|| JAI SRI GURUDEV || Sri AdichunchanagiriShikshana Trust (R) ### SJB INSTITUTE OF TECHNOLOGY #### DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING # **Course Outcomes and CO-PO-PSO Articulation Matrix** #### Batch 2017-21 | | | | | | | Seme | ster-I/ | II | | | | | | | | |-----------------|-----------------|----------------------------|------------------|---------|-----------------|---------------|--------------------|-------------------|----------|---------------------|--------------------|--------------------|-----------|---------|-------| | ubject: Basi | ic Electro | nics | | | | | | | | Subj | ect Co | de: 15E | ELN15 | /25 | | | | | | 0, | | C | ourse | Outco | mes | | | | | | | | | CO1 | Ability | y to ap | ply the | applic | cations | of dio | de in re | ectifier | s, filte | r circui | its and | BJT | | | | | CO2 | | | | | | | | | | its like
or usin | | ifiers (i
MPS | inverti | ng and | l nor | | CO3 | | | | | | | | | | | | uilding
basic u | | | | | | Analy | co the | - fina | 411- | C | Ci. C | 1000 | n . | 1- 41- | | 1 ' | | 1 | c · | ~ | | CO4 | micro | | | ctionin | g or | IIIp-I | lops. | Descri | be in | e arc | hitectu | re and | a inte | eriacin | ig (| | CO4 | Under | control
stand | ler
the f | unction | ning o | of a | commi | ınicati | on sy | stem , | analys | e diffi | erent | | | | | Under | control
stand | ler
the f | unction | ning o | of a | commu | inication of diff | on sy | stem , | analys | e diff | erent | | | | CO5 | Under | control
stand | ler
the f | unction | ning o | of a | communciples | inication of diff | on sy | stem , | analys | e diff | erent | | latio | | | Under | control
stand | ler
the f | unction | ning o | of a sic prin | communciples | inication of diff | on sy | stem , | analys | e diff | erent | modu | latio | | CO5 | Under
techno | control
stand
logies | the f | unction | ning of the bas | of a sic prin | communciples SO Ma | inication of diff | on sy | stem ,
ypes of | analys,
f Trans | e diffiducers | erent | modu | latio | | CO5 | Under techno | stand
blogies | the f | unction | ning of the bas | of a sic prin | communciples SO Ma | inication of diff | on sy | stem ,
ypes of | analys,
f Trans | e diffiducers | erent . | modu | latio | | COs
COs | Under techno | stand blogies. | the f. Unde | unction | ning of the bas | of a sic prin | communciples SO Ma | inication of diff | on sy | stem ,
ypes of | analys,
f Trans | e diffiducers | erent | modu | latio | | COs CO1 CO2 | Under techno | stand clogies. | ler the f . Unde | unction | ning of the bas | of a sic prin | communciples SO Ma | inication of diff | on sy | stem ,
ypes of | analys,
f Trans | e diffiducers | 1 2 2 2 | modu | latio | | COs CO1 CO2 CO3 | Under techno | stand blogies. | ler the f . Unde | unction | ning of the bas | of a sic prin | communciples SO Ma | inication of diff | on sy | stem ,
ypes of | analys,
f Trans | e diffiducers | 1 2 2 2 2 | modu | latio | # Semester- III | ubject: Eng | gineering | Math | emati | cs -III | | | | | | Subj | ect C | ode: 1 | 7MA | Г31 | | |-------------|-----------|---------|---------|-------------------|-------------------|---------|--------------------|--------------------|--------|------------------------------|---------|----------|--------|-------------|-------| | | | | | | | urse | | | | | | | | | | | CO1 | comm | unicati | on. | | | | | | | es to | | | | | | | CO2 | | | | linear
ansfort | | | | | us-tim | e signa | ils and | digital | signa | l proce | ssing | | CO3 | Emplo | y appr | opriate | e nume | rical m | ethods | s to sol | ve alge | ebraic | and tra | nscend | lental e | quatio | ns. | | | CO4 | field o | felect | ro-mag | gnetic a | and gra | vitatio | nal fie | lds and | lfluid | theorei
flow pi | roblem | IS. | | | | | CO5 | variati | ons.Ut | ilize | the co | ncepts
ecision | of f | unction
y,synth | nal an
nesis ar | d this | simple
er vari
mizatio | iation | in the | app | lication | us of | | | | | | | CO- | PO-PS | SO Ma | appin | g | | | | | | | | CO- | | | | | | PC | s | | | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | | 1 | | | | | - | , | U | 9 | 10 | 11 | 14 | 1 | - | 3 | | CO1 | 3 | 2 | 3 | | | | , | 0 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | _ | | | | | | , | 0 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | | 3 | 2 | | | | | , | 0 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO2 | 3 | 2 2 | | | | | , | | 9 | 10 | 11 | 12 | | 2 | 3 | | CO2
CO3 | 3 3 3 | 2 2 2 | | | | | , | | 9 | 10 | 11 | 12 | | | 3 | | ubject: E | lectronic l | Instrun | nentat | ion | | | | | | Subj | ect Co | de:17 | EC32 | | | |-----------------|--------------------------------------|-----------------|---------|--------------------|---------|-----------------|----------------|------------------|-----------------|----------|--------------------|--------------------|------------------|---------------|------| | | | | | | Co | urse | Outco | mes | | | | | | | | | CO1 | Describe | | | | | | | | | | | | | | | | CO2 | Describe
Ammeter | s and V | oltmet | ters. | | | | | | | | | | | | | CO3 | Describe
voltage, f
solutions. | requen | cy, tim | ne peri | od, pha | ise dif | ference | of sig | nals, 1 | rotation | speed | l, capac | citance | and p | Но | | CO4 | Describe
field Stre | functiongth, in | nal co | ncepts
nce, str | and o | peration pic sp | on of veed, in | arious
out of | Analo
phase, | og mea | suring
oils, ir | instrui
sulatio | ments
n resis | to me stance. | asur | | CO5 | Describe | and dis | cuss fi | unction | ning an | d types | of Os | cillosc | opes, S | Signal g | generat | ors and | l Trans | sducer | s. | | CO6 | Utilize A | C and I | DC bri | dges fo | r passi | ve con | nponer | t and f | reque | ncy mea | asurem | ents. | | | | | | | | | | CO- | PO-PS | SO M | appin | g | | | | | | | | CO- | | | | | | PO | S | | | | | | | PSOs | _ | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 2 | | | | | | | | | | 2 | | | | | 2 | 2 | 3 | | | | | | | | | | 3 | | | | CO ₂ | 2 | 2 | 1 | | | | | | | | | | | | | | CO2 | 2 | 1 | 1 | | | | | | | | | | 3 | | | | | | 1 1 | 1 2 | | | | | | | | | | 3 | | | | CO3 | 2 | 1 | - | | | | | | | | | | | | | | CO3 | 2 2 | 1 | 2 | | | | | | | | | | 3 | | | Head Dept. of Electronics & Communication Engage | ubject: Ana | log Elec | tronics | ; | | | | | | | Subj | ect Co | de: 17 | EC33 | | | |-------------|----------|-------------------|---------|----------|----------|---------|---------|----------|---------|----------|---------|----------|---------|-------------|-----| | | | | | | C | ourse | Outco | mes | | | | | | | | | CO1 | | op the analys | | y to uno | derstan | d the c | lesign | and wo | rking | of BJT | / FET | amplif | iers w | ith sm | all | | CO2 | Analy | se the | low an | d high | freque | ncy res | sponse | s of co | mmon | amplif | ier cir | cuits us | sing BJ | T/FE7 | Γ. | | CO3 | | ate the | | | | | k on di | fferent | paran | neters o | of an A | mplific | er and | differe | nt | | CO4 | | ibe the
BJTS/I | | of pos | itive fe | edbacl | c and u | indersta | and the | e worki | ng of | differer | nt Osci | llators | | | CO5 | Evalu | ate the | efficie | ency of | Class | A and | Class 1 | B powe | er amp | lifiers | and vo | ltage re | gulato | rs | | | | • | | | | CO- | PO-P | SO Ma | pping | | | | | | | | | COs | | | | | | PO | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 2 | | | | | | | | | | 2 | | | | CO2 | 3 | 2 | | | | | | | | | | | 2 | | | | CO3 | 3 | 2 | | | | | | | | | | | 2 | | | | CO4 | 3 | 2 | | | | | | | | | | | 2 | | | | CO5 | 3 | 2 | 2 | | | | | | | | | | 2 | | | | 000 | | | | | | | | | | | | | | | | | subject: Digi | ital Elect | ronics | | | | | | | | Subj | ect Co | de: 17 | EC34 | | | |--------------------------|-----------------|-----------------|--------|---------|----------|---------|---------|---------|--------|---------|---------|---------|------------------|---------|--------| | | | | | | C | ourse | Outco | mes | | | | | | | 11.61 | | CO1 | Devel
techni | op and
ques. | d sim | plify | switch | ing e | quation | n usin | g Ka | rnaugh | Map | s and | Quir | neMcC | lusk | | CO2 | | in the ompara | _ | on of | decode | ers, en | coders | , multi | plexer | s, dem | ultiple | xers, a | dders, | subtra | actor | | CO3 | Clasif | y and I | Demon | starate | the wo | orking | of Late | ches an | d Flip | Flops | (SR,D, | T and | JK). | | | | CO4 | Design | n and c | onstru | ct Syn | chrono | us/Asy | nchroi | nous C | ounter | s and S | hift re | gisters | using | Flip Fl | ops. | | | Devel | op and | constr | uct Me | ealv/M | oore N | Indels | and sta | te dia | arome | for the | given (| clocke | d segu | entia | | CO5 | circuit | | COMBU | | outj/141 | oore iv | loucis | and sta | ne dia | grains | ioi the | given | CIOCKC | u sequ | CIItio | | CO5 | 2021 | | | | | | | pping | | grains | ior the | given | CIOCKC | u scqu | | | | 2021 | | | | | | SO Ma | | | grams | Tor the | given | CIOCKC | PSOs | | | COs | 2021 | | 3 | 4 | | PO-PS | SO Ma | | | 10 | 11 | 12 | 1 | | | | | circuit | S. | | | CO- | PO-PS | SO Ma | pping | | | | | 1 2 | PSOs | | | COs | circuit | S. | | | CO- | PO-PS | SO Ma | pping | | | | | 1 | PSOs | | | COs
CO1 | circuit | S. | 3 | | CO- | PO-PS | SO Ma | pping | | | | | 1 2 | PSOs | | | COs
CO1
CO2 | circuit | 2
1 | 3 | | CO- | PO-PS | SO Ma | pping | | | | | 1
2
2 | PSOs | | | COs
CO1
CO2
CO3 | 1 3 1 1 | 2
1 | 3 2 | | CO- | PO-PS | SO Ma | pping | | | | | 1
2
2
2 | PSOs | | | Subject: No | etwork A | nalysi | S | | | | | | | Sub | iect C | ode: 17 | EC35 | | | |-----------------|--------------------|---------|------------|---------|---------|---------|---------|----------|---------|---------|--------
---------|----------|---------|-----| | | | 4 | | | (| Course | Outce | omes | | | | | | | | | CO1 | Disting | guish t | he netwo | orks ar | nd disc | uss vai | ious c | ircuit a | nalvei | techn | iguag | | | | | | CO2 | Analys
the give | e the c | circuit pa | aramet | ers dur | ring sw | ritchin | g transi | ents a | nd appl | y Lapl | ace tra | nsforn | n to so | lve | | CO3 | | | rk theore | ems to | solve : | a giver | netw | rle | | | | | | | | | CO4 | Evaluat
