	1 1	1	2 2 2	3
CO1	-	1	=	1		P	Os 7 3			10	11	12 1 1 1	1	2 2	3

subject:	Highway Engineering	Subject Code: 18CV56
	Course Outco	omes
CO1	Understand the importance & characteristics of and propose alignment based on planning princ	road transport system, classification of roads
CO2	Apply aspects of road geometrics and suitably of systems.	design road geometric elements and drainage
CO3	Evaluate the engineering properties of the mate pavement construction.	rials and provide suitable guidelines for
CO4	Analyse the highway economics and impart the	knowledge on highway financing concents.

Page 9 of 20

					(CO-PC	-PSO	Mapp	ing		2-			-	
COs	-						Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1 2
CO ₁	3									10		1.2		2	3
CO ₂	3		2.					1						2	
CO3	3						1	1						2	
CO4	2			-			1	1						2	
	2 75		2								1			2	0.1====
Average	2.75		2				1	1			1			2	

Subject: S	urveyi	ng Prac	ctice						8:	Subj	ect Co	de: 18	CVL5	7	
						Cou	rse O	utcome	S					-	_
CO1	Appl	y the b	asic r	rincip	les of	Engine	erino	survey	for lin	ear and	langul	D# ## 0.0		2007	
CO ₂	Mak	e use of	ffield	proce	edures	require	ed for	a profes	cciona	Car and	angui	ai illea	surem	ents	
CO3	Choc	se app	ropria	ate tec	hnique	s, skill	ls and	conven	tional	survey	ing ins	trumen	ts nece	essary	for
					(CO-PC)-PSO	Марр	inσ						
							~ ~	TATOOLIA	иши 🚐						
COs							POs	тирр	····s	-				PSOs	
COs	1	2	3	4	5			8	9	10	11	12	1	PSOs	T -
COs	1 1	2	3	4	т —	H	POs 7	8	9	10	11	12	1	PSOs	T -
	1 1 1	2 1 2	3 1 1	4	т —	H	POs 7 2	8 2	9 2	10	11	12	1	PSOs 2 1	T -
CO1	1 1 1 2	2 1 2	3 1 1	4	т —	H	POs 7	8	9	10	11	12	1	PSOs 2 1 1 1	3

Subject: (concre	ete and	Highv	vay M	aterials	s Labo	ratory			Subj	ect Co	de: 18	CVL5	8	
						Cou	rse Ou	tcome	S		33800	130			
CO1	Dete	rmine	quality	and s	uitabil	ity of o	ement	in con	structi	on wor	k	-	-		
CO ₂	Desi	gn app	propria	te conc	rete m	ix and	detern	nine w	orkahi	lity and	ctrone	th of a	onarat	^	
CO3	Test	the roa	ad agg	regates	and b	itumer	for the	eir suit	ahility	as roa	d mate	riol	oncrei	е	
CO4	Eval	uate th	e soil	suitabi	lity as	a pave	ment s	uhorad	le soil	as Iva	u mate.	liai			-
)-PSO			1.20	CE TOTAL				
Cos							os		-					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3					1	1	1			A-00-030-1			1	-
CO ₂	3					1	1	1						1	
CO3	3		1			1	1	1						1	
CO4	3		-			1	1	1						1	
Average	3	er er allege er er				1	1	1						_ 1	

Semester-VI

Subject:	Desig	n of st	eel str	uctura	l elem	ents	- 100			Sub	iect Co	de: 18	CV61		
						Cou	rse Ou	itcome	es	M. 155				N 1971 N	_
CO1	Exp	lain the	e basic	s conce	epts of	steel s	tructur	es, ste	el code	provis	ions a	nd plas	tic bel	havior	of
CO ₂	Desi	gn of t	olted a	and we	lded c	onnect	ions								-
CO3	Desi	gn of c	compre	ssion r	nembe	rs bui	lt-un c	olumn	c and a	olumn					
CO4	Anal	yze an	d desig	gn of st	teel me	embers	under	flevur	and C	olumn	s splice	es			
						CO-PC									
COs							Os	гирр			-		Farm	PSOs	
000	1	2	3	4	5	6	7	8	9	10	11	12	-	rsus	
CO ₁	3	3	3					3		10	11	12		2	3
CO ₂	3	3	3							-		3	3		
CO3	3	3	3	F- F				3				3	3		
CO4	3	3	3					3				3	3		
Average	3	3	3					3				3	3		
relage	3	3	3					3				3	3		

