

|| JAI SRI GURUDEV || Sri AdichunchanagiriShikshana Trust (R)

SJB INSTITUTE OF TECHNOLOGY

BGS Health & Education City, Kengeri, Bangalore - 60.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Course Outcomes and CO-PO-PSO Articulation Matrix

Batch 2015-19

						Seme	ster-I/I	Ī							
Subject: Basi	c Electro	nics								Subj	ect Co	de: 15E	LN15	/25	
					C	ourse	Outcor	mes						7	
CO1	Ability	y to app	ply the	applic	ations	of dio	de in re	ctifier	s, filte	r circui	ts and	BJT			
CO2	Ability inverti	y to an ing), co	alyse t	he bia	sing of dders,	BJT.	Design tor and	simpl differ	e circ	uits like or using	e ampl	ifiers (inverti	ng and	d nor
CO3	Under	stand tonics us	the bas	sic con gic gat	cepts o	of nun	nber sy ment si	stems mple l	.Desig	gn diffe unction	erent b	uilding basic u	block inivers	s in d	ligita es
CO4		se the		ctionin	g of	flip-f	lops.	Descri	be th	e arc	hitectu	re and	d inte	rfacin	g o
	Under	ctand	the f	ination	ina a	c a					1	1' 00			1-4:
CO5										ypes of		e diff		modu	iatioi
CO5					the bas	sic prir		of diff	erent t					modu	lation
					the bas	sic prir	so Ma	of diff	erent t					PSOs	
COs					the bas	PO-P	so Ma	of diff	erent t						
	techno	ologies	. Unde	rstand	CO-	PO-PS	so Ma	of diff	erent t	ypes of	f Trans	ducers		PSOs	
COs	techno	ologies.	. Unde	rstand	CO-	PO-PS	so Ma	of diff	erent t	ypes of	f Trans	ducers	1	PSOs	
COs	1 2	2 2	3 2	rstand	CO-	PO-PS	so Ma	of diff	erent t	ypes of	f Trans	ducers	1 2	PSOs	
COs CO1 CO2	1 2 2 2	2 2 2	3 2 2	rstand	CO-	PO-PS	so Ma	of diff	erent t	ypes of	f Trans	ducers	1 2 2	PSOs	
COs CO1 CO2 CO3	1 2 2 2 2 2	2 2 2 2 2	3 2 2	rstand	CO-	PO-PS	so Ma	of diff	erent t	ypes of	f Trans	ducers	1 2 2 2	PSOs	

Head

Semester- III

Subject. Eng	ineering	Math	ematic	es -III						Subj	ect Co	de:15N	MAT3	1	
					C	ourse	Outco	mes							
CO1		the unicat		f pero	dic si	gnals	and F	ourier	serie	s to	analyz	e circu	aits a	nd sy	stems
CO2			-	al line e Four						ıs - ti	me sig	gnals a	nd di	gital s	signa
CO3	Emplo	y appr	opriate	e nume	rical m	nethod	s to sol	ve alge	ebraic	and tra	nscede	ntal eq	uation	s.	
CO4										theorei			applic	ation i	in the
CO5				rmals of f						le prob					
	systen	ns, dec	ision tl	heory,	•		optim	zation	of dig	ital cir	* *				
	systen	ns, dec	ision tl	heory,	•	PO-P	optim	zation	of dig		* *				
COs					CO-	PO-P	optimi SO Ma Os	zation pping	of dig	gital cir	cuits.			PSOs	
	1	2	ision the	heory,	•	PO-P	optim	zation	of dig		* *	12	1		
CO1	1 3	2 2			CO-	PO-P	optimi SO Ma Os	zation pping	of dig	gital cir	cuits.		1	PSOs	
	1	2			CO-	PO-P	optimi SO Ma Os	zation pping	of dig	gital cir	cuits.		1	PSOs	
CO1	1 3	2 2			CO-	PO-P	optimi SO Ma Os	zation pping	of dig	gital cir	cuits.		1	PSOs	
CO1	1 3 3	2 2 2			CO-	PO-P	optimi SO Ma Os	zation pping	of dig	gital cir	cuits.		1	PSOs	
CO1 CO2 CO3	1 3 3	2 2 2 2			CO-	PO-P	optimi SO Ma Os	zation pping	of dig	gital cir	cuits.		1	PSOs	

Subject: Ana	log Elect	onics								Subj	ect Co	de:15E	LN15	/25	
					C	ourse	Outco	mes							
CO1		ibe the		- 1	inciple	and c	haract	eristics	of B	JT, FE	T, Sin	gle sta	ge, ca	scadeo	and
CO2	Descr	ibe the	Phase	shift, V	Wien b	ridge,	tuned a	and cry	stal os	cillato	rs usin	g BJT/I	FET/U	JT.	
CO3		late the guration		ain and	d imped	dance	for BJ	T using	re an	d h par	ameter	s mode	els for	CE an	d CC
CO4		mine the	e perfo	ormano	e char	acteris	tics an	d parar	neters	of BJT	and F	ET am	plifier	using	smal
CO5	- 1	mine th ET amp							uency	and hi	gh free	quency	respon	nses of	ВЈТ
					CO-	PO-P	SO Ma	pping							
						PO)e							DCO	
COs			ta and the same of	Activities of the Control of the Con			73	Non-			Marie Control of the			PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	PSOs 2	
COs CO1	1 2	2	3	4	5		7	8	9	10	11	12	1 2		3
	+		3	4	5		7	8	9	10	11	12			
CO1	2	2	1	4	5		7	8	9	10	11	12	2		
CO1	2 2	2 2		4	5		7	8	9	10	11	12	2		
CO1 CO2 CO3	2 2 2	2 2		4	5		7	8	9	10	11	12	2 2 2		

Subject: Dig	ital Elec	etronic	S		127	Willes , St	or di			Subj	ect C	ode: 1	5EC33	3	
							Outco								
CO1		re knov -McClu				ional I	Logic,	Simpli	ficatio	n Tech	niques	using	Karnaı	igh Ma	ps,
CO2	Acqui	re knov	wledge	of: O	peratio	n of D	ecoder	rs, Enc	oders,	Multip	lexers,	Adde	rs and S	Subtrac	ctors
CO3	1	re knov ning M			-					esignii	ng Reg	isters,	Counte	ers,	
CO4		se the prique ar						_	ues us	ing Ka	rnaugh	Maps	, Quine	-McCl	usk
CO5	Design	n and D	Develo	p Meal	y and	Moore	Model	ls for d	igital	circuits					
CO6	Apply	the kn	owled	ge gain	ed in t	he des	ign of	Counte	ers and	Regist	ters.				
					CO-	PO-PS	SO Ma	appin	g						
COs						PC	s							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1						1		2	
CO2	3	3	3	1								1	2	2	
CO3	3	3	3	2	2	1			1			1		2	1
CO4	2	3	3	2					1				2		
CO5	2	2	3	3	2									1	
CO6	2	2	3	3	2								1	1	
Average	2.5	2.5	3	2.2	2	2	-	-	1	-	-	1	1.7	1.6	1
Subject: Netv	vork Ana	alysis	4			Tr.				Subj	ect Co	de: 15	EC34		
			E SALE		C	ourse	Outco	mes							
CO1	analys	mine o	reduce	given	netwo	rk usir	ig star-	delta t	ransfo	rmation	1				
CO2		networ Iaximu ons													
CO3		late cu form to					given	circu	it und	er trans	sient c	onditio	ons.Apj	ply La	plac
CO4		ate for ency,qu gh the F	ality		alf po	wer f	requen	cies,vo							
CO5	Solve	the giv	en net	work u	sing sp	pecifie	d two p	ort ne	twork	parame	eter lik	e Z,Y,	T and h	1.	
					CO-	PO-P	SO Ma	pping							
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1										2		
CO2	2	2	1										2		
CO3	2	2	1	1									2		
CO4	2	2	2	2									2		
CO5	2	2	2	2									2		
Average	2	2	1.4	1.7	2=3								2		