networl | te the | frequenc | y resp | onse fo | or reso | nant ci | rcuits a | and the | netwo | rk par | ameters | s for tv | vo por | t | | | | | | | CO- | PO-P | SO Ma | apping | | | | | | | | | COs | | | | | | PC | | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | | | | CO ₁ | 2 | 2 | 1 | | | | | | | 10 | 11 | 12 | 1 | 2 | - | | CO ₂ | 2 | 2 | 1 | | | | | | | | | | 2 | | _ | | CO3 | 2 | 2 | 1 | 1 | | | | | | | | | 2 | | | | CO4 | 2 | 2 | 2 | 1 | | | | | | | | | 2 | | | | Average | 2 | 2 | 1.25 | 1 | | | | | | | | | 2 | | | | 0 | | 2 | 1.23 | 1 | | | | | | | | | 2 | | | | <u> </u> | ngineerin | g Elect | romag | netics | | | | | | Sub | ject C | ode: 1 | 7EC36 | | | |-------------------|-------------------|---------------------|---------|----------|----------|---------|---------|----------|---------|----------|---------|--------|---------|---------|-----| | | | | | | (| Course | Outc | omes | | | | | | | _ | | CO1 | Evalua
method | te prob
ls or by | lems o | n elect | ric fiel | d due | to poin | t, linea | r, volu | me cha | irges b | y appl | ying co | onventi | ona | | CO2 | Determ
equatio | ine pot | | | ergy w | ith res | pect to | point | charge | and ca | pacitar | nce us | ing Lap | olace | | | CO3 | Calcula | te mag | netic f | ield, fo | orce, ar | ıd pote | ntial e | nergy v | vith re | spect to | magn | etic m | aterial | S. | | | CO4 | Apply I | | | | | | | | | | | | | | | | CO5 | Evaluat | | | | | | | | | | | c and | conduc | tors. | | | | | | | | | | | apping | | | | | | | | | ~~ | | | | | | P | Os | | | | | | | PSOs | | | COs | | | | | - | - | - | 0 | 0 | 40 | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 7 | | COs
CO1 | 1 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | _ | 2 | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 2 | 2 | | | CO1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | _ | 2 | | | CO1 | 2 | 2 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 2 | 2 | | | CO1
CO2
CO3 | 1 2 | 2 2 2 | 3 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | _ | 2 | | | ubject: - A | nalog Ele | ectronic | cs Lab | | | | | | | Subj | ect Co | de: 171 | ECL37 | ' | | |-------------|-----------|----------|----------|----------|--------|---------|-----------|---------|---------|---------------------------|---------|----------|---------------|-------------|---| | | | | | | C | ourse | Outco | mes | | | | | | | | | CO1 | Test cire | cuits of | f rectif | iers, cl | ipping | circuit | s, clan | ping c | ircuits | and vo | ltage r | egulato | rs. | | | | CO2 | Determi | ine the | charac | teristic | s of B | JT and | FET a | mplifie | ers and | plot it | s frequ | ency re | spons | e. | | | CO3 | Comput | te the p | erform | nance p | arame | ters of | amplif | iers an | d volta | ge regi | ılators | | To the second | | | | CO4 | Design | and tes | st the b | asic BJ | T/FET | ampli | ifiers, I | BJT Po | wer an | nplifier | and o | scillato | rs | | | | | | | | | CO | -PO-P | SO Ma | apping | , | Programming to the second | | | | | | | CO. | | | | | | P | Os | | | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 3 | | | | | | | 3 | | | | 2 | | | | CO2 | 3 | 3 | | | | | | | 3 | | | | 2 | | | | CO3 | 3 | 3 | | | | | | | 3 | | | | 2 | | | | CO4 | 3 | 3 | | | | | | | | | | | 2 | | | | Average | 3 | 3 | | | | | | | 3 | | | | 2 | | | | Subject: - I | Digital El | ectroni | cs Lab | | | | | | | Subj | ect Co | ode: 17] | ECL3 | 88 | | |--------------|-------------------|----------|-----------|---------|---------|---------|---------|---------|--------|---------|---------|----------|-------|-------------|------| | | | | | | C | ourse | Outco | mes | | | | | | | | | CO1 | Demon | strate t | the trutl | n table | of vari | ous ex | pressio | ns and | comb | ination | al circ | uits usi | ng lo | gic gate | s. | | CO2 | Design
multipl | | | | | ination | al cir | cuits s | such a | s add | ers, s | ubtracto | ors, | compar | ator | | CO3 | Realize | Boole | an exp | ression | using | decode | ers. | | | | | | | | | | CO4 | Constr | uct and | test fli | p flops | , count | ers and | d shift | registe | rs. | | | | | | | | CO5 | Simula | te full | adder a | nd up/ | down | counte | rs. | | | | | | | | | | | | | | | CO | -PO-P | SO Ma | apping | 5 | | | | | | | | COs | | | | | | PO | Os | | | | | | V. | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | | | | | | | OF F | | | | | 2 | | | | CO2 | | 1 | 3 | | | | | | | | | | 2 | | | | CO3 | | 2 | 2 | | 1 | | | | | | | | 2 | | | | CO4 | 2 | 1 | 2 | | | | | | | | | | 2 | | | | CO5 | | 2 | 3 | | | | | | | | | | 2 | | | | Average | 2 | 2 | 2 | | | | | 1- 11 | | | | | 2 | | | ### Semester- IV | | Engineerin | g Math | iemati | cs -III | | | | | | Sub | ject C | ode: 17 | 7MAT | 31 | | |-------------------|-------------------------------|--|------------------------------|------------------------------------|------------------------------|--|---------------------------
--|--------------------|---------------------|-------------------|-----------|---------------------|-----------------|----------------| | | | | | | (| Course | Outco | mes | | | | | | | | | CO1 | Solve fir step and | st and s
multist | second
ep nun | order
nerical | ordina:
metho | ry diffe | erential | equati | ions ar | ising ir | n flow | proble | ns usi | ng sing | gle | | CO2 | Solve pro | ie syste | ins and | 1 Lege | nare's | polyno | mials i | relating | to sp | herical | polar o | coordin | ate ev | ctame | | | CO3 | theory, fl | nd the and electrical delectrical delectri | analyti
romagi
w visua | city, po
netic tha
alisation | otentia
neory.I
on and | l fields
Describ
image | , resid
e conf | ues and
ormal a | d poles
and bil | of the
linear to | compl | lex poten | ential i
arising | in the f | field
rofoi | | CO4 | Solve pro | blems
ty distr | on pro | bability and s | y distri | ibution
stic ma | s relati | no to d | ligital
d with | signal j | proces | sing.De | etermi | ne join | it | | | problems | for fea | sible r | andom | events | S | | | | | | | | | | | CO5 | Draw the rejecting | validit
the hyp | y of the | andom
e hypo
s.Defir | thesis | process
sition r | sed for | the oi | ven ca | mpling | distrik | nution i | | | or
ems | | CO5 | Draw the | validit
the hyp | y of the | andom
e hypo
s.Defir | thesis ne trans | process
sition p | sed for
probabi | the givility ma | ven sa | mpling | distrik | nution i | | | or
ems | | | Draw the rejecting | validit
the hyp | y of the | andom
e hypo
s.Defir | thesis ne trans | process
sition p | sed for
probabi
ss. | the oi | ven sa | mpling | distrik | nution i | | epting of | ems | | COs | Draw the rejecting | validit
the hyp | y of the | andom
e hypo
s.Defir | thesis ne trans | processition proce | sed for
probabi
ss. | the givility ma | ven sa | mpling
f a Mar | distrib
kov ch | oution i | n acce | epting of probl | ems | | | Draw the rejecting | validit
the hyp | y of the
pothesis | e hypo
s.Defir
meter r | thesis ne trans | processition proce | sed for
probabi
ss. | the given gi | ven sa
atrix o | mpling | distrik | nution i | | epting of | ems | | COs | Draw the rejecting related to | validit
the hyp
discret | y of the
pothesis | e hypo
s.Defir
meter r | thesis ne trans | processition proce | sed for
probabi
ss. | the given gi | ven sa
atrix o | mpling
f a Mar | distrib
kov ch | oution i | n acce | epting of probl | ems | | COs | Draw the rejecting related to | validit
the hyp
discret | y of the
pothesis | e hypo
s.Defir
meter r | thesis ne trans | processition proce | sed for
probabi
ss. | the given gi | ven sa
atrix o | mpling
f a Mar | distrib
kov ch | oution i | n acce | epting of probl | ems | | COs
CO1
CO2 | Draw the rejecting related to | validit the hyp discret | y of the
pothesis | e hypo
s.Defir
meter r | thesis ne trans | processition proce | sed for
probabi
ss. | the given gi | ven sa
atrix o | mpling
f a Mar | distrib
kov ch | oution i | n acce | epting of probl | ems | | COs CO1 CO2 CO3 | Draw the rejecting related to | validit the hyp discret | y of the
pothesis | e hypo
s.Defir
meter r | thesis ne trans | processition proce | sed for
probabi
ss. | the given gi | ven sa
atrix o | mpling
f a Mar | distrib
kov ch | oution i | n acce | epting of probl | ems | | Subject: - | Signal & | & Syste | m | | | | | | | Sub | ject C | ode: | 7EC4 | -2 | | |-----------------|-----------------|----------------|--------------------|------------------|--------------------|---------|---------|----------|---------|----------|---------|---------|----------|---------|-------| | | | | | | | course | | | | | | | | | | | CO1 | Classif and det | y the stermini | ignals
stic/ ra | as cont
indom | tinuous
signals | discr | ete, pe | riodic a | and ape | eriodic | even a | nd odd | , energ | y pow | er | | CO2 | Determ | nine the | linear | ity, car | | | nvaria | nce an | d stabi | lity pro | perties | of con | tinuos | and | | | CO3 | Compu | ite the i | respons
um. | se of a | contin | uous a | nd Dis | crete L | TI syst | em usi | ng con | volutio | on integ | gral an | d | | CO ₄ | Determ | ine the | specti | al char | racteris | tics of | contin | uous a | nd disc | rete tin | ne sior | al neir | g Four | ier an | alvei | | CO5 | Compu | te Z-tra | ansform | ns,inve | erse Z- | transfo | rms ar | d trans | fer fur | iction o | of com | olex L. | CI syste | ems | arysi | | - Partial | | | | | CO- | PO-P | SO M | appin | g | | | | | | | | COs | | | | | | | Os | | 0 | | | | | PSOS | | | CO3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO ₂ | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO3 | 2 | 2 | 2 | | | | | | | | | | 2 | | - | | | 2 | .2 | 2 | | | | | | | | | | 2 | | | | CO4 | 2 | _ | | | | 1 | R | | | | | | 4 | | 1 | | CO4
CO5 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | Subject: - | Control | Systen | ns | | | | | | | Subj | ect C | ode: 1 | 7EC43 | 3 | | |------------|---------------------|---------|---------|---------|----------|----------|----------|---------|----------|----------|----------|----------|---------|-------------|-------| | | | | | | · C | ourse | Outco | mes | | | | | | | | | CO1 | | | Develo | op the | mather | natical | model | of me | chanic | al and e | electric | al syste | ems | | | | CO2 | Develor