Subject:	Appli	ed Geo	otechn	ical E	nginee	ring				Subi	ect Co	de: 18	CV62		
						Cou	rse Ou	tcome	S		×		0 1 02		
CO1	Exec	ute ge	otechn	ical sit	e inve	stigatio	n prog	ram fo	r diffe	rent civ	ıil engi	incorin	~ ~~:		
CO2	ESUI	nate st	resses	in soils	s, load	carryin	ng capa	city of	shalle	w and y soils	deen f	oundat	ion an	d resul	ting
CO3	Eval	uate th	e safet	v facto	rs aga	inst fai	lure of	slopes	and h	earing	failma	- F C-	1	-	-0.55
CO4	Pred	ict the	distrib	ution o	f later	al pres	sure be	hind th	e retai	ining w	volle	or rou	ndatio	n	
					(CO-PC)-PSO	Mapn	ing	ming w	alls				
COs							Os	R R	- 8					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2						10		12	2	-	3
CO2	3	2		2	1		-								_
CO3	3	2	2	2.									2		
CO4	3	2		2	1								2		
Average	3	2	2	2	1								2		

Subject:	Hydro	ology a	nd Irr	igatio	n Engi	ineerir	ıg		and an analysis of the same of	Subj	ect Co	de: 18	CV63		
							rse Ou								
CO1	Unde	erstand	the im	portan	ce of l	vdrolo	ogy and	l its co	mnone	ente					
CO ₂	Meas	sure pr	ecipitat	tion an	d anal	vze the	data a	nd ana	lyze tl	ne losse	e in n	ecinite	tion		
CO3	Estin	nate ru	noff an	d deve	lop un	it hydr	norani	15	ij Zo ti	10 10330	os in pi	сстрпа	tion.		-
CO4	quan	tity irri	gation	water	require	ement	and fre	dilenci	of in	rigation	forvio				
					(CO-PC	-PSO	Mapp	ing	igation	i ior va	rious c	rops.	1012	
COs						79-70	Os							PSOs	s
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2					2	-	2	+
CO2	2	2			80 - 11 - 1	2	2			-	-	2		2	+
CO3	2	2				2	2							(35-56)	-
CO4	2	2				2	2	-				2	780.00	2	
Average	2	2	-					2				2		2	
Average	2	2				2	2					2		2	1

Page **11** of **20**

CO1 Evaluate the structural systems and apply the concepts of flexibility and stiffness matrices simple problems. CO2 Identify, formulate and solve engineering problems with respect to flexibility matricies as applied to continuous beams, frames and trusses. CO3 Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses. CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO6 PO6 PSO Mapping CO6 PO6 PSO Mapping CO7 PO7 PSO Mapping CO8 PO8 PSOS AU 2 3 3 4 5 6 7 8 9 10 11 12 1 2 CO1 3 3 3	Subject: 1	viatrix	Metho	ds of S	tructura	al Anal	ysis				Sub	ject Co	ode: 18	CV64	1	-
Identify, formulate and solve engineering problems with respect to flexibility matricies as applied to continuous beams, frames and trusses. CO3 Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses. CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO-PO-PSO Mapping CO5 POS POS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 CO2 3 3 3		_					Cou	rse Ou	itcome	S						
CO3 Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses.	CO1	31111	hie hic	orems	•											
Identify, formulate and solve engineering problems with respect to stiffness matricies as applied to continuous beams, frames and trusses. CO4	CO2	Ide:	ntify, f lied to	ormula contin	ite and	solve eams,	engine frames	ering p	problem	ns witl	n respe	ct to fl	exibilit	y matr	ricies a	S
CO4 Identify, formulate and solve engineering problems with respect to direct stiffness method applied to continuous beams, frames and trusses. CO-PO-PSO Mapping PSOs PSOs 1	CO3	Ide	itify, f	ormula	ite and	solve	engine	ering p	roblen	ns with	respec	ct to st	iffness	matric	cies as	
COs POs PSOs CO1 3 3 4 5 6 7 8 9 10 11 12 1 2 CO2 3 3 3 2 2 2 CO3 3 3 2 2 2 Average 3 3 3 2 2	CO4	Ider	itify, fo	ormula	te and	solve o	engine frames	ering p and tr	roblen usses.		respec	et to di	rect sti	ffness	metho	d as
CO1 3 3 4 5 6 7 8 9 10 11 12 1 2 CO2 3 3 3 CO3 3 3 CO4 3 CO4 3 CO4 3 CO4		_					CO-PO	-PSO	Mapp	ing						-
1 2 3 4 5 6 7 8 9 10 11 12 1 2 CO1 3 3 2 2 2 CO2 3 3 2 2 CO3 3 3 2 2 Average 3 3 3 2	COs						P	Os							PSO	-
CO1 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	2	3	4	5	6	7	8	9	10	11	12	1	T -	3
CO2 3 3 3 2 2 2 2 3 3 3 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CO1	3	3						HES.	(450)	120	**	1.24	2	4	3
CO3 3 3 3 2 2 2 Average 3 3 3 2 2	CO2	3	3													
CO4 3 3 Average 3 3 2	COZ						1387							2		ı
Average 3 3	C110 1996 199	3	3											^		
	CO3															