Subject: Ele	ectronic Ir	strume	ntatio	n						Subj	ect Co	de: 15	EC35		
					C	ourse	Outco	mes							
CO1	Acquire various									and p	recision	n. Expl	ain fu	nctioni	ing of
CO2	Analyse	e quanti eters, pl	ization H met	n, resol ers etc.	ution a Expla	and sei in Mic	nsitivit roproc	y in di essor b	igital i	nstrum nstrum	ents su	ich as n	freque	ncy m	eters
CO3	Describ	e functi	ioning	of var	ious ty	pes of	Oscillo	scope	s and s	ignal g	enerate	ors.			
CO4	Describ	e functi	ioning	of Me	asuring	g Instru	iments	and de	esign A	C and	DC br	idges.			
CO5	Analyse	e the wo	orking	of diff	erent t	ypes of	f transc	lucers	in vari	ous app	olicatio	ns			
					CO-	PO-P	SO Ma	apping							
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3				1							2	2	
CO ₂	2	2	2			1							2	2	
CO3	2	2	1			1							2	2	
CO4	2	2	3			1							2	2	
CO5	2		2			1							2	2	
Average	2	2.3	2			1							2	2	

subject: -Er	ngineering	Electr	omagn	etics						Subj	ect Co	de: 15	EC36		
					C	ourse	Outco	mes							
CO1	Evaluate				ric fiel	d due 1	to poin	t, linea	ır, volu	ime ch	arges b	y appl	ying c	onven	tiona
CO2	Determi equation		tential	and e	nergy	with 1	respect	to po	oint ch	arge a	nd ca	pacitan	ce usi	ng La	place
CO3	Calculat	te magi	netic fi	eld, fo	rce, an	d poter	ntial er	nergy w	vith res	spect to	magn	etic ma	terials		
CO4	Apply N	/axwel	ll's equ	ations	for tim	e vary	ing fie	lds, EN	A wave	es in fre	ee spac	e and c	conduc	ctors.	
CO5	Evaluate	e nowe	r assoc	riated v	with EN	1		D	4: 41.						
	2.4144	c powe	1 45500	lateu v	viui Ei	vi wav	es usin	g Poyn	iting tr	eorem					
		e powe	1 45500	lated v				g Poyn		ieorem					
		e powe	1 45500	Jaicu v			SO Ma			leorem				PSOs	
COs	1	2	3	4		PO-P	SO Ma			10	11	12	1	PSOs 2	3
					CO-	PO-P	SO Ma	apping				12	1 2		
COs	1	2			CO-	PO-P	SO Ma	apping				12			_
COs	1 2	2 2			CO-	PO-P	SO Ma	apping				12	2		_
COs CO1 CO2	1 2 2	2 2 2			CO-	PO-P	SO Ma	apping				12	2		_
COs CO1 CO2 CO3	1 2 2 2	2 2 2 2			CO-	PO-P	SO Ma	apping				12	2 2 2		_

Dept. of Electronics & Communication Engg SJB Institute of Technology Bengaluru-560060

Dept. of ECE/SJBIT

ubject: - A	nalog Ele	ectronic	es Lab							Subj	ect Co	de: 151	ECL37		
					C	ourse	Outco	mes							
CO1	Test circ	cuits of	rectif	iers, cl	ipping	circuit	s, clan	nping c	ircuits	and vo	ltage r	egulato	rs.		
CO2	Determi	ine the	charac	teristic	es of B.	JT and	FET a	mplific	ers and	l plot it	s frequ	ency re	espons	e.	
CO3	Comput	e the p	erform	nance p	arame	ters of	amplif	iers an	d volta	ige regi	ulators				
CO4	Design	and tes	t the b	asic BJ	T/FET	ampli	fiers, I	BJT Po	wer an	nplifier	and o	scillato	rs		
					CO	-PO-P	SO M	apping							
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3							3				2		
CO2	3	3							3				2		
CO3	3	3							3				2		
CO4	3	3											2		
Average	3	3							3				2		

Subject: - I	Digital Ele	ectronic	es Lab							Subj	ect Co	de: 15	ECL:	38	
					(ourse	Outco	mes							
CO1	Demons	strate th	he trutl	1 table	of vari	ious ex	pressio	ons and	comb	ination	al circ	uits usi	ng lo	gic gate	s.
CO2	Design multiple					ination	al cir	cuits	such a	as add	ers, s	ubtract	ors,	compar	ators
CO3	Realize	Boolea	an exp	ression	using	decode	ers.								
CO4	Constru	ct and	test fli	p flops	, coun	ters and	d shift	registe	rs.						
CO5	Simulat	e full a	dder a	nd up/	down	counte	rs.								
					CO	-PO-P	SO M	apping	;						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3									2		
CO2	3	3	3	3									2		
CO3	3	3	3	3									2		
CO4	3	3	3										2		
CO5	3	3	3		3								2		
Average	3	3	3	3	3	-	-	-	-	-	-	-	2		

Head d

Semester- IV

	t: - Engin	eerir	ng Ma	thema	tics IV	7					Subj	ect Co	de: 15]	MAT4	1	
						(Course	Outco	mes	, ,,,,						
CO1	Solve fi methods		nd seco	ond or	der OI	DE aris	sing in	flow p	roblen	ns usin	g singl	e step	and m	ultiste	p num	erica
CO2	Solve p															pola
CO3	Underst electron flow vis	nagne	etic the	eory. D	escrib	e confe	ormal a									
CO4	Solve p probabil for feasi	ity d	istribu	tions a	and sto											
CO5	Draw the rejecting															
	related t	o dis													1	
CO6	Solve fi methods	rst ar	crete p	arame	ter ran	dom p	rocess.									
CO6	Solve fi	rst ar	crete p	arame	ter ran	dom pr DE aris	rocess.	flow p	roblen	ns usin						
	Solve fi methods	rst ar	crete p	arame	ter ran	dom pr DE aris	rocess.	flow p	roblen	ns usin						erica
CO6	Solve fi methods	rst ar	crete p	arame	ter ran	dom pr DE aris	rocess. sing in	flow p	roblen	ns usin					o num	erica
	Solve fi methods	rst ar	crete p	ond or	ter ran der OI	dom properties de la composition della composition de la composition de la composition della compositi	rocess. sing in -PO-P	flow p	oroblen apping	ns usin	g singl	e step	and m	ultiste	PSOs	erica
CO	Solve fi methods Os	rst ar	crete p	ond or	ter ran der OI	dom properties de la composition della composition de la composition de la composition della compositi	rocess. sing in -PO-P	flow p	oroblen apping	ns usin	g singl	e step	and m	ultiste	PSOs	erica
CO	Solve fi methods Os O1 O2	rst ar	crete prid second secon	ond or	ter ran der OI	dom properties de la composition della composition de la composition de la composition della compositi	rocess. sing in -PO-P	flow p	oroblen apping	ns usin	g singl	e step	and m	ultiste	PSOs	erica
CO	Solve fi methods Os O1 O2 O3	1 3 3 3	crete prind second seco	ond or	ter ran der OI	dom properties de la composition della composition de la composition de la composition della compositi	rocess. sing in -PO-P	flow p	oroblen apping	ns usin	g singl	e step	and m	ultiste	PSOs	erica
CO CO CO	Solve fi methods Ds ——————————————————————————————————	1 3 3 3 3 3	z 2 2 2	ond or	ter ran der OI	dom properties de la composition della composition de la composition de la composition della compositi	rocess. sing in -PO-P	flow p	oroblen apping	ns usin	g singl	e step	and m	ultiste	PSOs	erica
CO CO CO	Solve fi methods Os	1 3 3 3 3 3 3	2 2 2 2 2	ond or	ter ran der OI	dom properties de la composition della composition de la composition de la composition della compositi	rocess. sing in -PO-P	flow p	oroblen apping	ns usin	g singl	e step	and m	ultiste	PSOs	erica