signal f | | | | or a giv | ven coi | ntrol sy | stem u | ising b | lock dia | igram | reducti | on tecl | nnique | s and | | CO3 | Determ | ine the | time d | lomain | specif | ication | s for f | rst and | l secon | d order | syster | ns | | | | | CO4 | Determ
locus te | | | ty of a | systen | n in the | e time | domair | using | Routh- | Hurwi | tz crite | rion ar | nd Roc |)t- | | CO5 | Determ | ine the | stabili | ty of a | systen | n in the | e frequ | ency de | omain | using N | lyquis | and bo | ode plo | ots | | | CO6 | Develo | p a con | trol sy | stem n | nodel in | n conti | nuous | and dis | screte t | ime usi | ng stat | e varia | ble tec | hnique | es | | | - | | | | CO- | PO-P | SO M | appin | g | | | | | | | | CO- | | | | | | P | Os | | | | | | | PSOs | , | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | | | | | | | 2 | | | | CO2 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO3 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO4 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO5 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO6 | 2 | 2 | 2 | | | | | | | | | | | | | | Average | 2 | 2 | 2 | | | | | | | | | | 2 | | | | ubject: - | Principle | es of C | ommu | nicati | on Syst | tems | | | | Subj | ect C | ode: 1 | 7EC4 | 4 | | |-------------------|------------------|------------------|---------|----------|----------|---------|---------|----------|----------|----------|---------|-----------|-------------|--------|------| | | | | | | C | ourse | Outc | omes | | | | | | | | | CO1 | Determ | ine the | perfor | mance | of ana | log mo | odulati | on sch | emes ir | time a | and fre | quency | | | | | CO2 | Determ | ine the | perfor | mance | of sys | tems f | or gen | eration | and de | tection | of mo | dulated | analo | g sign | al. | | CO3 | Charact | terize t | he infl | uence | of chan | nel on | analo | g modu | ılated s | ignals | fa I | | | | | | CO4 | Analyse video tr | | | trate th | ne proc | ess of | the use | e of dig | ital for | matting | g in mu | ıltiplier | s, vo | coders | and | | CO5 | Unders | | | | ics of p | oulse a | mplitu | de mod | dulation | n, pulse | positi | on mod | lulatio | n and | puls | | | code m | odulati | on sys | tems. | | | | | | | | | | | | | | code m | odulati | on sys | tems. | CO- | PO-P
 SO M | lappin | ıg | | | | | | | | COs | code m | odulati | on sys | tems. | со- | PO-P | | lappin | ıg | | | | | PSOs | | | COs | 1 | 2 | on sys | tems. | CO- | | | S 8 | 1g
9 | 10 | 11 | 12 | 1 | PSOs 2 | _ | | COs | | | | | | P | | | | 10 | 11 | 12 | 1 2 | 1 | _ | | | 1 | 2 | | | | P | | | | 10 | 11 | 12 | 1
2
2 | 1 | _ | | CO1 | 1 2 | 2 2 | | | | P | | | | 10 | 11 | 12 | | 1 | _ | | CO1 | 1 2 2 | 2
2
2 | | | | P | | | | 10 | 11 | 12 | 2 | 1 | _ | | CO1
CO2
CO3 | 1
2
2
2 | 2
2
2
2 | | | | P | | | | 10 | 11 | 12 | 2 | 1 | 3 | | Subject: - | Linear | IC's & | & Appli | cation | IS | | | | | Sub | ject C | ode: 1 | 7EC4 | 15 | | |-----------------|--------------|----------|--------------------|---------|-----------------|-----------------|----------|---------------------|----------|-----------|--------|-----------|---------|---------|-----| | | | | | | (| Course | e Oute | comes | | | | | | | | | CO1 | Acqui | re the | knowle | dge to | solve p | probler | ns rela | ted to (| Operati | onal an | nlifie | ·c | | | | | CO2 | | | perforn | | | | | | | onar an | фине | | | | | | CO3 | Interp | retation | n of Per | forma | nce Ch | aracter | istics (| of Pract | tical O | o-amps | | | | | _ | | CO4 | Apply multiv | the kn | owledg
s, volta | ge gain | ed in thulators | ne designand el | gn of p | ractica
ic syste | l circui | its for a | mplifi | ers, filt | ers, os | cillato | rs, | | | | | | | | | | Iappin | | | | | | | - | | COs | | | | | | - 176 | Os | | 0 | - | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 2 | | | | | | | | | 10 | 11 | 12 | 2 | | 3 | | CO ₂ | | 1 | 3 | | | | | | | | | | | | _ | | CO3 | | 2 | 2 | | | | | | | | | | 2 | | | | CO4 | 2 | 1 | 2 | | | | | | | | | | 2 | | | | Average | 2 | 2 | 2 | | | | | | | | | | 2 | | | | | _ | _ | 1 4 | | | | | | | | | | 2 | | | | Micropr | ocesso | r | | | | | | | Sub | ject C | ode: 17 | EC46 | | | |------------------|--|---|--|--|--|--|--|---|---|--|--|--|--|--| | | | | | | Course | Outc | omes | | | | | | | | | CISC | a Mist | , v on- | Neum | ann & | n of M
Harvai | licropi
rd CPU | rocesso
J Arch | rs, Arditecture | chitectue, Conf | ire and | l instru
on & T | ction
iming | set of
diagra | 8086
ms o | | Develo | op 808
lures | 6 Asser | nbly 1 | evel pi | ogram | s usin | g the 8 | 086 in | structio | n set, | modul | ar pro | grams | usin | | Develo | p 808
Keybo | 6 Stack | and Displ | Interru | pts pro | gramr | ning, U | Jse IN | T 21 I | OOS in | iterrupi | funct | ion ca | ılls t | | Interfa | ce 808 | 6 to Sta | | | hips ar | nd 825 | 5, 8254 | 4, 0808 | ADC, | 0800 | DAC, I | Keyboa | ard, D | ispla | | | | | | CO | -PO-P | SO M | apping | 7 | | | | | | | | | | | | | PC |)s | | | | | | | PSOs | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | | | | | | | | | | | | | | | _ | 1 | | 3 | 1 | | | | | | | | | | | 2 | | 3 | | 3 | 1 | 3 | | | | | | | | | | 2 | | 3 | | 3
1
1 | 1 1 2 | 3 2 | | | | | | | | | | 2 | | 3 | | 3
1
1
2 | 1 1 2 1 | | | |
| | | | | | | | | 3 | | | Explai
CISC
8086 a
Developroced
Developroced
Interfa
and Sta | Explain the CISC & RISC 8086 and Instruction Develop 808 procedures Develop 808 handle Keybor Interface 808 and Stepper in the Explain the Explain Interface 808 and Stepper in the Explain Interface 808 and | Explain the History CISC & RISC, Von- 8086 and Instruction Develop 8086 Asser procedures Develop 8086 Stack handle Keyboard and Interface 8086 to Star and Stepper motors. | Explain the History of every CISC & RISC, Von-Neum 8086 and Instruction set of Develop 8086 Assembly Improcedures Develop 8086 Stack and handle Keyboard and Displainterface 8086 to Static meand Stepper motors. | Explain the History of evaluatio CISC & RISC, Von-Neumann & 8086 and Instruction set of 8086. Develop 8086 Assembly level procedures Develop 8086 Stack and Interruphandle Keyboard and Display Interface 8086 to Static memory cand Stepper motors. CO 1 2 3 4 5 | Explain the History of evaluation of M CISC & RISC, Von-Neumann & Harvan 8086 and Instruction set of 8086. Develop 8086 Assembly level program procedures Develop 8086 Stack and Interrupts prohandle Keyboard and Display Interface 8086 to Static memory chips an and Stepper motors. CO-PO-P PC 1 2 3 4 5 6 | Explain the History of evaluation of Microp. CISC & RISC, Von-Neumann & Harvard CPU 8086 and Instruction set of 8086. Develop 8086 Assembly level programs usin procedures Develop 8086 Stack and Interrupts programs handle Keyboard and Display Interface 8086 to Static memory chips and 825 and Stepper motors. CO-PO-PSO M POs 1 2 3 4 5 6 7 | Explain the History of evaluation of Microprocesso CISC & RISC, Von-Neumann & Harvard CPU Archi 8086 and Instruction set of 8086. Develop 8086 Assembly level programs using the 8 procedures Develop 8086 Stack and Interrupts programming, Uhandle Keyboard and Display Interface 8086 to Static memory chips and 8255, 8254 and Stepper motors. CO-PO-PSO Mapping POs 1 2 3 4 5 6 7 8 | Explain the History of evaluation of Microprocessors, Arc CISC & RISC, Von-Neumann & Harvard CPU Architecture 8086 and Instruction set of 8086. Develop 8086 Assembly level programs using the 8086 in procedures Develop 8086 Stack and Interrupts programming, Use IN handle Keyboard and Display Interface 8086 to Static memory chips and 8255, 8254, 0808 and Stepper motors. CO-PO-PSO Mapping POs 1 2 3 4 5 6 7 8 9 | Course Outcomes Explain the History of evaluation of Microprocessors, Architecture, CISC & RISC, Von-Neumann & Harvard CPU Architecture, Configuration of 8086 and Instruction set of 8086. Develop 8086 Assembly level programs using the 8086 instruction procedures Develop 8086 Stack and Interrupts programming, Use INT 21 Inhandle Keyboard and Display Interface 8086 to Static memory chips and 8255, 8254, 0808 ADC, and Stepper motors. CO-PO-PSO Mapping POs 1 2 3 4 5 6 7 8 9 10 | Course Outcomes Explain the History of evaluation of Microprocessors, Architecture and CISC & RISC, Von-Neumann & Harvard CPU Architecture, Configuration 8086 and Instruction set of 8086. Develop 8086 Assembly level programs using the 8086 instruction set, procedures Develop 8086 Stack and Interrupts programming, Use INT 21 DOS in handle Keyboard and Display Interface 8086 to Static memory chips and 8255, 8254, 0808 ADC, 0800 and Stepper motors. CO-PO-PSO Mapping POs 1 2 3 4 5 6 7 8 9 10 11 | Course Outcomes Explain the History of evaluation of Microprocessors, Architecture and instruction & RISC, Von-Neumann & Harvard CPU Architecture, Configuration & T 8086 and Instruction set of 8086. Develop 8086 Assembly level programs using the 8086 instruction set, modular procedures Develop 8086 Stack and Interrupts programming, Use INT 21 DOS interrupt handle Keyboard and Display Interface 8086 to Static memory chips and 8255, 8254, 0808 ADC, 0800 DAC, F and Stepper motors. CO-PO-PSO Mapping POs 1 2 3 4 5 6 7 8 9 10 11 12 | Course Outcomes Explain the History of evaluation of Microprocessors, Architecture and instruction of CISC & RISC, Von-Neumann & Harvard CPU Architecture, Configuration & Timing 8086 and Instruction set of 8086. Develop 8086 Assembly level programs using the 8086 instruction set, modular programes are procedures Develop 8086 Stack and Interrupts programming, Use INT 21 DOS interrupt funct handle Keyboard and Display Interface 8086 to Static memory chips and 8255, 8254, 0808 ADC, 0800 DAC, Keyboard and Stepper motors. CO-PO-PSO Mapping POs 1 2 3 4 5 6 7 8 9 10 11 12 1 | Course Outcomes Explain the History of evaluation of Microprocessors, Architecture and instruction set of CISC & RISC, Von-Neumann & Harvard CPU Architecture, Configuration & Timing diagra 8086 and Instruction set of 8086. Develop 8086 Assembly level programs using the 8086 instruction set, modular programs procedures Develop 8086 Stack and Interrupts programming, Use INT 21 DOS interrupt function can handle Keyboard and Display Interface 8086 to Static memory chips and 8255, 8254, 0808 ADC, 0800 DAC, Keyboard, Diagram and Stepper motors. CO-PO-PSO Mapping POs PSOs | | Subject: - | Micropi | cocesso | or Lab | | | | | | | Subj | ect C | ode: 1 | 7ECL | 47 | | |-------------------|---------|--------------------|----------|-------------|---------|---------|---------|----------|---------|---------|---------|-----------|--------|--------|-------| | | | | | | C | ourse | Outc | omes | | | | | | | | | CO1 | Write | | ecute 8 | 086 as | ssembly | y level | progra | ams to | perfor | m data | transfe | er, arith | metic | and lo | ogica | | CO2 | Unders | stand as | semble | er dire | ctives, | branch | , loop | operati | ons an | d DOS | 21H Ir | nterrup | ts | | | | CO3 | Write | and exe | cute 80 |)86 ass | sembly | level p | orogra | ms to s | ort and | search | eleme | nts in a | given | array | | | CO4 | | m string | | fer, str | ing rev | ersing, | , searc | hing a | charact | er in a | string | with st | ring n | anipu | latio | | CO5 | Utilize | proced | lures ar | nd mad | cros in | progra | mming | g 8086. | | | | | | | | | CO6 | | nstrate