Subject: 1	Railw:	ays, H	arbou	r, Tun	neling	and A	irpor	ts		Subj	ect Co	de: 18	CV64	5	
							rse Ou								- 10
CO1	Out	line the	e impo ts in R	rtance ailway	of plans and A	ning, Airport	constru	iction	aspects	and n	ainten	ance o	fvario	us	
CO2	Des	ign and	d plan	railway	y syste isual ai	m, airr	ort lay	out, fa	cilities	requir	ed for	run-wa	ıy, tax	iway a	nd
CO3	App	ly desi	ign fea	tures o	f featu	res of	tunnels	s, harbo	ours in	cluding	g neces	sary na	vigat	ional ai	ids
					(CO-PO	-PSO	Марр	ing	Tontal	onside	ciation.			
COs						77.	Os		0					PSOs	-
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	3					1						12		2	3
CO2	3	2				1		1							
CO3	3	2				1		1			-			2	
Average	3	2				1		1						1	
5					10	1	1	1		10 56		V. III		1.6	

Subject:	Solid	Waste	Mana	gemen	it					Subj	ect Co	de: 18	CV64:	2	
						Cou	rse Ou	tcome	S			0.7			
CO1	Anal	yze ex	isting S	SWM s	system	& to i	dentify	their	drawba	icks					- 100
CO ₂	Eval	uate di	fferent	eleme	nts of	SWM	system	S		· · ·					
CO ₃	Sugg	est sui	table n	nethods	s for S	WM el	ements	3					-		
CO4	Desig	gn suita	able pr	ocessin	ng syst	em &	evaluat	e disp	osal sit	es					
			-		(CO-PC	-PSO	Mapp	ing	.03					
COs						120	Os							PSOs	-
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	A Property					3					3		3	_
CO ₂	2						3			1000		3	-	3	
CO3	2			- 1947 ·			3		W			3			
CO4	3						3							3	
				-			ر ا					3		3	

Romesam

Average 2.75			
2.70	3	3	3

Subject:	Traff	ic Eng	ineerii	ıg						Sub	iect C	ode: 18	CV65	:2	
						Cou	rse O	utcom	es				CVU	12	
CO ₁	Und	erstand	l and ic	lentify	the fu	ındame	ntal co	mpone	ents of	traffic	enging	Onin a			
CO2	Coll	ection	and an	alysis 1	traffic	survey	data.			dame	engine	ering			
CO3			200			s types			SON AND SON						
CO4	Eval	uate tra	affic in	pacts	on env	vironm	ent and	traffi	ons c safety	/ measi	ures				
CO5						anagen						asures			-
						CO-PC									
COs		T					Os	PK						PSOs	-
	1	2	3	4	5	6	7	8	9	10	11	12	1		
CO1	3									10	11	12	_ +_	2	_ 3
CO ₂	2	2												1	
CO3	3	2	2					1						1	
CO4	2		_			2	2	1				1		1	
CO5	2						2					1		1	
Average	2	2	2			1						1		1	
	4	- 2	/.			1.5	2	1 1			All-re-d	401			