Subject: -	Microproc	essor				100	100			Subje	ect Co	de: 15]	EC42		
						ourse									
CO1	Explain the 8087, CISC of 8086 and	2 & RIS	SC, Vo	on-Neu	ımann	Microp & Har	rocess vard C	ors, Ai	chitect	ture and	d instru nfigura	action &	set of 8 Timin	8086, 8 g diag	3088 ;ram
CO2	Write8086	Assem	ibly le	vel pro	grams	using t	he 808	36 instr	uction	set					
CO3	Write mod	ular pro	ograms	s using	procee	dures a	nd ma	cros.							
CO4	Write 8086	Stack	and In	terrup	ts prog	rammi	ng								
CO5	Interface 8 and Steppe			memo	ory chi	ps and	8255,	8254,	0808	ADC, (0800 I	DAC, K	Keyboa	rd, Di	spla
CO6	Use INT 2	1 DOS	interru	upt fun	ction c	alls to	handle	Keybo	oard ar	nd Disp	lay.				
					CO	-PO-P	SO M	apping	Ţ,						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2	2										2		
CO3	3	2	2										2		
CO4	2	2	2										2		
CO5	3	3	2										2	1	
CO6	2	-											2	1	
COO	_														

Subject: - (Control Sy	stems		Andrew Mark						Subj	ect Co	de: 15]	EC43		
					(Course	Outco	mes							
CO1	Know t systems transfer	(elec	etrical	circuit	t, mec	hanica	and	electron	mechn	ical sy	stems)	contin			
CO2	Describ	e quan	titative	ely the	transie	nt resp	onse o	f first a	and sec	ond or	der sys	tems			
CO3	Underst meet sta						_		uth-Hı	ırwitz t	echnic	jue, ro	ot-locu	s desi	gn to
CO4	Find the	e stabil	ity of s	system	in free	quency	domai	n using	Bode	plot an	d Nyq	uist plo	ot.		
CO5	Find the					he trai	nsfer fi	inction	draw	the blo	ock dia	igram :	from t	he dyr	amio
					CO	-PO-P	SO M	apping							
						D									
COs						P	Os							PSOs	
COs	1	2	3	4	5	6)s 7	8	9	10	11	12	1	PSOs 2	3
COs	1 3	2 2	3	2	5			8	9	10	11	12	1 2		
	1 3 2		3 1 2		5			8	9	10	11	12			_
CO1		2	1	2	5			8	9	10	11	12	2		_
CO1	2	2 2	1 2	2 2	5			8	9	10	11	12	2		_
CO1 CO2 CO3	2 2	2 2 3	1 2 2	2 2 2	5			8	9	10	11	12	2 2 2		

bject: - S	signals an	d Syste	ems							Subj	ect Co	de: 151	EC44	-	
					(ourse	Outco	mes		W					
CO1	Classify and det	erminis	tic/ran	dom si	ignals										
CO2	Determ discrete	time s	ystems	5.											
CO3	Compu	ition su	ım.												
CO4	Determ	S.													
CO5	Compu	te Z-tra	nsforr	ns, inv	erse Z-	transf	orms a	nd tran	sfer fu	inctions	of con	mplex l	LTI sy	stems.	
CO5	Compu	te Z-tra	insform	ns, inv				nd tran		inctions	of con	mplex 1	LTI sy		
	Compu	te Z-tra	nsforr	ns, inv		-PO-P				inctions	of co	mplex l	LTI sy	PSOs	
CO5	Compu	te Z-tra	ansforr 3	ns, inv		-PO-P	SO M			nctions 10	of con	mplex 1	LTI sy		
	Compu 1 3				CO	-PO-P	SO M	apping	;					PSOs	
COs	1	2	3		CO	-PO-P	SO M	apping	;				1	PSOs	
COs	1 3	2 2	3 2		CO	-PO-P	SO M	apping	;				1 2	PSOs	
COs CO1 CO2	1 3 3	2 2 2	3 2 2		CO	-PO-P	SO M	apping	;				1 2 2	PSOs	
COs CO1 CO2 CO3	1 3 3	2 2 2 2	3 2 2 2		CO	-PO-P	SO M	apping	;				1 2 2 2	PSOs	

Subject: - P	rinciples	of Con	nmuni	cation	System	ıs				Subje	ect Co	de: 151	EC45		
					(Course	Outco	mes							
CO1	Determi	ne the	perfor	mance	of ana	log mo	odulati	on sche	emes in	time a	nd free	quency	domai	ins.	
CO2	Determi	ne the	perfor	mance	of sys	tems fo	or gene	eration	and de	tection	of mod	dulated	analo	g signa	als.
CO3	Characte			signal	s in tin	ne don	nain as	rando	m proc	cesses a	and in	freque	ncy do	main	using
CO4	Charact	erize t	he infl	uence (of char	nel on	analog	g modu	lated s	ignals					
CO5	Underst				tics of	pulse a	mplitu	de mod	dulatio	n, pulse	positi	on mod	dulatio	n and	pulse
					CO	-PO-P	SO M	apping	3						
						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2											2		
CO2	2	2											2		
CO3	2	1				7							2		
COS	3	1		1											
CO4	2	2											2		
		2											2		

ubject: - L	inear Inte	egrated	Circu	its	3	ger in	100			Subj	ect Co	de: 15]	EC46		
					(Course	Outco	mes							
CO1	Explair Slew R	ate.													
CO2	Design Amplif	iers inc	luding	, Volta	ge Foll	lower.									
CO3	Test cir Precisio	on Am	olifiers												
CO4	Test ci Sample Divider	& Но r.	ld, Di	fferent	iator/ I	ntegra	tor Cir	cuits, I	Peak D	etector	s, Osc	illators	and M	Iultipl	ier &
CO5	Design Regula					w Pass	s, High	Pass,	Band	Pass, 1	Band S	Stop Fi	lters a	nd Vo	oltag
CO6	Explair	applic	cations	of line	ear ICs	in pha	se dete	ector, V	CO, I	AC, A	DC an	d Time	r.		
					CO	-PO-F	SO M	apping	g						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													
CO2	1	2	3	2									2		
CO3	1	2	2	1											
CO4	1	2	2	1											
CO5	1	2	3	2									2		
CO6	2	2	2												