r motor | | | , and L | DR for | r simp | le appli | cations | y, matr | ix key | board, | logica | l cont | rolle | | | | | | | CO- | | | lappin | ıg | | | | | | | | COs | | T - | | | T - | | Os | | | 1 10 | | | | PSOS | _ | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 2 | 1 | | | | | | - | | | 2 | | - | | 000 | | | | | 1 | | | | | | | 1 | 2 | | | | CO2 | 3 | 2 | 2 | | - | | | | | 1 | | | _ | - | - | | CO3 | 3 | 2 | 2 | 1 | | | | | | | | | 2 | | | | CO3 | 3 | 2 | 2 2 | 1 | | | | | | | | | 2 | | | | CO3
CO4
CO5 | 3 3 3 | 2 1 1 | 2 2 1 | 1
1
1 | | | | | | | | | 2 | | | | CO3 | 3 | 2 | 2 2 | 1 | 1 | | | | | | | | 2 | | | | Subject: - | Linear I | Cs an | d Comi | nunic | cation | Lab | | | | Subj | ect C | ode: 1 | 7ECL | 48 | | |-------------------|-------------------|---------|-----------------------|---------|---------|--|---------|---------------|----------|-----------|-----------|---------|------------------|--------|----------| | | | | | | C | ourse | Outo | omes | | | | | | | | | CO1 | Gain h | ands-c | n exper | ience | in AM | and Fl | M tech | niques, | freque | ency syn | nthesis | | | | | | CO ₂ | Gain h | ands-c | n exper | ience | in puls | e and f | lat top | sampl | ing tecl | nniques | | | | | | | CO3 | Make t | he rig | ht choic | e of ar | ı IC an | d desig | gn the | circuit | for a gi | ven app | plication | on. | | | | | CO4 | Design
using 1 | | nalyze t
C. | he per | formai | nce of | instrun | nentatio | on amp | lifier, L | PF, H | PF, DA | C and | oscill | ator | | CO5 | Unders | stand t | he applials/puls | | s of Li | near IC | for a | ddition | , integr | ation ar | nd 555 | timer o | perati | ons to | | | | | | | | | AND DESCRIPTION OF THE PARTY | | | | | | | | | | | | | | | | CO | -PO-P | SO N | Iappir | ıg | | | | | | | | COs | | | | | CO- | | Os N | Iappir | ıg | | | | |
PSOs | . | | COs | 1 | 2 | 3 | 4 | 5 | | | S 8 | 9 | 10 | 11 | 12 | 1 | PSOs | _ | | COs | 1 3 | 2 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | | _ | _ | | | 1 3 3 | | 3
1
1 | 4 | | P | | | | 10 | 11 | 12 | 1 | _ | _ | | CO1 | | 2 | 3
1
1
1 | 4 | | P | | | | 10 | 11 | 12 | 2 | _ | _ | | CO1 | 3 | 2 2 | 3
1
1
1
2 | 4 | | P | | | | 10 | 11 | 12 | 2 2 | _ | _ | | CO1
CO2
CO3 | 3 | 2 2 2 | 1 1 1 | 4 | | P | | | | 10 | 11 | 12 | 1
2
2
2 | _ | 3 | ### Semester- V | Subject: - | Manage | ement | and E | ntrepr | eneurs | ship D | evelop | pment | | Sub | ject C | ode: 1 | 7ES5 | 51 | | |--------------------------|--------------------|--|------------------|----------|---------------------------|-----------------------------|----------------------------|-------------------------------------|------------------------|-------------------|----------|---------|----------|--------|------------------| | | | | | | | | | comes | | | | | | | | | CO1 | Under | stand t | he fund | damen | tals con | ncepts | of mar | nageme | nt and | entrenr | eneurs | hin | | | | | CO2 | Select
types of | a best | entrpre | eneurs | hip mo | del for | the re | quires | domair | of esta | ablishn | nent an | d com | pare v | ariou | | CO ₃ | Descri | be the | functio | ons of i | manage | ers ,ent | repren | ieurs an | nd socia | l respo | nsibilti | es | | | | | CO4 | Analys | se the | institut | ional s | suppor | t by va | arious | state a | nd cent | tral gov | ernam | ent age | encies | analy | ze th | | | | and the same of th | II. | | | - area col 6 | SULVIII | unillouit ! | agoney | | | | | | | | CO5 | Abiliti | es to | engage | in in | depend | dent se | ectors | demon | strate | knowle | dge an | nd und | erstan | ding o | of th | | CO5 | Abiliti | es to | engage | in in | depend
nt prnci | dent se
ipal wi | ectors
th effe | demon | strate
ommun | knowle | dge an | nd und | erstan | ding (| of th | | | Abiliti | es to | engage | in in | depend
nt prnci | dent se
ipal wi
-PO-F | ectors
th effe | demon | strate
ommun | knowle | edge ar | nd und | erstan | | | | COs | Abilition engine | es to | engage | in in | depend
nt prnci | dent se
ipal wi
-PO-F | ectors
th effe
PSO N | demon | strate
ommun | knowle
ication | | | erstan | PSOs | | | | engine | es to eringar | engage
nd man | in in | ndepend
nt prnci
CO | dent se ipal wi | ectors
th effe
PSO N | demon
ctive co
Iappi i | istrate
ommun
ng | knowle | edge an | nd und | erstan | | 3 | | COs | 1 | es to eringar | engage
nd man | in in | ndepend
nt prnci
CO | dent se ipal wi | ectors
th effe
PSO N | demon
ctive co
Iappi i | istrate
ommun
ng | knowle
ication | | | erstan 1 | PSOs | 3 2 | | COs | 1 2 | 2 2 2 | engage
nd man | in in | ndepend
nt prnci
CO | dent se ipal wi | th effe
PSO N
Os | demon
ctive co
Iappi i | istrate
ommun
ng | knowle
ication | | | erstan | PSOs | 3 2 2 | | COs
CO1
CO2 | 1 2 2 2 | 2 2 2 2 2 | engage
nd man | in in | ndepend
nt prnci
CO | dent se ipal wi | ectors
th effe
PSO N | demon
ctive co
Iappi i | ommun
ng
9 | knowle
ication | | | erstan | PSOS | 3
2
2
2 | | COs
CO1
CO2
CO3 | 1 2 2 2 2 2 | 2 2 2 | engage
nd man | in in | ndepend
nt prnci
CO | dent se ipal wi | th effe
PSO N
Os | demon
ctive co
Iappi i | istrate
ommun
ng | knowle
ication | | | erstan | PSOS | 3 2 2 | | Subject: - | Digital | Signa | Proc | essing | | | | | | Sub | ject C | ode: 1 | 7EC | 52 | | |-----------------|------------------|------------------|---------------|---------|----------|-------------------|---------|---------------|-----------|---------|--------|----------|--------|----------|------| | | | 30 30 | | E 17 | | Cours | e Out | comes | 3 | | | | | | | | CO1 | Abilit
Discre | y to appete time | oly the signa | know. | ledge f | sampl | ing in | freque | ncy dm | ain and | recnst | ructin | of ape | riodic | | | CO ₂ | Analy | ze the l | LTI sy | stem re | espons | e in fre | quenc | y doma | in for r | eal and | cmple | ex discr | ete ti | me signa | als. | | CO3 | | op FFT | | | | | | | | | | | | | | | CO4 | Design | n of dig | ital III | R and I | FIR filt | ters. | | | | | | - | | - | | | CO5 | | | | | | | ide,par | allel ar | nd lattic | e struc | ture | | | | ¥16 | | | | | | | | | | A appi | | | | | | | - | | COs | | | | | | The second second | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | | | | | | | | | | | | 2 | | | CO ₂ | 3 | 3 | 3 | | | | | | | | | | 2 | 2 | | | CO3 | 3 | 3 | 3 | | | | | | | | | | | 2 | | | CO4 | 2 | 3 | 3 | | | | | | | | | | 2 | 1 | | | CO5 | 2 | 2 | 3 | | | | | | | | | | | 1 1 | | | Average | 2.6 | 2.6 | 3 | | | | | | | | | | 2 | 1.75 | | | Subject: - | Verilog | HDL | | | | | | | 2 | Subj | ect Co | ode: 1 | 7EC5 | 3 | | |-----------------|------------------|--------|--------|--------|----------------------|---------|----------|----------------|---------|----------|---------|---------|---------|-------------|------| | | | | | | (| Course | Outo | comes | | | | | | | | | CO1 | Design
Abstra | | og HDI | L prog | rams ir | gate, | dataflo | w, beł | naviora | l and sv | vitch n | nodelir | g leve | ls of | | | CO ₂ | Build | simple | progra | ms in | VHDL | in diff | erent s | tyles. | | | | | | | | | CO3 | Design
and de | | | | tionali | ty of d | igital c | ircuit/s | ystem | ising te | st bend | ches ar | nd perf | form tir | ning | | CO4 | | | | | e effect
al desig | | using V | /erilog | tasks a | nd direc | ctives | and sui | table a | abstract | tion | | | | | | | CO | -PO-l | PSO N | Iappi i | ng | | | | | | | | CO | | | | | | P | Os | | | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 2 | | | | | | | | | | 2 | 2 | | | CO ₂ | 3 | 2 | 2 | | | | | | | | | | | | | | CO3 | 3 | 3 | 2 | 1 | | | | | | | | | 2 | 2 | | | CO4 | 3 | 2 | 2 | | | | | | | | | | 2 | 2 | | | | | _ | | | | | | | | | | | 2 | 2 | | | Subject: - | Informa | tion T | heory | & Co | ding | | | | | Subj | ect C | ode: 1' | 7EC5 | 4 | | |-------------------|-----------------|------------|---------|----------|---------|---------|-------------|----------------|---------|-----------|----------|---------|------------------|---------|------| | | | | | | (| Course | Outo | comes | | | | | | | | | CO1 | Inform | ation a | nd Ord | ler of a | a sourc | e | | | C. L. | are of in | | | | | | | CO2 | Repres | | inforn | nation | using S | Shanno | n Enc | oding, S | Shanno | n Fano, | , Prefix | and H | uffma | n Enco | ding | | CO3 | Model
probab | | ntinuoı | is and | discret | e comi | nunica | ition ch | annels | using i | nput, o | utput a | nd joir | nt | | | CO4 | Detern
codes | | | | | g of th | e chec | k bits c | ompute | ed using | g Linea | r Block | code | s, cycl | ic | | CO5 | Design codes, | | | | | g circu | its for | Linear | Block | codes, | cyclic | codes, | convol | lutiona | 1 | CO | -PO-I | SO N | Iappi r | ıg | | | | | | | | COr | | | | | CO | | PSO N
Os | Iappir | ıg | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | CO
5 | | | 1appir | ng
9 | 10 | 11 | 12 | 1 | PSOs | 3 | | COs | 1 3 | 2 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 2 | | | | | - | - | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 | | | | CO1 | 3 | 2 | | 4 | | P | | | | 10 | 11 | 12 | 1 2 | | | | CO1 | 3 2 | 2 3 | | 4 | | P | | | | 10 | 11 | 12 | 1
2
2 | | | | CO1
CO2
CO3 | 3 2 2 | 2 3 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | 1
2
2
2 | | | | Operat | ing sy | stems | | | | | | | Sub | iact (| 'odo: | 17EC | 552 | | |--------|-------------------------------