Subject:	Occup	pation	al heal	lth and	l safet	y				Sub	ject Co	ode: 1	RCV65	3	
						Cou	rse O	utcome	es				27890	<i>3</i>	
CO1	Iden	tify ha	zards i	n the w	orkpla	ace tha	t pose	danger	to hes	lth and	cofot	of atl			
CO ₂	Cont	rol un	safe, u	nhealth	v haza	rds an	d prop	ose to	elimin	ote her	orda	01 011	iers.		
CO3	Cone	erent a y regu	nalysis	of a p	otentia	l safet	y or he	alth ha	zard c	iting th	e occu	pation	al heal	th and	- H
CO4	Disc	uss the	role o worke	f healtlers and	h and s manag	afety i	n the v	workpl	ace per	rtaining	g to res	ponsib	ilities	of	
CO5	Ident	ify the	decisi	ions rec	quired	to mai	ntain p	rotecti	on of	environ	ment v	vorkpl	ace asv	well as	
					(CO-PC)-PSO	Mapp	ing						- M
COs							Os		8		-			PSOs	į
X 13	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	2			00 Dan	2	2	2	2		2	2	-	3
CO ₂	1	2	2				2	2	2	2	_	2	2		
CO3	1	2	2				2	2	2	2		2000	200		
CO4	2	2	1				5500		_	-		2	1		
	-	~	-				1	1	1	1		1	1		
	2	2	1		85.0		1	1	1	1		1	1		
CO5	2	_					1		V			-	-		

Subject:	Softwa	re App	lication	Lab					-	Subi	ect Co	de: 18	CVII C		
				D RESE		Cou	rse On	itcome	9	Duloj	cci Ct	ue. 18	CATO	0	
CO1	Use time	of soft for co	ware sl	kills in on of w	a prof	essiona	al setup	to aut	tomate	the wo	ork and	thereb	y redu	ice cyc	le
					(CO-PC)-PSO	Марр	ing						-
COs						1	Os							PSOs	
	_ 1	2	3	4	5	6	7	8	9	10	11	12	1	1503	1
CO ₁	1	2	2		3	1		2	2	10	2	12	_ 1	L	3
Average	1	2	2		2	+					3	2	2		
riviage	1		1 2	1	1 3			1 2	2	1	2	0	^		

Subject:	Envir	onme	ntal E	ıginee	ring I	ab				Sub	ect C	ode:18	CVL		- 10
-			Dec.				rse Oı							20-116	
CO1	Acq para	uire c meter	apabili s	ty to c	onduct	exper	iments	and e	stimate	the co	ncenti	ration c	of diff	erent	
CO ₂	Con	pare	the resu	ılt wit	h stanc	lards a	nd disc	nice h	sed or	the n	Irnogo	of1			
CO3	Dete	ermine	e type o	f treat	ment o	legree	of trea	tment	for wa	ter and	ryests	or anai	ysis		
CO4	Iden	tify th	ne parai	neter	to be a	nalvse	d for s	tudent	projec	t work	waste	water.			
CO5		***				inary 50	u ioi s	tuacin	projec	t WOIK	m env	ironme	ental s	tream	
					(CO-PC)-PSO	Mapi	oing						
COs					//		Os) 	PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	2			2		2	2				3	3
CO ₂	2	2				2	2	2	1	2				3	_
CO3	2	2	2	2		2	2	2	-	1				-	
000			_	2	2	2	2	2	2	1		3		3	
CO4	2	2	2	2	/.									2	

Subject:	Extens	ive Sur	vey Pro	oject /C	Camp					Subj	ect Co	ode: 18	CVL6	8	
							rse Ou					3333			
CO1	App	y Surv	eying	knowl	edge a	nd too	ls effec	tively	for pro	iects		-			
CO2	Undo towa	erstand	ling Ta mmon	sk env	ironm	ent, Go	oals, re	sponsi	bilities	Task	focus, 1s, tecl	workin	g in T ind bel	eams havior	al
CO3	Appl time	icatior manag	of inc	lividua , comn	l effec	tivenes	ss skill d pres	s in tea	ım and	organi	zation	al conte	ext, go	al sett	ing,
CO4	Profe	ssiona	l etiqu	ettes a	t work	place.	meetin	g and	renera	, <u>, </u>					
CO5	Estal	lishin	g trust-	based	relatio	nshins	in tear	ns & o	roaniz	ational	enviro	nment			
CO6	Oriei	itation	towar	ds con	flicts in	n team	and or	ganiza	tional	enviror	ment,	Unders	standir	ng sou	rces
			, com.	100 105)-PSO					-		<u> </u>	
Cos						P	os							PSOs);
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2				2	2	2					2	2	2	
CO ₂	2	2			2	2	2					2	2	2	
	2				2	2	2					2	2	2	
CO ₃			-		11 37 36 3	2	2	2		2	2	1	$\frac{2}{2}$	2	-
CO3	2	199									_ 4	1	2		
	9-8						2	2				2	2		-
CO4 CO5	2					2	2	2				2	2	2	
CO4	2 2	2			2		2 2 2	2 2 2		2	2	2 2 1.8	2 2 2		