Subject: - N	Micropro	cessor I	Lab							Subj	ect Co	de: 15]	ECL47	7		
					(Course	Outc	omes								
CO1	Write a	and exe	ecute 8	086 as	sembly	y level	progr	ams to	perfor	m data	transfe	er, arith	metic	and lo	ogica	
CO2	Unders	stand as	semble	er dire	ctives,	branch	, loop	operati	ons an	d DOS	21H II	nterrup	ts			
CO3	Write a	Write and execute 8086 assembly level programs to sort and search elements in a given array. Perform string transfer, string reversing, searching a character in a string with string manipulation instructions of 8086														
CO4				fer, str	ing rev	ersing	, searc	hing a	charact	ter in a	string	with st	ring n	nanipu	latio	
CO5	Utilize	proced	lures ar	nd mad	cros in	progra	mming	g 8086.								
CO6		nstrate t r motor									ix key	board,	logica	l conti	roller	
					CO	-PO-P	SO M	apping	2							
						D			, , , , , , , , , , , , , , , , , , , ,					DOO		
COC						r	Os							PSOs		
COs	1	2	3	4	5	6	Os 7	8	9	10	11	12	1	PSOs 2	_	
COs	1 3	2	2	4	5			8		10	11	12	1 2		_	
		-		1 1	5			8		10	11	12			_	
CO1	3	2	2	1	5			8		10	11	12	2		_	
CO1	3	2 2	2 2	1	5			8		10	11	12	2		_	
CO1 CO2 CO3	3 3 3	2 2 2	2 2 2	1 1 1	5			8		10	11	12	2 2 2		_	
CO1 CO2 CO3 CO4	3 3 3 3	2 2 2 1	2 2 2 2	1 1 1 1	5			8		10	11	12	2 2 2 2		3	

subject: -	Linear IC	s and (Commu	ınicati	on Lab					Subj	ect Co	de: 15	ECL4	8	
						Course	Outc	omes							
CO1	Gain h	ands-o	n expe	rience	in AM	and Fl	M tech	niques	, freque	ency sy	nthesis				
CO ₂	Gain h	ands-o	n expe	rience	in puls	e and f	flat top	sampl	ing tecl	nniques					
CO3	Make t	he righ	t choic	ce of an	n IC an	d desig	gn the	circuit	for a gi	ven ap	plication	on.			-
CO4	Design using l	and an	nalyze	the pe	rforma	nce of	instrui	nentati	on amp	olifier, l	LPF, H	IPF, DA	AC an	d oscil	lator
CO5	Unders	tand th	he app	licatio	ns of	Linear	IC for	additi	ion, int	egratio	n and	555 ti	mer o	peratio	ons t
003	genera	te signa	als/puls	ses.											
	genera	te signa	als/puls	ses.	CC	-PO-F	PSO M	appin	g						
	general	te signa	als/puls	ses.	CC		PSO M	appin	g					PSOs	
COs	genera	te signa	als/puls	ses.	5			appin	g 9	10	11	12	1	PSOs 2	_
	1 3					Pe	Os			10	11	12	1 3		_
COs	1	2		4		Pe	Os			10	11	12	1 3 3		_
COs	1 3	2 3		4 3		Pe	Os			10	11	12			_
COs CO1 CO2	1 3 3	2 3		4 3 3		Pe	Os			10	11	12	3		_
COs CO1 CO2 CO3	1 3 3	2 3 3	3	4 3 3 3		Pe	Os			10	11	12	3	2	3

Semester- V

ubject: - 1	Managem	nent and	d Entre	preneu	irship l	Develo	pmen	t		Subj	ect Co	de: 15	ES51		
						Course	e Outo	comes						3,276	
CO1	Learn	and exp	olain b	asic is	manag	ement	and ac	equire b	asic m	anageri	al skill	s.			
CO2	Analyz	ze the n	ature,	purpos	e & ob	jective	es of P	lanning	, Organ	nizing &	& Staff	ing.		Alej-	
CO3	Develo	p the f	actual	leaders	ship qu	alities	for de	velopm	ent of	organiz	ations.				
CO4	Learn	and bui	ld the	qualiti	es and	charac	teristic	cs of bu	siness	ethics a	nd ent	reprene	eurs.		
CO5	Descri	be the	impor	tance	of sm	all sca	le ind	ustries lement.	in ecc					institut	tiona
CO6							_	plannii		ject des	ign an	d netw	ork an	alysis.	
					CC	-PO-I	PSO N	Lapping	3						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					2									2
CO ₂						2						2			2
CO3								3	2						2
003										3		2			2
CO4															
									2		2				
CO4	2							2	2		2				2

Head

Subject: - I	Digital Sig	gnal Pr	ocessi	ng	Vi.					Subj	ect Co	de: 151	EC52			
					(Course	Outc	omes								
CO1	Determ	ine the	respo	nse of	LTIsys	stems ı	ising ti	me dor	nain an	d DFT	techni	ques				
CO2	Compu	te DF7	Γ of rea	al and	comple	ex disc	rete tin	ne sign	als							
CO3	Compu	omputation of DFT using FFT algorithms and linear filtering approach esign of Digital IIR and FIR filters														
CO4	Design	of Dig	gital III	R and I	FIR filt	ters										
CO5	Realiza	tion o	filters	in dire	ect for	m, caso	cade fo	rm, pai	allel fo	rm and	lattice	structi	ires			
					CC)-PO-l	PSO M	appin	g							
CO						P	Os				VI			PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	1	2									3			
CO2	3	2	2	3									3			
CO3	2	2	3	2									3			
CO4	2	2	3	1									3			
CO5	2	2	1										3			
Average	2.2	2	2	2									3			

Subject: - \	Verilog F	IDL								Subj	ect Co	de: 15]	EC53		
					(Cours	e Outc	omes			A CONTRACTOR				
CO1	Determ	nine the	e respo	nse of	LTIsy	stems	using t	ime do	main ar	nd DFT	techni	ques			
CO2	Comp	ite DF	Γ of rea	al and	comple	ex disc	rete tir	ne sign	als						
CO3	Comp	utation	of DF7	Γ using	g FFT a	algoritl	nms an	d linea	r filteri	ng appr	oach				
CO4	Design	of Dig	gital III	R and I	FIR fil	ters									
CO5	Realiz	ation o	filters	in dir	ect for	m, case	cade fo	rm, par	rallel fo	orm and	lattice	struct	ures		
					CC)-PO-	PSO N	Iappin	g						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1										2		
CO2	2	1	1										2	1	
CO3	3	2	1										2	1	
CO4	3	1	2										2	1	
CO5	3	1	1										2	1	
Average	2.6	1.2	1.2						Y				2	1	