--|---|---|---|---|--|--|--|---|--|--|---|---| | | | | | | Cour | se On | come | 2 | Sub | jeer | oue: | I/EC. | 333 | | | Expla | in the | goals, | structu | re. one | ration | and tw | nes of c | paratin | a areat | La company | | | | | | Apply | sched | luling t | echniq | ues to | find pe | erforma | ance fac | ctors | g syste | ms. | Apply | suitab | le tech | niques | for co | ntimo | ne and | 200 00 | | | - | | | | | | Descr | ibe me | ssage r | assing | . deadl | ock de | us and | non-co | ntiguoi | is mem | ory all | ocatio | n. | | | | | | <u> </u> | - 0 | CC | PO- | PSO N | Manni | na | n metn | oas. | | | | | | | | 2 | | | | | Tappi | ng | | | | | | | | 1 | 2 | 3 | 4 | 5 | | 7 | Q | 0 | 10 | 44 | 10 | - | PSOS | _ | | 3 | 3 | | | | U | / | 0 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | 3 | 3 | 3 | | | | | | | | | | 1 | | | | 3 | 2 | 1 | | | | | | | - | | | | | | | 2 | 3 | 1 | | | | | | | | | | | | | | 3 | 3 | 3 | | | | | | | | | | 1 | | | | 3 | 3 | | | | | | | | | | | | | | | | Expla Apply Expla Apply Descr | Explain the Apply sched Explain orga Apply suitab Describe me 1 2 3 3 3 3 3 2 2 3 3 3 3 3 | Explain the goals, Apply scheduling to Explain organization Apply suitable tech Describe message process 1 2 3 3 3 3 3 2 1 2 3 1 3 3 3 3 3 3 | Explain the goals, structure Apply scheduling techniques Explain organization of fix Apply suitable techniques Describe message passing 1 2 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Explain the goals, structure, open Apply scheduling techniques to Explain organization of file system Apply suitable techniques for confidence of Describe message passing, deadly CCC 1 | Explain the goals, structure, operation Apply scheduling techniques to find per Explain organization of file systems and Apply suitable techniques for contiguod Describe message passing, deadlock def CO-PO- P 1 2 3 4 5 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Explain the goals, structure, operation and type Apply scheduling techniques to find performation of file systems and IOC. Apply suitable techniques for contiguous and Describe message passing, deadlock detection POs The | Explain the goals, structure, operation and types of of Apply scheduling techniques to find performance fare Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-condition describe message passing, deadlock detection and processor of the property prop | Explain the goals, structure, operation and types of operation Apply scheduling techniques to find performance factors
Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-contiguous Describe message passing, deadlock detection and prevention CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Explain the goals, structure, operation and types of operating systematics. Apply scheduling techniques to find performance factors Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-contiguous memoral describe message passing, deadlock detection and prevention methods. CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Course Outcomes Explain the goals, structure, operation and types of operating systems. Apply scheduling techniques to find performance factors Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-contiguous memory all Describe message passing, deadlock detection and prevention methods. CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Explain the goals, structure, operation and types of operating systems. Apply scheduling techniques to find performance factors Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-contiguous memory allocation. Describe message passing, deadlock detection and prevention methods. CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Course Outcomes Explain the goals, structure, operation and types of operating systems. Apply scheduling techniques to find performance factors Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-contiguous memory allocation. Describe message passing, deadlock detection and prevention methods. CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 11 12 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Course Outcomes Explain the goals, structure, operation and types of operating systems. Apply scheduling techniques to find performance factors Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-contiguous memory allocation. Describe message passing, deadlock detection and prevention methods. CO-PO-PSO Mapping POS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | P. Maria | 3 | AUTO | MOTI | VEE | LECT | RONI | CS | 0 | | | Sub | ject (| Code: 1 | 17EC | 561 | | |-------------------|-------|---------------------|---------|---------|--------------------|---------------------------------|-------------|-----------------------|----------|---------------------|-----------------|--------------------|------------------|----------|------| | | - | | | | | Cours | se Out | comes | 5 | | | | | | | | CO1 | | | uu, b | uululli | itomot
otive ir | ive cor | nponei | nts, sub | systems | | | | | | ; | | CO2 | Use a | vailabl
proces | e autor | notive | sensor | s and a | actuato | rs whil | e interf | acing w | ith mi | crocont | rollers | s / | | | CO3 | Under | rstand t
iagnost | the net | workin | g of va | arious 1 | nodule | es in au | tomotiv | e syste | ms, co | mmuni | cation | protoc | cols | | CO4 | Desig | n and i | mplem | ent the | electr | onics t | hat att | ribute ti
get fair | he relia | bility, s
future | afety,
Auton | and sm
notive E | artnes | s to the | • | CC |)-PO- | PSO N | Mappi | ng | | | - | | | | | COs | | | | | CC | The second second second second | PSO I
Os | Aappi | ng | | | | | DCO | | | COs | 1 | 2 | 3 | 4 | 5 | The second second second second | | | | 10 | 11 | 12 | 1 | PSOs | _ | | COs | 1 2 | 2 2 | 3 | 4 | | P | | Mappi
8 | ng
9 | 10 | 11 | 12 | 1 | PSOs | _ | | | 1 2 2 | 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 2 | | | | CO1 | | 2 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | 2 2 | | | | CO1 | 2 2 | 2 2 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | 1
2
2
2 | | | | CO1
CO2
CO3 | 2 | 2 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | 2 2 | | 3 | | Subject: - | Digital | Signal | Proce | essing | Lab | | | | | Subj | ect Co | ode: 1: | 5ECL | 57 | | |------------|---------|---------------------|---------|----------|----------|---------|---------|--------------------|----------|-----------|----------|----------|----------|-----------|-------| | | | | | | (| Cours | e Out | comes | | | | | | | | | CO1 | Under | stand th | ne con | cepts o | of analo | og to d | | onvers
f signal | ion of s | ignals a | nd free | quency | doma | in sam | pling | | CO2 | Model | ling of | discre | te time | signal | ls and | system | s and v | erificat | ion of it | ts prop | erties a | nd res | ults. | | | CO3 | Impler | nentati | on of o | liscrete | e comp | utation | ns usin | g DSP | process | or and | verify t | the resu | ılts. | | | | CO4 | | e the di
respons | _ | ilters u | | | | | a DSP | process | or and | verify | the fre | quenc | y and | | | | | | | CC | DO | DOO N | | | | | | | | | | | | | | | CC | -FU- | PSO I | Aappi | ng | | | | | | | | COs | | | | | | | Os | Aappi | ng | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | | | Aappi
8 | ng
9 | 10 | 11 | 12 | 1 | PSOs
2 | _ | | COs | 1 2 | 2 3 | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 | | _ | | | 1 2 3 | _ | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 | | _ | | CO1 | + | 3 | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 | | _ | | CO1 | 3 | 3 2 | | 2 | | P | | | | 10 | 11 | 12 | 1 | | 3 | | Subject: - | HDL L | ab | | | | | | | | Subj | ject Co | ode: | 15EC | L58 | | |------------|----------------|-----------------|------------------|---------|-------------------|--------|----------|---------|----------|----------|----------|---------|---------|--------|--------| | | | | | | (| Cours | e Out | come | S | | | | | | | | CO1 | | the Ve | _ | | | ams to | simul | ate Co | ombinati | onal cir | cuits in | n Data | aflow, | Behav | ioural | | CO2 | Descr
Descr | ibe
iption : | sequer
and ob | | circui
nulatio | | | | flops | and | count | ters | in | Behav | ioural | | CO3 | Synth | esize C | Combin | nationa | l and S | equent | ial circ | cuits o | n progra | mmable | e ICs an | nd test | t the h | ardwar | e. | | CO4 | Interfa | ace the | hardw | are to | the pro | gramn | nable c | hips a | nd obtai | n the re | quired | outpu | t. | | | | | | | | | CC |)-PO- | PSO I | Mapp | ing | | | | | | | | COs | | | | | | P | Os | | | | | | | PSO | 5 | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | 2 | 1 | 1 | | | | | | | | 2 | 1 | | | CO2 | 3 | 2 | 1 | 1 | 1 | | | | | | | | 2 | 1 | | | CO3 | 3 | 2 | 2 | 1 | 1 | | | | | | | | 2 | 1 | | | COA | 1 2 | 2 | 2 | 1 | 1 | | | | | | | | 2 | 1 | 1 | | CO4 | 3 | 2 | 2 | 1 | 1 | | | | | | | | 1 2 | 1 | | # Semester- VI | Subject: - | Digita | al Con | munic | cation | | 15 | | | | Sub | iect C | ode: 1 | 7FC | 51 | - | |------------|--------|----------|---------|----------|----------|----------|--------|---------|-----------|---------|----------|--------------------|---------|------------------|-----------| | | | | | | | Cour | se Ou | tcomes | 2 | 040 | jeere | out. | TECC | 71 | | | CO1 | Asso | ciate ar | nd appl | v the c | | | | | ling to v | rra11 | · (° 1 | . , | | | | | CO2 | 1 Midi | yse syn | id toor | ocessii | ng at tr | ie trans | mitter | and the | e perfor | mance | parame | eters at | the re | nannel
ceiver | s
unde | | CO3 | Demo | ostrate | bandpa | ass sign | nals sul | biected | to cor | rupt an | d distor | ted syn | ibols in | n a ban | dlimite | ed char | nnel, | | CO4 | Analy | se and | compi | ute spr | ead spe | ectrum | techni | nies | et specif | ile | | | | | | | | | | | | | | | Mappi | nσ | | | | | | | | COs | | | | | | | Os | -uppi | 5 | | | - Name of the last | | PSOS | | | 003 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | | 1 | | CO1 | 2 | 2 | 2 | | | | | 0 | , | 10 | 11 | 12 | 1 | 2 | 3 | | CO2 | 2 | 3 | 2 | | | | | | | | | | 2 | 2 | | | CO3 | 2 | 2 | 2 | | | | | | | | | | 2 | 2 | | | CO4 | 3 | 2 | 3 | | | | | - | | | | | 3 | 2 | | | | | | | | | | | | | | | | 2 | 3 | | | Average | 2 | 2 | 2 | | | | | | | | | | 2 | 2 | | | Subject: - | AICIVI | IVIICI | ocontro | ller & | Emb | edded | Syster | ns | | Sub | ject (| Code: | 17EC | 762 | | |-------------------|------------------|------------------|---------------|---------|---------|---------------|---------|-------------------|---------|-----------|---------|-------|------------------|-----------------------|------| | | | | | | | Cour | se Out | tcomes | 5 | | | | | | | | CO1 | 1 | erstand | the oller AR | | chitect | ural