Semester-VII

Quantity	Surve	eying	and Co	ntract	t Mana	ageme	nt			18C	V71		-		
						Cou	rse O	utcome	c c			-			
CO1	Estin	nate t	he quant	tities o	f diffe	rent ite	ems of	work fo	or road	de and l	mildin	0.0			
CO ₂	Deve	elops s	specifica	ation f	or civi	Engir	neerin	o worke	and n	roposo	oto	gs .1 ·			
CO3	Inter	pret c	ontract o	locum	ent of	domes	tic an	d intern	and p	lepare	rate an	aiysis			
CO4	Deve	lop v	aluation	report	s of bu	ilding	'S	u micilia	auona	constr	uction	works			
				.		0.00	7	Mappi	inσ						
Cos							os	upp	mg .		-			PSOs	
*	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2			1	1	1		10	2	12		1	
CO ₂	3		3			1		2		1 50 10		-		1	
CO3	2	2				1	8				2	1		1	
CO4	2	2	3	-		1		2			2	1		1	
Average	2.5	2	2.25			1	1	2			2	1		_1	
		4	2.23			1	L	1.75			2	1		1	

Subject:	DESIC	IN OF R	CC A	ND S	TEEL	STRU	JCTUI	RES		Subj	ect Co	ode: 18	CV72		
						Cour	se Ou	tcome	S						
CO1	Appl footi	y basic king and re	nowle taining	dge o	f limit	state r	nethod	and d	esign l	RC stru	ictures	such a	s com	bined	
CO ₂	Adop	ot codal p	rovisio	ons, p	rofess	ional e	thics a	nd des	ion w	ter ten	lea and		C		
CO ₃	Evalu	ate the fo	orces a	ecting	on ste	el roo	ftruse	and de	eign b	v follo	KS and	portal	Trame	S	
CO4	Anal	yse and d	esign	steel s	structu	res su	h ac n	late an	d cont	y 10110	wing t	ne coda	u proc	edure	
					C	O-PO	-PSO	Mappi	ing	ry gnu	ers car	rying n	novin	g loads	
COs						PO	210	1 1	-0					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3					3				1	2	-	3
CO2	2	3	3					3		THE RESERVE		2			_
CO3	2	2	3					3					2		
CO4	2	2	3		-		-	90845				2	2		
Average	2			\vdash				3				1	2		
Average		2.25	3					3				1.5	2		337.5

Subject:	Air P	ollutio	n and	Contr	rol					Sub	ject C	ode:18	CV73	2	
	W Estan					Cou	rse Ou	itcome	es		Caracia Santa		0,75		-
CO1	Ider	ntify ar	nd clas	sify th	e sourc	ces of	air pol	lutants							
CO ₂	Pred	lict the	effect	s of ai	r pollu	tants o	n hum	an hea	lth and	d envir	onmer	ıt.			
CO3	App	ly and	relate	the sig	gnifica	nce of	variou	s air n	ollutio	n disne	ersion	models			-
CO ₄	Ana	lyze th	e air q	uality	and re	late wi	ith air	polluti	on regi	ulation	0131011	models		-	
CO5	Des	ign var	rious a	ir pollu	ution c	ontrol	equipr	nent a	nd eva	luate it	s use				
						CO-PC	-PSO	Марр	ing				-		
COs						P	Os							PSOs	8
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	3	2				2	2					2		2	-
CO ₂	3	2				2	2					2		2	
	3	2				2	2				10 N 17	2		2	
CO ₃	1 2	_													