Subjec	t: - Info	ormati	on The	eory &	Codin	g					Subj	ect Co	de: 15]	EC54		
							Cours	e Outo	comes							
CO1			_	of Dep Order of			ndeper	ndent	Source,	, measi	are of	inform	ation,	Entrop	oy, Ra	ite of
CO2		esent rithms		ormatio	on usi	ng Sha	annon	Encod	ing, Sh	nannon	Fano,	Prefix	and H	uffma	n Enc	oding
CO ₃	Mode	el the o	continu	ious an	d disci	rete con	nmuni	cation	channe	els usin	g input,	outpu	t and jo	int pro	obabili	ties
CO4			a code ional c		compri	ising of	f the cl	heck b	its com	iputed i	ising L	inear E	Block co	odes, o	cyclic	codes
CO5			encodi iolay c	_	deco						les, cyc	lic coo	les, cor	ivolut	ional c	odes,
						CC)-PO-	PSO M	Jappin	σ						
CO	6						_		-upp	g						
CU							P	Os	трр	g					PSOs	
	3	1	2	3	4	5	6	Os 7	8	9	10	11	12	1	PSOs	3
CO		3	2	3	4	5					10	11	12	1 2		_
	1			3	4	5					10	11	12	1 2 2		_
CO	1 2	3	2		4	5					10	11	12			_
CO	1 2 3	3 2	2 3		4	5					10	11	12	2		_
CO CO	1 2 3 4	3 2 2	2 3 2		4	5					10	11	12	2		_

Subject: - (Operating	gsyster	ns							Subj	ect Co	de: 15]	EC553			
						Cours	e Outc	omes								
CO1	Explai	n the go	oals, st	tructur	e, oper	ation a	nd typ	es of op	perating	g systen	ns.					
CO2	Apply	schedu	ling te	chniqu	es to f	ind per	forma	nce fac	tors							
CO3	Explai	Explain organization of file systems and IOCS.														
CO4	Apply	Apply suitable techniques for contiguous and non-contiguous memory allocation.														
CO5	Descri	be mes	sage p	assing,	deadle	ock de	tection	and pr	eventio	n meth	ods.					
					CC)-PO-	PSO N	Iappin	g	1 (2)						
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	1											1			
CO2	1	2	3													
CO3	2	1												1		
CO4	1	2	3										1	-		
CO5	1	2	3													
Average	1.6	1.6	3	-	-	-	-	-	-	-	-	-	1	1		

Subject: - I	rogramn	ning in	C++		16					Subj	ect Co	de: 151	EC562		
						Cours	e Outo	omes	,						
CO1	Explai	n the o	bject o	rientec	d progr	ammir	ıg c++	progra	m struc	ture wit	th all it	s comp	onents	S	
CO2	Develo	op fuct	ions us	ing cla	asses an	nd obje	ects.								
CO3	Apply progra		_	ot of	constr	uctors	, de	structor	rs and	opera	tor ov	erload	ing fo	or eff	icien
CO4	Apply	the con	ncept o	of inher	ritance	, pointe	ers, vir	tual fur	nctions	and pol	ymorp	hism fe	eatures	S.	
CO5	Develo	op prog	grams ı	using s	uitable	I/O ar	nd file	operation	ons for	differer	nt appl	ication			
					C)-PO-	PSO N	Iappin	g						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2	2	
CO2	2	2	2										2	2	
CO3			2										2	2	
CO4		2	2						11				2	2	
CO5	2	2	2										2	2	
Average	2	2	2										2	2	

Subject: - I	Digital Si	gnal Pr	rocessi	ing Lal	b					Subj	ect Co	de: 151	ECL57	7		
						Cours	e Out	comes								
CO1	Unders of sign		ne con	cepts c	of analo	og to d	igital c	onvers	ion of s	ignals a	nd fre	quency	doma	in sam	plin	
CO2	Model	Modelling of discrete time signals and systems and verification of its properties and results. Implementation of discrete computations using DSP processor and verify the results.														
CO3	Impler	Implementation of discrete computations using DSP processor and verify the results. Realize the digital filters using a simulation tool and a DSP processor and verify the frequency a														
CO4		e the di		ilters u	ising a	simula	ation to	ool and	a DSP	process	or and	verify	the fre	quenc	y an	
					C	D-PO-	PSO N	Aappin	g							
						P	Os							PSOs		
COs														1303		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	_	
COs	1 2	3	3	4	5	6	7	8	9	10	11	12	2	_	_	
	-		3	4	5	6	7	8	9	10	11	12	2 2	_	_	
CO1	2	3	3	4	3	6	7	8	9	10	11	12		_	_	
CO1	2 3	3 2		2		6	7	8	9	10	11	12	2	_	3	

Subject: -]	HDL La	b								Subj	ect Co	de: 1	SECL:	58	
						Cours	se Out	come	S						
CO1			erilog/ el Abs			ams to	simul	ate C	ombinati	onal cir	rcuits i	n Dat	aflow,	Behav	ioura
CO2	Descr Descr		sequen		circui nulatio			flip	flops	and	count	ters	in	Behav	ioura
CO3	Synth	esize C	Combin	ationa	l and S	equent	ial circ	cuits c	n progra	mmable	e ICs a	nd tes	t the h	ardware	e.
CO4	Interfa	ace the	hardw	are to	the pro	gramn	nable c	hips a	nd obtai	n the re	quired	outpu	t.		
					C	O-PO-	PSO I	Ларр	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	2									2		
CO2	3	3	3	2									2	1	
CO3	- 3	3	3	2									2		
CO4	3	3	3	2	2								2		
Average	3	3	3	2	2								2		

Semester- VI

Subject: -	Digital (Commi	inicatio	on						Subj	ect Co	de: 15	EC61		
						Cours	se Out	comes							
CO1	Assoc	iate an	d apply	the c	oncepts	s of ba	ndpass	sampli	ing to w	ell spec	cified s	ignals	and ch	annels	
CO2			forman d non b					ates fo	r low p	ass and	band	pass s	ymbol	under	idea
CO3			ibol pro		ng and	perfor	mance	param	eters at	the rec	eiver u	ınder i	deal an	d corr	epted
CO4				_		*				rted syn				ed cha	nnel
CO5	Analy	ze and	compu	ite spr	ead spe	ctrum	techni	ques.					2		
The second					C	O-PO-	PSO N	Aappin	g						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2										2	2	
CO2	3	3	2										2	2	
CO2															
CO3	3	2	2										3	2	
	3	2 2	2										3 2	2	
CO3	-														

Subject: -	ARM M	licroco	ntrolle	r & En	ıbedde	dSyste	ms	ie.		Subj	ect Co	de: 151	EC62			
						Cours	e Out	comes								
CO1	Under M3.	rstand	the arc	hitectu	ıral fea	itures	and in	structio	n set o	f 32 bi	t micr	ocontro	ller A	RM C	orte	
CO ₂	Progra	am AR	M Cor	tex M3	using	the va	rious i	nstructi	ons and	l C lang	guage f	or diffe	erent a	pplicat	ions	
CO3		rogram ARM Cortex M3 using the various instructions and C language for different application inderstand the basic hardware components and their selection method based on the characteristic and attributes of an embedded system. Develop the hardware software co-design and firmware design approaches.														
CO4	Devel	op the	hardwa	are sof	tware c	o-desi	gn and	firmw	are desi	gn appi	roache	5.				
CO5	Expla	in the r	need of	real ti	me ope	erating	systen	n for en	nbedde	d system	n appli	cations				
					C	O-PO-	PSO N	Iappin	ıg							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3		2										3			
CO2	3		2										3			
CO3	3	2											3			
CO4	3	2	2	1									3			
CO5	3												3			
Average	3	2	2	1	_	_	-	-	-	-	-	-	3	-	_	