3 | featu | ires | and | instruc | ction | set | of | 32 | bit | | CO ₂ | Progr | am . | ARM plication | Corte | x M3 | 3 usi | ng th | e var | ious | instructi | ions | and | C la | anguage | for | | CO3 | Unde | rstand | | basic | hard | ware
of an | compo | onents
ded sys | and | their s | selecti | on m | ethod | based | l on | | CO4 | Deve | lop the | hardwa | are sof | tware | co-desi | ion and | firmw | are de | sign appr | ronaha | | | and the second second | | | CO5 | Expla | in the | need of | real ti | me ope | erating | syster | n for er | nhedd | ed system | n anni | s. | 0 | 1 | CC |)-PO- | PSO I | Manni | nσ | | uppr | | | | | | COs | | | | | CC |)-PO- | PSO I | Mappi | ng | | т | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 |)-PO- | PSO I | Mappi | ng | | | | | PSOs | 2 | | COs | | | | | CC |)-PO-
P | PSO I | Mappi
8 | ng
9 | 10 | 11 | 12 | 1 | PSOs 2 | 3 | | | 1 | 2 | | | CC |)-PO-
P | PSO I | Mappi | ng | | | | 1 2 | | 3 | | CO1 | 1 2 | 2 2 | 3 | | CC |)-PO-
P | PSO I | Mappi | ng | | | | 1 2 2 | | 3 | | CO1 | 1
2
2 | 2
2
2
2 | 3 | | CC |)-PO-
P | PSO I | Mappi | ng | | | | 1
2
2
2 | | 3 | | CO1
CO2
CO3 | 1
2
2
2 | 2
2
2 | 3 | | CC |)-PO-
P | PSO I | Mappi | ng | | | | 1 2 2 | | 3 | Head |
Subject: - | VLSI I | Design | L | | | | | | | Subj | ect C | ode: 1 | 7EC6: | 3 | | |------------|--------|-----------------|--------|---------|---------|----------|---------|---------|----------|-----------|---------|---------|----------|-------------|-------| | | | | | | (| Cours | e Out | comes | | | | | | | | | CO1 | Under | standin | g of N | 1OS tra | ansisto | r theor | y, CM | OS fav | bricatio | n and so | caling | | | | | | CO2 | Under | standir | ng con | cept of | basic g | gates u | sing th | e stick | and lay | out diag | gram | | | | | | CO3 | interp | ret men | nory e | lement | s along | g with t | iming | consid | erations | | | | | | | | CO4 | Demo | nstrate | know | ledge o | f FPG. | A base | d syste | m desi | gn. | | | | | | | | CO5 | | ze CM
design | | bsyster | ns and | archite | ectural | issues | and Inte | erpret te | sting a | nd teas | stabilit | y issue | es in | | | | | | | CC |)-PO- | PSO I | Mappi | ng | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | | | | | | | | | | | | 1 | | | | CO2 | 2 | 2 | | | | | | | | | | | 1 | | | | CO3 | 2 | | | | | | | | | | | | 2 | | | | CO4 | 2 | | | | | | | | | | | | | | | | CO5 | 2 | 2 | | | | | | | | | | | 1 | | | | Average | 2.5 | 2 | | | | | | | | | | | 1 | | | | Subject: - | Comp | uter C | ommı | unicati | on Ne | twork | S | | | Subj | ect C | ode: 1 | 7EC6 | 4 | | | |------------|--------|--|---------|---------|----------|---------|---------|---------|-----------|-----------|---------|----------|--------|------|---|--| | | | | | | (| Cours | e Out | comes | | | | | | | | | | CO1 | | ibe the | | - | | | | r netwo | orks and | l disting | guish b | etween | the O | SI | | | | CO2 | Identi | fy the p | protoco | ols and | servic | es of D | ata lin | k layer | | | | | | | | | | CO3 | Distin | istinguish the basic network configurations and standards associated with each network. onstruct a network model and determine the routing of packets using different routing | | | | | | | | | | | | | | | | CO4 | Const | | networ | k mode | el and o | determ | ine the | routing | g of pac | kets usi | ing dif | ferent r | outing | | | | | CO5 | Identi | fy the p | protoco | ols and | function | ons ass | ociate | d with | the trans | sport la | yer ser | vices. | | | | | | | | | | | CC |)-PO- | PSO I | Mappi | ng | | | | | | | | | CO- | | | | | | P | Os | | | | | | | PSOs | | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | | CO1 | 2 | 2 | | | | | | | | | | | 2 | | | | | CO2 | 2 | 2 | | | | | | | | | | | 2 | | | | | CO3 | 2 | 2 | | | | | | | | | | | 2 | | | | | CO4 | 2 | 2 | | | | | | | | | | | 2 | | | | | CO5 | 2 | 2 | | | 7.77 | | | | | | | | 2 | | | | | Average | 2 | 2 | | | | | | | | | | | 2 | | | | | Subject: - | Arti | ficial N | leural : | Netwo | orks | | | | | Sub | iect (| ode: | 17EC6 | 52 | | | |------------|--------------|--|----------|---------|---------|----------|---------|----------|-----------|-----------|----------|---------|----------|------|-----|--| | | | | | | | Cour | se On | tcome | c | Dub | jeer | Juc. | 1/ECC | 133 | | | | CO1 | Unde | erstand
eling. | the rol | e of ne | ural ne | etwork | s in en | gineeri | ng, artif | icial int | telliger | ice, ar | d cogni | tive | | | | CO2 | Unde
impo | erstand
ertant ne | the cor | ncepts | and tec | hniques. | es of n | eural ne | etworks | through | h the s | tudy o | f the mo | ost | | | | CO3 | | aluate whether neural networks are appropriate to a particular application. ply neural networks to particular applications, and to know what steps to take to improve formance. | | | | | | | | | | | | | | | | CO4 | Appl | | l netwo | | | | | | | | | | e to imp | rove | | | | | | | | | CC |)-PO- | PSO I | Mappi | ng | | | | | | | | | COs | | | | | | | Os | 11 | 8 | | | | | PSOs | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | | 1 | | | CO1 | 3 | 2 | | | | | | | | 10 | 11 | 12 | 1 | 2 | 3 | | | CO2 | 3 | 1 | | | | | | | | | | | 1 | | | | | CO3 | 3 | 2 | 2 | | | | | | | | | | | | | | | CO4 | 1 | 2 | 3 | 1 | 1 | | | | | | | | 2 | | | | | Average | 2.2 | 1.75 | 2.5 | 1 | 1 | | | | | | | | 2 | | | | | U | | | | • | 1 | | | | | | | | 1.25 | | 100 | | | Subject: - | Digit | tal Swi | tching | Syste | ems | | | | | Sub | iect C | ode: | 17FC4 | 551 | | |-----------------|----------------|-----------|-----------------|--------|----------|----------|---------|----------|-----------|---------|---------|----------|-------|------|---| | | | | | | | Cour | se Ou | tcomes | | Jour | jeere | ouc. | 1/LCC |)54 | - | | CO1 | Unde
digita | erstand | the ele
hing | ctrome | echanic | al swit | ching | systems | s and its | compa | rison v | with the | e | | | | CO ₂ | Deter | rmine th | ne teled | commi | inicatio | on traff | fic and | its mea | sureme | nts. | | | | | | | CO3 | Unde | erstand t | he tec | hnolog | gies ass | ociated | l with | the data | switch | ing ope | rations | S. | | | | | CO4 | | ribe the | CC |)-PO- | PSO I | Mappi | ng | | | | | - | | | COs | | | | | | | Os | | 8 | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 1303 | _ | | CO1 | 2 | 2 | | | | | | | | 10 | 11 | 12 | 1 | | 3 | | CO2 | 2 | 1 | | | | | | | | | | | 2 | | | | CO3 | 2 | 1 | | | | | | | | | | | 2 | | | | CO4 | 2 | | | | | | | | | | | | 2 | | | | Average | 2 | 1.5 | | | | | | | | | | | 2 | | | | 0 | | | | | | | | | | | | | 2 | | | | Subject: - | Digita | al Syst | em De | sign U | Jsing ' | Verilo | g | | | Subj | ect C | ode: 1 | 7EC6 | 63 | | |-----------------|-----------------|---------|----------|----------|----------|---|----------|----------|------------|-----------|---------|----------|---------|--------|----| | | | | | | (| Cours | e Out | comes | | | | | | | | | CO1 | | | the emb | | l syster | ns, usi | ng sma | ıll micr | ocontro | llers, la | rger C | PUs/DS | SPs, or | hard | or | | CO2 | Desig
device | | onstruc | t the co | ombina | itional | circuit | s using | discret | e gates | and pr | ogramn | nable l | ogic | | | CO3 | Devel | op the | Verilo | g mode | el for s | equent | ial circ | cuits an | d test pa | attern g | enerati | on | | | | | CO4 | Explo | re the | differer | nt type | s of sei | micono | ductor | memor | ies and | their us | age for | r specif | ic chir | desig | n | | CO5 | Analy | se and | synthe | sis of | process | sor and | I/O co | ontrolle | ers that a | are used | in em | bedded | syste | m desi | gn | | | | | | | CC |)-PO- | PSO I | Mappi | ng | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | , | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 3 | 1 | | | | | | | | | | 2 | | | | CO ₂ | 3 | 2 | 3 | | | | | | | | | | 2 | | | | CO3 | 3 | 2 | 3 | 2 | | | | | | | | | 2 | | | | CO4 | 2 | 3 | 2 | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | 2 | | | | CO5 | 2 | 3 | 3 | | | | | | | | | | 1 | | | | Average | 2.6 | 2.6 | 2.4 | 2 | | | | | | | | | 2 | | | | Subject: - | Pytho | n App | licatio | n Prog | gramn | ning | | | | Sub | ect C | ode: 1 | 7CS6 | 64 | | | |-------------------|------------------|---|---------|---------|--------|---------|----------|----------|----------|----------|---------|--------|---------|--------|-------|--| | | | | | | | Cours | e Out | comes | | | | | | | | | | CO1 | Exam
functi | | hon sy | ntax a | nd sem | antics | and be | fluent | in the u | ise of P | ython f | low co | ntrol a | nd | | | | CO ₂ | Demo | nstrate | profic | iency i | n hand | lling S | trings a | and File | e Syster | ns. | | | | | | | | CO3 | Create
use Re | | | | | | | | | | | | | | | | | CO ₄ | Interp | nterpret the concepts of Object-Oriented Programming as used in Python. | | | | | | | | | | | | | | | | CO5 | | ment ex | | | | | | | k Progr | | | | es and | Datal | bases | | | | III Fyt | поп. | | | | | | | | | | | | | | | | | ПГУ | non. | | | CC |)-PO- | PSO I | Mappi | ng | | | | | | | | | COs | ШТу | non. | | | CC | | PSO I | Mappi | ng | | | | | PSOs | i | | | COs | 1 | 2 | 3 | 4 | 5 | | | Mappi | ng
9 | 10 | 11 | 12 | 1 | PSOs 2 | _ | | | COs | 1 2 | | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 2 | | _ | | | | 1 | | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 | | _ | | | CO1 | 1 | 2 | 3 | 4 | | P | | | | 10 | 11 | 12 | 1 | | _ | | | CO1 | 1
2
1 | 2
1
2 | | 1 | | P | | | | 10 | 11 | 12 | 1 | | _ | | | CO1
CO2
CO3 | 1
2
1
2 | 2
1
2 | | 1 | | P | | | | 10 | 11 | 12 | 1 | | 3 | | Head - | Subject: - | Emb | edded | Conti | roller L | Lab | | | | | Sub | ject C | ode: | 17EC | 1.67 | | |-----------------|--------------|---------|------------------|----------|-------------------|---------|---------|--------------------|----------|----------|---------|---------|---------|---------|---| | | | | | | | Cours | se Ou | tcomes | 6 | | Jeer | 0000 | I / LO. | 201 | | | CO1 | Interprequir | ret the | instru