Page 15 of 20

CO5	3	2		1 2		
	3	2			2	3
Average	5		2	2		2.7
	0				2	5

	raven	nent M	lateria	als and	Cons	tructio	n			Sub	iect C	ode: 18	CV73	13	
						Cou	rse O	utcome	S						
CO1		uate an	t Uy U	Jiluuci.	1112 100	uncai	ests as	ner	1120	manific	- nei	200			
CO2	LOIH	nulate t	ne pro	portion	ns of d	itteren	CIZAC	of ago	ranta	to	t grada	tion cri	iteria f	or vari	ious
CO3	Diffe	erent hi	ghway	const	ruction	equip	ment v	with the	ir suit	ability	and ad	laptabil	ity in	variou	S
CO4	Com	petent t	to ada _l	pt suita	ible mo	odern t	echniq	ues and	d equip	ment i	for spe	edy and	d econ	omic	
	Exec	uto the	aamat.		0										
CO5	contr	ol tests	at dif	ferent s	of em stages	bankm of pave	ent, flo ement	exible,	rigid p	aveme	nt and	perform	n requ	ired q	ualit
CO5	contr	ol tests	at dif	ferent s	stages	or pave	ement	constru	iction	aveme	nt and	perform	n requ	ired q	ualit
	contr	ol tests	at dif	ferent s	stages	CO-PO	ement	exible, constru Mapp	iction	aveme	nt and	perform	n requ		
COs	contr	ol tests	at dif	ferent s	stages	CO-PO	-PSO	constru	iction		+			PSOs	
			at dir	rerent s	(CO-PO	-PSO Os	Mapp 8	ing	aveme	nt and	performula 12	n requ	PSOs 2	
COs		2	at dir	rerent s	(CO-PO	-PSO Os	Mapp	ing		+			PSOs 2 2	
COs	1 1	2 2	at dir	4	(CO-PO	-PSO Os	Mapp 8	ing		+	12 1 1		PSOs 2 2 2 2	
COs CO1 CO2	1 1 1	2 2	at dir	4	(CO-PO	-PSO Os	Mapp 8	ing		+	12 1 1		PSOs 2 2 2 2 2	
COs CO1 CO2 CO3	1 1 1	2 2	3	4	(CO-PO	-PSO Os	Mapp 8	ing		+	12 1 1		PSOs 2 2 2 2	

Subject:	Envir	onmen	t Prot	ection	and I	Manage	ement	- NAC		Subj	ect Co	de: 18	CV75:	3	
								itcome					9	/	-
CO1	Deve syste	lop an ms to	d apply interna	y engir tional	neeriną enviro	g know nmenta	ledge i	in corp	orate a	nd env	ironmo	ental m	anage	ment	-
CO2	Choc	se and opmer	imple	ment p	olluti	on prev	ention	and w	aste m	inimiza	ation o	ptions	for sus	tainab	le
CO3	Lead envir	pollut onmen	ion pre tal ma	ventio nagem	n asse ent sy	ssment stems f	team a	ad devo	elop, in	npleme	ent ma	intain a	ınd aud	lit	
						CO-PO									
			- 11111			P									
COs														PSOG	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	PSOs	_
COs	3	3	3	4	5	6 2	7 2	8	9	10	11	12	1	2	_
	1 3 3		3	4		-	7			2	11	2	1	2	_
CO1		3	3	4	2	2	7 2	2	2	150,009,77	11		1	2	3

Subject: 1	Urban 1	l ransı	ortati	on and	Plann	ing				Sub	ect Co	ode: 18	CV74	5	
						Cou	rse Ou	itcome	es						-
CO1						s and c	onduct	necess	ary sur			the dat			
CO2	Deve	lop tra	vel der	nand m	odels to land us	o deteri	mine fu	ture tri	p gener	ation ra	te, trip	distribu	tion ar	nd mode	el
CO3	Identi	fy urb	an tran	sport c	orridor	s and v	alidate t	the dev	alonad	madal	C 1	g term tr			
	-X711			-	(CO-PC)-PSO	Mann	ing	moder	or iong	term tr	anspor	tation p	lan.
COs						100	POs		-8				7	PSOs	
	1	2	3	4	5	6	7	8	Q	10	11	12		1303	_
CO1	3						-	-		10	11	12		2	3
CO2	2	2				1					1			1	
Light Service Co.	2	2				1				-	1			2	
CO3		1 4	6			1					1			2	
CO3 Average	2.3	2				4									