Subject: -	VLSI D	esign								Subj	ect Co	de: 15	EC63		
						Cours	e Out	comes							
CO1	Learn a				tion ar	nd ope	ration	of MO	SFT, F	abricati	on ste	ps, Sta	tic and	d Swit	ching
CO2	Learn l				ams a	nd un	derstar	nd MO	S trans	istor pa	arasitic	chara	cterist	ics, i.e	., it
CO3	Underst								and ho	w it im	pacts	scaling	and p	erforn	nance
CO4	Design PLAs								ator, ad	ders, m	ultiplie	ers, RO	Ms, S	RAMs	, and
CO5	Describ	e the s	ources	and ef	fects o	f clock	skew	and ver	rify and	validat	e the d	esign.			
								Aappin							
						P	Os							PSOs	
	and the same of th														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
COs CO1	1 2	2	3	4	5	6	7	8	9	10	11	12	2	2	
	-	2	2	4	5	6	7	8	9	10	11	12		2	
CO1	-			4	5	6	7	8	9	10	11	12	2	2	
CO1	-	2	2	4	5	6	7	8	9	10	11	12	2	2	
CO1 CO2 CO3	2	2	2	2	5	6	7	8	9	10	11	12	2 2 2	2	

Subject: -	Comput	ter Com	munic	cation 1	Netwo	rks				Subje	ect Co	de: 151	EC64			
						Cours	e Out	comes								
CO1	Identi	fy the p	rotoco	ls and	function	ons ass	ociated	l with t	he trans	port lay	er ser	vices				
CO2								r netwo	orks and	disting	uish be	etween	the O	SI		
CO3	Distin	reference model and TCP/IP protocol suite. Distinguish the basic network configurations and standards associated with each network Construct a network model and determine the routing of packets using different routing														
CO4	Const		etworl	k mode	el and o	determ	ine the	routing	g of pac	kets usi	ng diff	erent r	outing			
Tall of					C	O-PO-	PSO N	Iappin	ıg							
						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
													2			
CO1	2	2														
CO1	2 2	3											2			
CO2	2	3											2			

Subject: -	Artificia	al Neur	al Netv	vorks						Subje	ect Co	de: 15E	EC653			
							e Outo									
CO1	model	ing.								cial inte		200				
CO2		Understand the concepts and techniques of neural networks through the study of the most important neural network models. Evaluate whether neural networks are appropriate to a particular application.														
CO3																
CO4		neural mance		rks to	particu	ılar apı	plicatio	ns, and	to kno	w what	steps t	o take	to imp	rove		
					C	0-PO-	PSO N	Aappin	g							
60						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
		2	2	3									3			
CO1	3	2	2	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				tales and the same of the same							
CO1	2	3	3	1									2			
		-		1 3	1								2			
CO2	2	3		1	1 3								2	3		

Subject: -	Digital	Switch	ing Sy	stems						Subj	ect Co	de: 15]	EC654			
					100	Cours	se Outo	omes								
CO1	Descr	ibe the	electro	mecha	anical s	witch	ing syst	ems ar	nd its co	mpariso	on with	n the di	gital s	witchin	ng.	
CO2	Deten	mine th	e telec	ommu	nicatio	n traff	ic and i	ts mea	sureme	nts.						
CO3	Define	Define the technologies associated with the data switching operations. Describe the software aspects of switching systems and its maintenance.														
CO4	Descr	ibe the	softwa	re asp	ects of	switch	ning sys	stems a	nd its n	naintena	ance.					
					C	O-PO	-PSO N	lappin	ıg							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3											2			
CO2	3	3											2			
CO3	3						2						2			
CO4	3						3						2			
Average	3	3	-	-	-	-	2.3	-	-	-	-	-	2			

Subject: -	Digital	System	n Desig	n Usir	ng Veri	log				Subj	ect Co	de: 15]	EC663		
						Cours	e Out	comes							
CO1		n emb		systen	ns, usi	ng sm	all mi	crocon	trollers,	larger	CPUs	s/DSPs	, or h	ard or	sof
CO2	Desig device		Constru	ct the	comb	ination	al circ	cuits u	sing dis	screte g	gates a	nd pro	gramr	nable	logi
CO3	Descr	ibe Ve	rilog m	odel fo	or sequ	ential	circuit	s and te	est patte	rn gene	ration				
CO4	Explo	re the	differen	it type	s of sei	micono	luctor	memor	ies and	their us	age for	specif	ic chir	desig	n
CO5									and I/C						
COS	systen	n desig	n												
	systen	n desig	n		C	O-PO-		Aappin							
	systen	n desig	n		C									PSOs	
COs	system	n desig	n 3	4	C(PSO N			10	11	12	1	PSOs 2	_
				4		P	PSO N	/Iappin	ıg			12			_
COs	1		3	4		P	PSO N	/Iappin	ıg			12	1		_
COs	1 3	2	3 2	4		P	PSO N	/Iappin	ıg			12	1 2		3
COs CO1 CO2	1 3 2	2 1 3	3 2 3	4		P	PSO N	/Iappin	ıg			12	2 2	2	_
COs CO1 CO2 CO3	1 3 2 2	2 1 3 3	3 2 3 3	4		P	PSO N	/Iappin	ıg			12	1 2 2 2	2	_

Subject: -	Python A	Applica	tion P	rogran	nming					Subje	ect Co	de: 150	CS664		
,						Cours									
CO1	Exami		hon s	yntax	and se	mantic	s and	be flu	ent in	the use	of P	ython :	flow o	control	and
CO2	Demor	nstrate	profici	iency i	n hand	ling St	rings a	nd File	Systen	ıs.					
CO3	use Re	gular E	Expres	sions.						structu			, Dicti	onarie	s and
CO4	Interpr	et the	concep	ts of C	bject-	Oriente	ed Prog	grammi	ng as u	sed in P	ython.				
CO5	Impler in Pyth		kempla	ry app	licatio	ns rela	ted to	Networ	k Progr	ammin	g, Web	Service	ces and	l Datal	oases
					C	O-PO-	PSO N	Aappin	g						
						P	Os							PSOs	
COs			2	4	5	6	7	8	9	10	11	12	1	2	
000	1	2	3	4	2	V	,	0				-			3
CO1	2	1	3	4	3		,	0					2		3
	1 2 1	1 2	3	4	3			0					2		3
CO1	1 2 1 2	1	1	4				0					2		3
CO1	1	1 2		1				0					2		3
CO1 CO2 CO3	1 2	1 2 2						0					2	2 2	3