progra | ction se | et of 32
in As | 2 bit m | icroco | ntroller
Langua | ARM (| Cortex 1 | M3, an | d the s | oftwa | re tool | | | CO ₂ | Grand I | | | | | | | | Cortex N | 13 for d | ifferen | t appli | ication | s. | | | CO3 | Interf | ace ext | ternal o | devices | and I/ | O with | ARM | Cortex | M3. | | | | | | | | CO4 | Devel | op C la | anguag | ge progr | rams a | nd libr | ary fur | nctions | for emb | edded s | system | applic | ations | | | | | | | | | CC |)-PO- | PSO I | Mappi | ng | | |
11 | | | | | COs | | | | | | | Os | | | | | | | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 3 | 3 | 3 | 3 | | | | | | | | 2 | 2 | | | CO ₂ | 2 | 3 | 2 | 2 | 3 | | | | | | | | 2 | 2 | | | CO3 | 3 | 2 | 2 | 2 | 3 | | | | | | | | 2 | 2 | | | CO4 | 2 | 2 | 2 | 2 | 3 | | | | | | | | 2 | 2 | | | Average | 2.5 | 2.5 | 2.3 | 2.3 | 3 | | | | | - | | | 2 | 2 | | | Subject: - | Com | puter l | Netwo | rks La | ab | | | | | Sub | iect C | ode: 1 | 7ECI | .68 | | |-----------------|-------|----------|---------|----------|----------|---------|---------|----------|----------|----------|---------|---------|-------|--------|-----| | | | | | | | Cours | se Out | tcomes | 5 | | , | | , LCL | | | | CO1 | Choos | se suita | ble to | ols to n | nodel a | netwo | ork and | l under | stand th | e protoc | cols at | various | OSI | eferen | ice | | CO2 | Desig | n a suit | table n | etwork | and si | imulate | e using | a Netv | vork sin | nulator | tool. | | | | | | CO3 | Simul | ate the | netwo | rking | concep | ts and | protoc | ols usin | ng C/C+ | + progr | ammir | ıg. | | | | | CO4 | Mode | l the ne | twork | s for d | ifferent | config | guratio | ns and | analyze | the res | ults. | | | | | | | | | | | CC |)-PO- | PSO I | Mappi | ng | | | 7 1 | | | | | COs | | | | | | | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₁ | 1 | 2 | | | | | | | | | | | 2 | _ | | | CO ₂ | 1 | | 2 | | 111,-1 | | | | | | | | 2 | | | | CO3 | 1 | | | | 2 | | | | | | | | 2 | | | | CO4 | 2 | 1 | | | | | | | | | | | 2 | | _ | | Average | 1.3 | 1.5 | 2 | | 2 | | | | | | | | 2 | | - | # Semester- VII | Subject: - | Micro | owave | and A | ntenn | as | | | | | Subj | ect Co | de: 17 | EC71 | | | |------------|--------|----------|---------|----------|---------|---------|--------|---------|---------|-----------|--------|--------|---------|-------------|-------| | Subjecti | 1.11 | | | | (| Course | e Outo | comes | | | | | | | | | CO1 | | nidos. | | | | | | | | crowav | | | | | ve | | CO2 | device | s for di | ifferen | t applie | cations | | | | | parame | | | | | · · · | | CO3 | - | | | | | | | | | d the ba | | fanten | na theo | ory. | | | CO4 | Analy | ze vari | ous an | tenna c | configu | rations | accor | ding to | the app | olication | ١. | | | | | | | | | | | CC | PO- | PSO I | Mappi | ng | | | | | | | | | | | | | | P | Os | | | | | | | PSOs | _ | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | | | | | | | 2 | - | | | CO2 | 2 | 2 | 2 | | | | | | | | | | 2 | 2 | | | CO3 | 2 | 2 | | | | | | | | | | | 2 | | | | CO4 | 2 | 2 | 2 | | | | | | | | | | 2 | 2 | | | Average | 2 | 2 | 2 | | | | | | | | | | 2 | 2 | | | Subject: - | Digita | ıl Ima | ge Pro | cessir | ng | | | | | Subj | ect Co | de: 1 | 7EC72 | | | |------------|--------------------|----------|--------|----------|---------|----------|---------|----------|-----------|----------|--------|----------|---------|-------------|-----| | Subjecti | | | | | (| Course | e Out | comes | | | | | | | | | CO1 | Unders
color ir | nage c | lata. | | | | | | | | | | | | | | CO2 | Apply | image | proces | ssing te | echniqu | ies in b | ooth th | e spatia | al and fr | equenc | y (Fou | rier) de | omains. | | | | CO3 | Analys | is of in | mage s | egmen | tation | technic | ques ar | nd to ev | aluate t | he Met | hodolo | gies fo | or segm | entatio | on. | | CO4 | Condu | ct inde | epende | nt stud | | | | | hancen | nent tec | hnique | s. | | | | | | | | | | CC |)-PO- | PSO I | Mappi | ng | | | | | | | | 100000 | | | | | | P | Os | | | | | | | PSOs | _ | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 2 | | | | | | | | | | | 3 | | _ | | CO2 | 3 | 2 | | | | | | | | | | | | | _ | | CO3 | 1 | 2 | | | | | | | | | | | | | - | | CO4 | 2 | | | 3 | | | | | | | | | 2 | | - | | Average | 2.25 | 2 | | 3 | | | | | | | | | 2.5 | | | Head | Subject: - | Pow | er Ele | ectronic | s | | | | | | Sub | iect (| ode: 1 | 7FC | 73 | | |-----------------|-------|---------|-----------|---------|--------|--------|---------|---------|---------|-------|---------|--------|--------|------|-----| | | | | | | | Cours | se On | tcomes | 2 | Dub | jeere | out. | TEC | 3 | | | CO1 | Under | rstand | the con | structi | on & v | vorkin | g of va | rious n | ower de | vices | | | | | | | CO2 | | | nalysis o | | | | | | | | ditions | | | | | | CO3 | | | plicatio | | | | | | | | | | ociety | , | | | CO4 | | nstrate | e & und | | | | | | | | | | | | ler | | | | | | | CC | PO- | PSO I | Mappi | ng | | | | | | | | COs | | | | | | | Os | | 0 | | | | | PSOs | | | | 1. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | _ | | | CO ₁ | 2 | | | | | | | | | 10 | 11 | 12 | | 2 | 3 | | CO ₂ | | 1 | 3 | | | | | | | | | | 2 | | | | CO3 | | 2 | 2 | | | | | | | | | | 2 | | | | CO4 | 2 | 1 | 2 | | | | | | | | | | 2 | | | | Average | 2 | 2 | 1.75 | | | | | | | | | | 2 | | | | | | 2 | 1.73 | | | | | | | | | | 2 | | | | Subject: - | Rea | l Tim | e Systen | ns | | | | | | Sub | iect C | ode: 1 | 7FC | 743 | - | |------------|----------------|---------|----------|----------|----------|---------|----------|----------|----------|------------|---------|--------|---------|---------|----| | | | | | | | Cours | e Out | tcomes | | | Jeer C | oue. | TLC | 73 | | | CO1 | Unde
soft p | rstand | the emi | bedded | d system | ms, usi | ng sma | all micr | ocontro | ollers, la | irger C | PUs/D | SPs, o | r hard | or | | CO2 | Desig
devic | gn & C | Construc | t the c | ombina | ational | circuit | ts using | discret | e gates | and pr | ogramı | nable | logic | | | CO3 | Devel | lop the | e Verilo | g mode | el for s | equent | ial circ | cuits an | d test p | attern g | enerati | ion | | | | | CO4 | | | differer | | | | | | | | | | ~ 1 · | 1 . | | | CO5 | Analy | se and | d synthe | sis of 1 | process | sor and | I/O co | ontrolle | rs that | are used | in om | baddag | ic chij | o desig | ,n | | | | | | | CC |)-PO- | PSO I | Mappi | ng | are used | in cm | beddec | syste | in desi | gn | | COs | | | | | | | Os | - PF- | 8 | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | | _ | | CO1 | 2 | 2 | | | | | | 0 | , | 10 | 11 | 12 | 2 | 2 | 3 | | CO2 | 3 | 2 | 1 | | | | | | | | | | 2 | | _ | | CO3 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO4 | 2 | 2 | 3 | | | | | | | | | | 2 | | | | CO5 | 3 | 2 | 1 | | | | | | | | | | 2 | | | | Average | 2.4 | 2 | 1.75 | | | | | | | | | | 2 | | | | Subject: - | DSP | Algor | ithms | and A | rchite | cture | | | | Subj | ect C | ode: 1 | 7EC7: | 51 | | |------------|--------|---------|---------|----------|--------------------|-----------------|----------|----------------------|-------------------------------|----------|---------|---------|---------|-------------|--------| | | | | | | | Cours | e Out | comes | | | | | | | | | CO1 | Comp | rehend | the kn | owled | ge and | conce | pts of o | digital s | ignal p | rocessir | g tech | niques. | | | | | CO2 | | stand o | | | | | | | ıl buildi | ng bloc | ks and | apply | the kr | owled | lge to | | CO3 | pipeli | | ructure | e of D | SP pr | | | | odes, in
p progr | | | | | | | | CO4 | | | | | | | | ssors a | nd cond
tool. | duct exp | perime | nts wi | th asse | embly | level | | CO5 | device | and d | emons | trate th | ne impi
n using | lement
g COD | ation c | of Bio-t
erfacing | ichanne
elemetr
g on DS | y Recei | ver, Sp | | | | | | | | | | | CC | | | Mappi | ng | | | | | | | | COs | | *** | | | | P | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO2 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | CO3 | 2 | 2 | 2 | | 2 | | | | | | | | 2 | | | | CO4 | 2 | 2 | 2 | | 2 | | | | | | | | 2 | | | | CO5 | 2 | 2 | 2 | | | | | | | | | | 2 | | | | Average | 2 | 2 | 2 | | 2 | | | 7 | | | | | | | | | Subject: - | IoT | & WSI | V | | | | | | | Subj | ect C | ode: 1 | 7EC7 | 52 | | |------------|--------|----------|---------|----------|----------|---------|---------|----------|----------|-------|-------|--------|------|-------------|---| | | | | | | | Cours | e Out | comes | | 100 | | | | | | | CO1 | Descr | ibe the | OSI n | nodel fo | or the l | oT/M2 | 2M Sys | stems. | | | | | | | | | CO2 | Under | rstand t | he arcl | hitectu | re and | design | princi | ples for | r IoT. | | | | | | | | CO3 | Learn | the pro | ogramı | ning fo | or IoT | Applic | ations | | | | | - | | | | | CO4 | Under | rstand t | he Arc | hitectu | ire and | challe | nges o | f WSN | s. | | | | | | | | CO5 | Identi | fy the o | commu | inicatio | on prot | ocols v | which b | est sui | ts the W | /SNs. | | | | | | | | | | | | CC |)-PO- | PSO I | Mappi | ng. | | | | | | | | COs | | | | | | P | Os | | | | | | | PSOs | | | COS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | | | | | | | 2 | | | | CO2 | 2 | 2 | | | | | | | | | | | 2 | | | | CO3 | 2 | 2 | | | | | | | | | | | 2 | | | | CO4 | 2 | 2 | | | | | | | | | | | 2 | | | | CO5 | 2 | 2 | | | | | | | | | | | 2 | | | | Average | 2 | 2 | | | | | | | | | | | 2 | | | | Subject: - | Ad | vance | d Con | munio | cation | Lab | | | | Sub | iact (| Code: | 1750 | 176 | | |------------|-------|----------|----------|----------------|------------|---------|---------|----------|----------|----------|--------|--------|---------|--------|---------| | | | | | | | Cour | se Ou | tcome | 6 | Sub | jeci | oue: | I/EC. | L/6 | | | CO1 | Dete | rmine | the cha | aracter | istics ar | d reco | onsos | of mine | owave o | | | | | | | | CO2 | Dete | rmine | the cha | aracteri | istics of | micro | strip a | ntenna | and con | noute th | e nara | meters | 25500 | atad w | .:41. : | | CO3 | Simi | ilate th | e digit | al mod