Subject:	Geote	chnic	al Engi	ineeri	ng La	borate	ry			Sub	ect C	ode:18	CVL	77	
						Cou	rse Ou	ıtcom	es						
CO1	Acqu	iire ca neters	pability	y to co	onduct	experi	ments	and es	stimate	the co	ncentra	ation o	f diffe	erent	
CO ₂	Com	pare t	he resu	lt with	stand	ards ar	nd disc	nee ho	sed on	the nu		· C - 1	and the		
CO3	Dete	rmine	type of	treat	nent d	eoree	of treat	ment	for wet	or end	ipose (or anar	ysis		
CO4	Ident	ify th	e paran	eter to	he ar	alveed	of tical	udent	noicet	er and	waste	water.			
CO5		-	- I - water		o oo ar	iaryset	1 101 31	uuciii	project	work	in envi	ronme	ntal s	tream	
					(CO-PC)-PSO	Mapi	ping						-
COs		CO-PO-PSO Mapping POs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	PSOs 2	3
CO ₁	3	2	1	2			2		2	2		12	10-00	3	-
CO ₂	2	2				2	2	2.	1	2					100
CO3	2	2	2	2		2	2	2	1	1				3	_
CO4	2	2	2	2	2	2	2	2	2	1				3	
100000000000000000000000000000000000000	- 									-		3		2	
CO ₅									-						

Subject:	Comp	iter A	ided D	etailing	g of St	ructur	es			Subj	ect Co	de:18	CVL7	6	
						Cou	rse Ou	tcome	s						
CO1	Acqu	ire pro	oficien	cy ove	r softv	vare sk	tills						-		
CO ₂	Out 1	ine the	princ	iples as	s per c	odal p	rovisio	n							
CO3	Deve	lop de	tailed	workin	g dray	ving o	f RC a	nd Ste	al etru	turec					
		**************************************						Mapp		iuics	1300				
COs							200				PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2			No.		1	2	3	200			2	3	1	
CO ₂	3	3	3					3				2	3	1	-
CO3	3	3	3					3		-		2.		1	<u> </u>
Averag	2.6	3											_3	1	
e	6	3	3			1	2	3				2	3	1	

Comment

Semester-VIII

Subject:	Design	n of Pr	e-Stres	sed Co	ncrete	Eleme	ents			Subj	ect Co	de: 18	CV81		
	-					Cou	rse O	utcome	S		- An		- , -,		
CO ₁	Iden	tify su	itable n	nateria	ls and	metho	ds of	prestress	sing.					-	
CO ₂								in the p		-					
CO3	Anal	yse an	d desig	n the p	re-stre	essed c	oncre	te memb	pers fo	r Flexu	eams. ire and	Shear	Streng	oth	
CO4								d block					Suone	,uii.	
					(CO-PC)-PSC	Mapp	ing	C men	iders.				
COs						0000	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1 3
CO ₁	2	2				1000				10		14	1		3
72132411	3	3	2	100			_	2					2		
CO ₂	1 2				102.00								2		
		3	3		W 35			2	12000			2			
CO3	2	3	3					3					2		
		3	3					3 2					2		

Subject:	Rehal	oilitat	ion and	l Retr	ofittin	g of S	tructu	res		Subj	ect Co	ode:18	CV82	4	
						Cou	rse Ou	tcome	S				0 1 02		
CO1	Unde	erstan	d the ca	use of	deteri	oratio	n of co	ncrete	structi	irec		-			
CO ₂	Asse	ss the	damag	e of di	fferent	types	of str	ictures	and re	comm	and th			1	9
CO3	Sum	mariz	e the pr	inciple	es of re	nair a	nd reh	hilitat	ion of	ctmietu	ena m	e neces	ssary s	olution	n
CO4	Reco	gnize	ideal n	nateria	l for d	fferen	t renai	r and r	otrofit	ing to	les :				
		<u> </u>			(C	O-PO	PSO	Mapp	ing	ing tec	nniqu	9	_		
COs							Os				-			PSOs	
COLUMN TO THE REAL PROPERTY OF THE PERTY OF	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	2	2										1.24	2	-	3
CO2	2	2	3			1	100	1	-		-				_
CO3	2	2	2			1	7. F IR. 13	1					2		_
CO4	2	2	2			1		L L					2		
AND THE REAL PROPERTY.			_								1	l	2		
Averag	2	2	2.3			1		1					1000 T		
e			3			1		1			1		2		