Subject: -	Embedo	led Co	ntrolle	r Lab	Teles					Subje	ect Co	de: 151	ECL67		
3						Cours	e Outo	omes							
CO1	Unders	stand tl	ne instr	uction	set of	ARM	Cortex	M3, a	32 bit r	nicroco	ntrolle	r and t	ne		
CO2	Progra	m ARI	M Cort	ex M3	using	the var	rious ii	nstructi	ons in a	ssembl	y level	langua	ige		
CO3	Interfa	ce exte	ernal de	evices	and I/C) with	ARM	Cortex	M3.						
CO4	Develo	op C la	nguage	e progra					for emb	edded s	ystem	applica	ations		
					C	O-PO-	PSO N	Aappin	g						
						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3								2	3	3
CO2	2	3	2	2	3								2	1	
CO3	3	2	2	2	3									1	
CO4	2	2	2	2	3								3		
Average	2.5	2.5	2.3	2.3	3	-	-	-	-	-	-	-	2.3	1.6	1

Dept. of Electronics & Communications SJB Institute of Technology Bengaluru-560060

Page 18

Subject: -	Compu	ter Net	works	Lab	14	fig.	a supplied			Subj	ect Co	de: 151	ECL68		
			, ,		7.2%	Cours	e Out	comes							
CO1	Choos levels.		ble too	ols to r	nodel	a netw	ork an	d unde	erstand	the prot	cocols	at vario	ous OS	I refe	renc
CO2	Design	n a suit	able n	etwork	and si	mulate	using	a Netw	ork sin	ulator t	ool.				
CO3	Simul	ate the	netwo	rking c	oncept	ts and p	orotoco	ols usin	g C/C+	+ progr	ammir	ıg.			
CO4	Mode	the ne	tworks	s for di	fferent	config	guratio	ns and	analyze	the res	ults.				
					C	O-PO-	PSO N	Mappin	ıg						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2											2		
CO2	1		2										2		
CO3	1			2									2		
CO4	2	1											2		
Average	1.3	1.5	2	2									2		

Semester- VII

Subject: -	Microv	vave a	nd Ant	tennas						Subj	ect Co	de: 15	EC71		
						Cours	e Out	comes							
CO1									unders			yze wa	veguio	des, co	axial
CO2					smissio edance			ving pr	rimary a	and seco	ondary	consta	nts and	d to us	se the
CO3					the bees for s				ive dev	rices us	ing sc	atterin	g para	meters	and
CO4	Under	stand a	and ana	alyze v	arious	antenn	a conf	iguratio	ons acco	ording to	o the a	pplicat	ion	()	
					C	O-PO-	PSO I	Mappir	ıg						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	2	2	2										2	2	
CO3	2	2											2		
CO4	2	2	2										2	2	
Average	2.3	2	2										2	2	

Head

Subject: -	Digital	Image	Proce	essing						Subj	ect Co	de: 15]	EC72			
						Cours										
CO1	Under color i			formati	ion an	d the	role hu	ıman v	isual sy	stem p	lays in	perce	ption o	of gray	y and	
CO2	Apply	Apply image processing techniques in both the spatial and frequency (Fourier) domains. Analysis of image segmentation techniques and to evaluate the Methodologies for segmentation.														
CO3	Analys	sis of i	mage	segmen	tation	techni	ques ai	nd to ev	aluate t	the Met	hodolo	gies fo	r segm	entatio	on.	
CO4	Condu	ct inde	epende	ent study	y and a	analysi	s of In	nage En	hancen	nent tec	hnique	s.				
					C	O-PO-	PSO N	Aappin	ıg							
60						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2											3			
CO2	3	2	3	2												
CO3	1	2			3								2			
CO4	2			3										NAME OF THE OWNER, OWNE		
	_		3	2.5	3								2.5			

Subject: -	Power	Electro	nics							Subje	ect Co	de: 15E	EC73		
						Cours	e Outo	omes							
CO1	Unders	stand tl	ne cons	structio	on and	worki	ng of v	arious	power d	levices					
CO2	Design	and a	nalysis	of thy	ristor	circuits	s with	differen	nt trigge	ring co	ndition	s. •			
CO3	society	7							led rect						
CO4	Demoi					the p	ower	electron	nics circ	cuits ar	nd mod	dels usi	ing m	odern	tool
					C	O-PO-	PSO N	Jannin	ıa						
					- T		1001	Tappin	g						
	T						Os	тарри	ig					PSOs	1
COs	1	2	3	4	5			8	9	10	11	12	1	PSOs 2	_
COs	1 3	2	3	4		P				10	11	12	1 2	-	_
	1 3 2	2	3	4		P				10	11	12		-	_
CO1	+		3	3		P				10	11	12	2	-	_
CO1	2		2			6 6				10	2		2 2	-	3

Head +

Subject: -	Multin	nedia C	commu	inication	on					Subj	ect Co	de: 151	EC741		
					C deep	Cours	e Out	comes				- 3			
CO1	Under	stand tl	he bas	ics of o	differer	nt mult	imedia	netwo	rksand a	applicat	ions				
CO2	Under	stand t	he diff	erent c	ompre	ssion t	echniq	ues to c	compres	s audio	and v	ideo			
CO3	Descr	ibe mul	timed	ia com	munica	ation ac	cross n	etwork	S						
CO4	Analy	se diffe	erent n	nedia t	ypes to	repres	ent the	em in di	igital fo	rm.					
CO5	compr	ess dif	ferent	types	of text	and im	ages u	sing dif	ferent c	ompres	sionte	chnique	es and	analys	e
					C	O-PO-	PSO N	Mappin	ıg						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1											2		
CO2	2	2											2		
													2		
CO3	2	2													
CO3	3	2											2		
													2		

Subject: -	DSP A	Algorith	nms and	d Arch	nitectur	e				Subj	ect Co	de: 15	EC751		
						Cours	se Out	comes							
CO1	Comp	rehend	the kn	owled	lge and	conce	pts of	digital s	ignal p	rocessir	ig tech	niques			
CO2					ecture o				ıl buildi	ing bloc	ks and	d apply	the kn	owled	lge to
CO3	pipeli		tructure	e of I	OSP pro				odes, in						
CO4					s using sing Co				nd cond tool.	duct ex	perime	ents wi	th asse	mbly	level
CO5	device	e and d	emons	trate tl	he impl m using	ement COD	ation of	f Bio-t	ichanne elemetr g on DS	y Recei	ver, S				
	T						Os	Luppin	5					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2										2		
CO2	2	3	3										2		
CO3	3	3	3		2								3		
CO4	3	2	2		3								3		
CO5	3	2	2		3								3		
Average	2.6	2.6	2.4		2.6								2.6		

Subject: -	Advan	ced Co	mmun	ication	Lab					Subj	ect Co	de: 151	ECL76		
						Cours	e Out	comes							
CO1	Deterr	nine th	e chara	acterist	ics and	l respo	nse of	microv	vave de	vices.					
CO2	it.								s and co						
CO3	perfor	mance	param	eters u	sing M	IATLA	B.		displa					putatio	on o
CO4									ns and c						
CO5	Deteri	mine th	e losse	es in op	tical fi	iber an	d meas	sure nu	merical	apertur	e using	g optica	al fiber	link.	
					C	O-PO-	PSO N	Mappir	ıg						
50						P	Os					. 31		PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3		3									2		
CO2		3		3									3		
CO3	3			3	3										3
CO4	3		3	3									3		
CO5				3									3		
Average	3	3	3	3	3	-	-	-	-	-	-	-	2	-	3