MATL | ulation | schem | es with | h the di | splay of | wavef | orms a | nd com |
ipute t | he he | 'ltn 1 | | CO4 | | | | | | lation | circuit | a larrat | ms and | 1' 1 | | | | | | | CO5 | Dteri | nine th | ne losse | es in or | otical fil | bre and | meas | ure NA | using (| display | the wa | veforn | ıs. | | | | | | | | | CC |)-PO- | PSO | Mappi | nσ | ore iii | K | | | | | | COs | | | | | | | Os | PP | | | | | | PSOS | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | | _ | | CO1 | | 3 | 1 | 3 | | | | 0 | , | 10 | 11 | 12 | 1 | 2 | 3 | | CO2 | | 3 | | 3 | | | | | | | | | 3 | | | | CO3 | 3 | | | 3 | 3 | | | | | - | | | 3 | | | | CO4 | 3 | | 3 | 3 | 3 | | | | | | | | | | 3 | | CO5 | | | | 3 | | | | | - | | | | | 3 | | | Average | 3 | 3 | 3 | 3 | 3 | | _ | | | | | | | 3 | | | 0 | | | | | 3 | | | | | | | | 3 | 3 | 3 | | Subject: - | VL | SI Lat |) | | | | | | | Sub | iect C | ode: | 17ECI | 77 | | |-----------------|------|---------|-----------------|--------|--------|----------|---------|----------|----------|-----------|---------|---------|--------|---------|------| | | | | | | | Cours | se Ou | tcomes | 2 | Sub | jeti | oue: | I/ECI | 2// | | | CO1 | Deve | lop the | e test be | nch to | simul | te the v | arious | digital | oironit | | | | | | | | CO2 | Exan | nine ar | d simul
OPAM | ate ba | sic CM | OS cir | cuits 1 | ike inve | eter con | amon ac | ource a | mplifie | er and | high le | evel | | CO3 | | | concep | | | | | | | | cuits. | | | | | | CO4 | | | gates an | | | | | | | | | sired n | aramai | tor | | | | | | | | CC |)-PO- | PSO I | Mappi | ng | 100 10 11 | icer de | sired p | aranne | ici. | | | COs | | | | | | | Os | - PP- | 8 | | | | | DCO. | _ | | 000 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | PSOs | _ | | CO1 | 3 | 2 | 2 | | 2 | | , | 0 | | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₂ | 3 | 3 | 2 | | 2 | | | | | | | | 2 | | | | CO3 | 3 | 2 | 2 | | | | | | | | | | 2 | | | | CO4 | 2 | 3 | 3 | | 2 | | | | | | | | 2 | 1 | | | Average | 2.75 | 2.5 | 2.25 | | 2 | | | | | | | | 2 | | | | | 2.75 | 2.3 | 2.23 | | 2 | | | | | | | | 2 | 1 | | # Semester-VIII | Subject: - | Wir | eless C | ellulaı | and I | TE4C | Broa | dband | 1 . | | Subj | ect C | ode: 1 | 7EC8 | 1 | | |------------|-------|----------------|---------|--------|----------|---------|---------|---------|-----------|----------|---------|----------|--------|-------------|------| | | | | | | (| Cours | e Out | comes | | | | | | | | | CO1 | Unde | rstand t | he syst | em arc | chitectu | ire and | the fu | nctiona | al standa | ard spec | ified i | n LTE | 4G | | | | CO2 | Analy | yze the | role of | LTE r | adio in | terface | proto | cols an | d EPS d | lata con | verger | ice prot | tocols | | | | CO3 | | rstand t | | RAN a | nd EPS | S hand | ling pr | ocesses | s from s | etup to | mobili | ty man | ageme | nt for | data | | CO4 | | ate the ithms. | perfor | mance | of resc | ource n | nanage | ment, p | oacket c | lata pro | cessing | g and tr | anspor | t | | | | | | | | CC | PO- | PSO I | Mappi | ng | | | | | | | | CO | | | | | | P | Os | | | | | | | PSOs | 1 | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | | | | | | | | | | | | | | | | CO2 | | 2 | | | | | | | | | | | 2 | | | | CO3 | 2 | | | | | | | | | | | | | | | | CO4 | 2 | 2 | | | | | | | | | | | 2 | | | | Average | 2 | 2 | | | | | | | | | | | 2 | | | | Subject: - | Fiber (| Optics | & Ne | tworks | S | | | | | Subj | ect C | ode: 1 | 7EC8 | 2 | | |------------|----------------|---------|---------|----------|---------|----------|----------|---------|-----------------------|-----------|---------|----------|---------|-------------|-------| | | | | | | (| Cours | e Out | comes | | | | | | | | | CO1 | | | | | | | | | l fiber,
in optica | | | | | mode | s of | | CO2 | Under | | and and | alyze tł | ne cons | structio | n, wor | king pr | rinciple | of option | cal sou | rces, de | etector | s and | | | CO3 | Expla
ampli | | demon | strate 1 | the con | cepts | of WD | M, acti | ve and j | passive | eleme | nts and | optica | 1 | | | CO4 | Illustr | ate the | netwo | rking a | spects | of opt | ical fib | er and | describ | e variou | ıs stan | dards a | ssociat | ted wit | h it. | | | | | | | CC | PO- | PSO I | Mappi | ng | | | | | | | | CO- | | | | | | P | Os | | | | | | | PSOs | , | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 2 | 2 | | | | | | | | | | | 2 | | | | CO2 | 2 | 2 | | | | | | | | | | | 2 | | | | CO3 | 2 | 2 | | | | | | | | | | | 2 | | | | CO4 | 2 | 2 | | | | | | - | | | | | 2 | | | | Average | 2 | 2 | | | | | | | | | | | 2 | | | | Subject: - | Artifi | cial Ne | eural N | Networ | ks | | | | - | Sub | iect C | 'ada: | 17EC8 | 21 | | |-----------------|--------|------------------|---------|----------|---------|---------|---------|----------|----------|--------|--------|--------|---------|--------|-------| | | | | | | | Cour | se On | tcomes | 2 | Dub | jeere | ouc. | 1/EC | 134 | | | CO1 | Unde | erstand | the co | re conc | ents of | f Mach | ine lea | rning | , | - | | | | | | | CO2 | Anal | yse th
ithms. | e und | lerlying | g matl | nemati | cal re | lationsl | nips wi | thin a | nd ac | ross | Machin | e Le | arnin | | CO3 | Expla | ain para | digms | of sup | ervised | d and u | ın-supe | rvised | learning | ζ. | | | | | | | CO4 | | gnize a | | | | | | | ed techn | | of Mac | hineLe | earning | to sol | ve th | | | | | *3/1 | | CC |)-PO- | PSO I | Mappi | ng | | | | | | | | COs | | | | | | | Os | | 0 | | | | T | PSOs | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 200 | _ | | CO ₁ | 3 | 2 | | | | | | | | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₂ | 3 | 3 | | | | | | | * | | | | 2 | | | | CO3 | 3 | 2 | | | | | | | | | | | 1 | | | | CO4 | 3 | 1 | 2 | 2 | | | | | | | | | | | | | Average | 3 | 2 | 2 | 2 | | | | | | | | | 1 | 2 | | | | | _ | - | 2 | | | | | | 1 1 | A | | 1 | 2 | | | 17EC | vork
licatio | ons an | |----------|-----------------|--------| | nt appl | licatio | ons an | | nt appl | licatio | ons an | | niter s | | | | niter s | | | | Juicol 5 | ystem | n | | | | | | | PSC | Oc | | 1 | | | | 1 | 2 | 3 | | 2 | | | | - | | | | 2 | | | | - | | | | | 2 | | | Subject: - | Interns | hip/Pi | rofessio | onal F | ractic | e | | | | Subj | ect C | ode: 1 | 7EC84 | 1 | - | |------------|-----------------|---------------------|-------------------|----------|----------|----------|----------------|--------------------|-----------|-----------|----------|----------|---------|-------------|------| | Susjeen | | | | | | Cours | e Out | comes | 3 | | | | | | | | CO1 | multid | iccinli | nary cr | itical t | hinkin | g and a | dantah | oility. | as team | | | | | | | | CO2 | Manif
and pr | est the
ofession | studer
onal to | t to the | ne envi | ronmer | nt and and pub | expect
olic sec | tations o | of perfor | rmanc | e on th | e part | or tech | nica | | CO3 | | • | | | | | | | cessful | | | | | | 1 | | CO4 | Adopt | ing the | eory an | d prac | tices le | earnt by | the st | udents | to enha | ince the | ir abili | ities in | the fie | ld of sti | udy. | | | | | | | C | O-PO- | PSO 1 | Mapp | ing | | | | | | | | | | | | | | P | Os | | | | | | | PSOs | | | COs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | | 2 | 2 | | 2 | 1 | | 3 | 3 | 2 | | | | 2 | 2 | | CO2 | 2 | 2 | 2 | 2 | | | 2 | | | | 3 | | 2 | 2 | | | CO3 | | | | | | | | 2 | 2 | 2 | 1 | 3 | | 1 | 2 | | CO4 | 3 | 2 | | 2 | | 2 | 1 | | 1 | | | 3 | 3 | 2 | | | Average | 2.5 | 2 | 2 | 2 | 2 | 1.5 | 1.5 | 2.5 | 2 | 2 | 2 | 3 | 2.5 | 1.75 | 2 | | Subject: - | | Subject Code: 17ECP85 | | | | | | | | | | | | | | |------------|---|-----------------------|---|---|----|--------|-------|-------|-----|----|----|----|------|---|---| | | Project | | | | (| Course | Out | comes | | | | | | | | | CO1 | Identify the domain of interest and problem with multidisciplinary approach by applying acquired knowledge. | | | | | | | | | | | | | | | | CO2 | Perform requirement analysis and identify design methodologies with novelty & societa relevance in it. | | | | | | | | | | | | | | | | CO3 | Apply advanced engineering tools and perform hardware/software design from a product perspective. | | | | | | | | | | | | | | | | CO4 | Combine all the modules through effective team work after efficient testing. | | | | | | | | | | | | | | | | CO5 | Task completion and compilation of the project report. | CC |)-PO-l | PSO I | Mappi | ng | | | | | | | | COs | POs | | | | | | | | | | | | PSOs | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | CO1 | 3 | 3 | | 3 | | | | 3 | | | | | 3 | | | | CO2 | | 3 | 3 | 3 | | 2 | | 2 | 2 | | 3 | | 3 | | | | CO3 | 3 | 3 | | | 3 | | 3 | | 3 | | | | | | 3 | | CO4 | 3 | 3 | | | 3 | 3 | | | 3 | | | | | 3 | | | CO5 | 3 | 3 | | | | | | | 3 | 3 | 3 | 3 | | | 3 | | | | 1 | | | - | _ | | 2.5 | 2.8 | 3 | 3 | 3 | 3 | 3 | 3 | | Subject: - | Semin | nar | | | | | | | | Sul | oject (| oda. | 1500 | 26 | | |-----------------|---|-----|---|---|---|-------|--------|-------|-----|-----|---------|-------|------|--------|---| | | | | | | | Cour | Se O11 | teeme | | Sui | ojeci (| Joue: | DEC | 36 | | | CO1 | Study, understand and emphasize the information from literal and beyond literal of various cutting edge technologies. | | | | | | | | | | | | | | | | CO2 | Based on the engineering knowledge, analyze the comprehensive solution to the issues like societal, health, safety identified in survey | | | | | | | | | | | | | | | | CO3 | To impart skills in preparing detailed report describing the paper and results. | | | | | | | | | | | | | | | | CO4 | Ability to work independently and demonstrate for effective collection, analyze and organize
scientific information. | | | | | | | | | | | | | | ; | | To See The | | | | | C | O-PO- | PSO | Mappi | ing | | | | | | | | COs | POs | | | | | | | | | | | | PSOs | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 10 | 1 | | _ | | CO1 | 2 | 3 | | 2 | 1 | | - | 0 | | 10 | 11 | 12 | 1 | 2 | 3 | | CO ₂ | 2 | 2 | | 2 | - | 1 | | 1 | | - | | 1 | 2 | | 1 | | CO3 | | | | | | 1 | | 1 | | | | | 2 | 13-11- | 1 | | | 1 | 1 | | 2 | 1 | | | | | | 2 | | 1 | 2 | 2 | | CO4 | | 1 | | 2 | | 2 | | 1 | 3 | 3 | 1 | | • | | 1 | | CO4
Average | 1.7 | 2 | | 2 | | | | 1 | | 3 | 1 | | 2 | | | HOD