Subject	Paven	ient D	esign								Subje	ect Cod	le: 18	CV825	
	_,						rse Ou								_
CO1	Syste Airfi	ematica eld).	ally ge	nerate	and co	mpile	require	d data	's for c	lesign	of pave	ement (Highv	vay &	
CO ₂	Anal	yze str	ess, sti	ain and	d defle	ction b	v Bou	ssinesc	ı's Bu	rmister	r's and	Weste	ranard	l'a thaa	w 7
CO3	Desi	Analyze stress, strain and deflection by Boussinesq's, Burmister's and Westergaard's theory Design rigid pavement and flexible pavement conforming to IRC58-2002 and IRC37-2001.													
CO4	Evalu	late th	e perfo	rmanc	e of the	e pavei	ment a	nd also	devel	ops ma	intena	nce sta	temen	t based	on
					(CO-PO	-PSO	Марр	ing				3///	_	
							Os				12-12-12			PSOs	
COs			0020		E	6	7	8	9	10	11	12	1	2	7
COs	1	2	3	4	5	U	,	U							
COs	3	2	2	4	3	0	,	1		10		124		1	•

Page **18** of **20**

CO ₃	2	2	2	2					
CO4		2		3			2	2	
Average	2.33	2	2	2.66				1 75	
							2	1.75	

Subject:	Intern	ship/Pr	ofessio	onal Pr	actice					Subj	ect Co	de: 18	CV84		
	4	excuse				Cou	rse O	utcome	es						
CO ₁	Asse	ss inte	rests a	nd abil	ities in	1 their	field o	f study	7				-		
CO ₂	Lear	n to ap	preciat	e worl	c and i	ts func	tion in	the ec	Onomy	7		-			
CO3	Deve	lop co	mmun	ication	, inter	person	al and	other o	critical	skille		_			
		and the second				CO-P	D-PSO	Mapi	oing	SKIIIS					
COs						2000	Os	A R			770			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2			2	2	2	2	2	2		2	2		3
CO ₂	2	2			2	2	2	2	2	2		2	2	<u> </u>	-
CO3	2	2			2	2	2	2	2	2		2			
Average	2	2			2	2	2	2	2	2		2	2		

Subject:	Proje	ct Phase	II							Subj	ect Co	ode: 18	CVP8	3	
					N/14 AC-1		rse Ou						day is solom		
CO1	For	nulate t	he pro	ject of	bjective	by de	tailed l	iteratu	re revi	ew					
CO ₂	Con	duct the	expe	riment	al/analy	tical v	work to	achie	ve the	objecti	vec				
CO3	Prep	oare the	detaile	ed rep	ort base	d on t	he expe	erimen	tal/ana	lytical	work				
CO4	Con	nmunica	te and	prese	nt the n	roject	at diff	erent n	latform	ne	WOIK				
				_	C	O-PC)-PSO	Mapp	ing	113					1100
COs							Os						- Marine	PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		1	1							(27-28-7)	3	3	<u> </u>
CO ₂				3	2								3	3	
CO3	2	2	2	2	3		1			3			3	3	
CO4	2	2	2	2	3		1			3			3M	10.55	
Average	2	2.33	2	2	2.25		1						3	3	
an orașe		2.55	4		2.23		I			3			3	3	

ubject: S	Semin	ar								Subj	ect C	ode:18	CVS8	6	
							rse Ou								-
CO ₁	Wo	rk in a	ctual v	vorkin	g envi	ronme	nt and	utilize	techni	cal res	ources			-	
CO2	Fine	d appro	opriate	sourc	es that	can be	e sumn	narised	l, give	oral pr	esenta	tions r	elated	to the	wor
CO3			indepe					27.00						-24-27	_
CO4							data.	knowl	edge a	nd resu	ilts of	engine	ering	tudios	-
CO5	Den	nonstra	ate the	ability	to ass	sess an	d repo	rt	-ugo u	110 1050	1113 01	ongine	cring .	studies	
								- 17	ing		-		***		
COs		CO-PO-PSO Mapping POs												PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	2					2	2	2				2	2	2	_
CO ₂	2					2	2	2				2	2	2	
CO3	2					2	2	2				2	2	2	
CO4	2					2	2	2				2	2	2.	
	2					2	2	2		1 1100		2	2	2	
CO5	4						1 2				i	4	4	/	1

Page 19 of 20