Subject: -	VLSII	Lab								Subje	ect Co	de: 15I	ECL77		
-						Cours	e Outo	comes							
CO1	Develo	op the t	est bei	nch to	simulte	e the va	arious	digital (circuits.						
CO2	Exami	ne and s like (simul DPAM	ate bas P,AD(sic CM C,circu	IOS ci	rcuits l	ike inv	eter,con aramete	nmon s	ource	amplif	ier and	high	leve
CO3										alog circ					
CO4	Design	n the ga	ates an	d reali	ze the	shift re	gister,	adder u	sing ga	tes to m	eet de	sired pa	aramet	er.	
					C	O-PO-	PSO N	Aappin	ıg	5. 1					
						P	Os					3,0		PSOs	_
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			2								3	1	
CO2	3	2			2								3	1	
CO3	2	3	2		2								3	1	
CO4	3	2	2		2								3	1	
					2								2	1	

Semester-VIII

Subject: -	Wirele	ss Cell	ular aı	nd LTE	E4GBr	oadban	d			Subj	ect Co	de: 15	EC81		
						Cours	e Out	comes							
CO1	-	in the						nisms i	n wirel	ess cha	nnels	,systen	n archi	itecture	and
CO2		se the					ace pro	otocols	and al	so unde	erstand	the c	oncept	if mu	ltiple
CO3		strate nission		_	s of p	orotoco	ls use	d , sp	ectrum	alloca	tion a	nd dis	stinguis	sh diff	erent
CO4		and Ev			erform	nance (of resc	ource n	nanager	nent an	d pac	ket da	ta prod	cessing	and
					C	O-PO-	PSO N	Aappin	ıg						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2							3	3	
CO2	3	2				2							2	3	
CO3	2	3				3							2	2	
CO4	2	3				3							3	2	
Average	2.5	2.5	-	-	-	2.5	-	-	-	-	-	-	2.5	2.5	

Subject: -	Fiber Op	otics &	Netwo	orks						Subj	ect Co	de: 15	EC82		
						Cours	e Out	comes							
CO1									al fiber n optica					d mod	les c
CO2		stand							princi					tector	s an
CO3	Explai		demo	onstrat	e the	conce	ots of	WDM	, activ	e and	passiv	e elen	nents a	and o	ptica
CO4	Illustr	ate the	netwo	rking a	spects	of opt	ical fib	er and	describ	e variou	is stan	dards a	ssociat	ed wit	h it
					C	O-PO-	PSO N	Aappin	g				, , , , , , , , , , , , , , , , , , , ,		
						P	Os								
COs	The same of the sa													PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	PSOs 2	
COs CO1	1 3	3	3	4	5	6	7	8	9	10	11	12	1 2	PSOs 2	
	3 3	_		4	5	6	7	8	9	10	11	12	1	PSOs 2	
CO1	-	3		4	5	6	7	8	9	10	11	12	1 2 .	PSOs 2	
CO1	3	3	3	4	5	6	7	8	9	10	11	12	2 2	PSOs 2	3

Head

Subject: - N	Network	& Cyb	er Secu	irity						Subj	ect Co	de: 151	EC835		
						Cours	e Out	comes							
CO1								to provi							
CO2			and ana arity sol		ne vuln	erabili	ties in	any co	mputin	g syster	n for c	lifferen	t appli	cations	and
CO3	Apply	scient	ific me	thod to	desig	n antip	atterns	s and pe	erform i	nvestig	ations				
CO4	Impler	nent tl	ne conc	ept of	cyber	securit	y fram	ework i	in comp	uter sy	stem a	dminis	tration		
					C	O-PO-	PSO N	Mappin	g	10.0					
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	1									3	3	3	
CO2	3	3	3	3				2				2		2	2
CO3			3	3				3					3	2	2
CO4			3									2	1		2
Average	2.5	3	2.5	3	-	-	-	2.5	-	-	-	2.3	2.3	2.3	2

Subject: -	Internshi	p/Prof	essiona	al Prac	tice					Subj	ect Co	de: 15	EC84		
						Cours									
CO1	multid	iscipli	nary cr	itical t	hinkin	g and a	daptab								
CO2								expecta lic sect		f perfor	rmance	on the	e part	of tech	nical
CO3	Develo	op wor	k habit	ts and a	attitud	es nece	ssary f	for succ	essful e	employa	ability.				
CO4	Adopt	ing the	ory an	d pract	ices le	arnt by	the st	udents t	to enha	nce thei	r abilit	ties in t	the fiel	d of str	ady.
					C	O-PO-	PSO N	Aappin	g						
						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		2	2		2	1		3	3	2				2	2
CO2	2	2	2	2			2				3		2	2	
CO3								2	2	2	1	3		1_	2
CO4	3	2		2		2	1		1			3	3	2	
Average	2.5	2	2	2	2	1.5	1.5	2.5	2	2	2	3	2.5	2.3	2

Subject: -	Project '	Work								Subj	ect Co	de: 15	ECP85	5	
						Cours	e Out	comes							
CO1	Identi knowl	7	domair	of int	terest a	and pro	blem	with m	ultidisci	olinary	appro	ach by	applyi	ng acc	luire
CO2	Perfor in it.	m requ	uireme	nt anal	ysis ar	nd ident	ify de	sign me	ethodolo	gies w	ith nov	elty &	societ	al rele	vanc
CO3		adva	nced	engine	ering	tools	and p	erform	hardwa	are/soft	ware	design	from	a pr	oduc
CO4	Comb	ine all	the mo	dules	throug	h effec	tive te	am woi	k after e	efficien	t testin	ıg.			
CO5	Task	comple	tion ar	nd com	pilatio	n of the	e proje	ect repo	rt.						
					C	O-PO-	PSO I	Mappir	ıg						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3				3					3		
CO2		3	3	3		2		2	2		3		3		
CO3	3	3			3		3		3						3
CO4	3	3			3	3			3					3	
CO5	3	3							3	3	3	3			3
000														1	

Subject: -	Seminar									Subj	ect Co	de: 15	ECS85	;	
						Cours	e Out	comes		•					
CO1	Study, edge to			and em	phasiz	ze the in	nforma	tion fro	om liter	al and b	eyond	literal	of var	ious c	utting
CO2						wledge l in sur		yze the	e comp	rehensi	ve sol	ution	to the	issue	s lik
CO3	To imp	part sk	ills in	prepari	ng det	ailed re	eport d	escribi	ng the p	aper an	d resul	ts.			
CO4	Ability scienti				dently	and d	emons	trate fo	or effec	tive co	llection	n, anal	lyze ar	nd org	ganiz
					C	0-P0-	PSO N	Aappin	ıg						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
	_						,	0	,	10		1.4	1	4	_
CO1	2	3		2	1			0	,	10		1	2		_
CO1	2 2			2	1	1	·	1		10		1	2	2	_
		3			1	1	·			10	2	1	_	2	3 1 1
CO2		3			1	1 2	,		3	3		1	_		3 1 1 2

HOD

Dept. of Electronics & Communication Eng SJB Institute of Technology Bengaluru-560060

Dept. of ECE/SJBIT