

|| JAI SRI GURUDEV || Sri AdichunchanagiriShikshana Trust (R)

SJB INSTITUTE OF TECHNOLOGY

BGS Health & Education City, Kengeri, Bangalore - 60.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE OUTCOMES AND CO-PO-PSO ARTICULATION MATRIX

BATCH 2018-22

	La . El	SUI	BJECT CODE	18ELN14/24						
SUBJECT NAME	Basic Electronics	CO STATEMENT								
CO1	Describe the operation of diodes, BJT and			CR's and its application						
CO2	Design and explain the construction of rectifiers, regulators, amplifiers and Oscillators.									
CO3	Explain the working and design different	types of operational amplifiers.	and Astable oscil	lator using timer IC 555.						
CO4	Explain the working and design different sypes of Explain the working and design of fixed voltage IC regulator using 7805 and Astable oscillator using timer IC 555. Understand the basic principle of operation of communication system and mobile phones. Recall and explain the different number system and their conversions. Construct simple combinational and sequential circuit									
CO5	Recall and explain the different number susing flipflops	system and their conversions.								

CO- PO-PSO MAPPING:

O- PO-	PSO IVIA	APPINO	•					T 200	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS	1010	1011		2		
CO1	2	2						-					2		
CO2	2	2	2	- A -									2		
CO3	2	2	2										2		
CO4	2		2							-			2		
CO5	2	2													OI BARAGE MAIN

Head

JORGE 6 6 1	Transform calculus, Fourier Series and Numerical Techniques	SUBJECT CODE 18MAT31
SUBJECT NAME	Transform calculus, Fourier Series and Series Serie	
FACULTY NAME	Mrs. Chaitra A C / Mrs. Pushpa S /Mr. Sri Gowrav CO STATEME	ENTS
	Use Laplace transform and inverse Laplace transform in solving differ	rential/ integral equation arising in network analysis,
CO1	Use Laplace transform and inverse Laplace transform and control systems and other fields of engineering. Demonstrate Fourier series to study the behaviour of periodic function and field theory.	ns and their applications in system communications,
CO2	Demonstrate Fourier series to study the behaviour of periodic removed digital signal processing and field theory. Make use of Fourier transform and Z-transform to illustrate discrete/or digital signal processing and field theory.	continuous function arising in wave and heat propagation
CO3	Make use of Fourier transform and Z-transform to illustrate discretes signals and systems. Solve first and second order ordinary differential equations arising in	engineering problems using single step and multistep
CO4	Solve first and second order ordinary differential equations arising an numerical methods. Determine the externals of functional using calculus of variations and	solve problems arising in dynamics of rigid bodies and
CO5	Determine the externals of functional using calculus of variations wibrational analysis.	

)- PO-	PSO N	IAPPIN	G:							-010	DO11	PO12	PSO1	PSO2	PSO
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	1012			
CO1	3	2													
CO2	3	2							100000						
CO3	3	2							10000						
CO4	3	2													
CO5	3	2													

Dept. of Electronics & Communication Engg SJB Institute of Technology

Bengaluru-560060

OURSE OUTCOMES A	SUBJECT CODE 18EC32
SUBJECT NAME FACULTY NAME	Network Theory Dr. Vijayakumar T/ Mrs. Anitha P CO STATEMENTS
CO1	Distinguish the networks and discuss various circuit analysis techniques. Analyze the circuit parameters during switching transients and apply Laplace transform to solve the given network
CO2 CO3	to solve a given network.
CO4	Apply network theorems to serve a general server and the network parameters for two port networks Evaluate the frequency response for resonant circuits and the network parameters for two port networks

CO- PO-	PSO M	IAPPIN	G:		1 -07	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	FOO	10.						1		
CO1	1	2	1										1		
CO2	1	2	1										1		
CO3	1	2	1		-	-							1		
CO4	2	2	1												

SUBJECT NAME	Electronic Devices	SUBJECT CODE 18EC33									
FACULTY NAME	Mr. Bhaskar B / Ms. Geethanjali	TATEMENTS									
		TATEMENTO									
CO1	Understand the principal of semiconductor physics										
CO2	Analyze and design-controlled rectifier and understand the principle and characteristics of different types of semiconductor devices										
CO3	Understand the fabrication process of semiconductor dev										
CO4	Utilizes the mathematical models of semiconductor functions and mos transistors for circuits and system										
CO5	Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.										

CO- PO-PSO MAPPING:

0 10						- Company (Co.		noo	DO0	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	TOIU	1011	101-	1		
CO1	3	2	1			Salar and							1		The deposits
CO2	3	2	1					5-11-1				18	1		
CO3	3	2	1										1		
CO4	3	2	1										1		

THE COLUMN THE SAME	Digital System Design SUBJECT CODE 18EC34
SUBJECT NAME FACULTY NAME	N. W. Mohandra Prashanth / Dr. Ravikumar A V
FACULTINA	COSTATEMENTS
CO1	Demonstrate the concept of combinational, sequential logic circuits and PLD
CO2	Design combinational logic circuits
CO3	Design the sequential circuits using SR, JK, D, T flip flops and Mealy & Moore machines
CO4	Design applications of combinational and sequential circuits.

CO- PO-	rso M	MITH				PO(PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	107	100					2		
CO1	2				-								2		
CO2	3				-								1		
CO3	3												1		
CO4	3	2													

Head

SUBJECT NAME	Computer Organization & Architecture	SUBJECT CODE 18EC35 Stirate of Technolog							
FACULTY NAME	D. Vemela M / Mrs. Uma S	EMENTS							
	CO STAT	extigued units and processor performance and analyze differen							
CO1	Understand the basic Organization of computer, operational fur instructions and addressing modes.								
CO2	Identifying the input output devices and utilization of interrupts, controlling devices and memory								
CO3	Understand, analyze and design the various memory systems								
CO4	Analyzing the execution of complete instructions through hardwired and micro programmed Control								

CO- PO-PSO MAPPING:

O-PO-	PSO N	IAPPIN	G:							DO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	TOIT		2		
CO1	2	3	2										2		
CO2	2	2	2414								1000000		2	2	
CO3	3	3	2										2		
CO4	2	2	1												

Head Dept. of Electronics & Communication Eng

Page 6 of 48

SJB Institute of Technology Bengaluru-560060

SUBJECT NAME	Power Electronics & Instrumentation	SUBJECT CODE 18EC36								
FACULTY NAME	Dr. Rekha K R / Dr. K Somashekar / Mrs. Chetana R CO STATEMENTS									
CO1										
CO2	Analyze and design controlled rectifier, DC to DC converters, DC to AC inverters and SMPS.									
CO3	Define instrument errors and develop circuits for multirange Ammocomponent values and frequency	eters, Voltmeters and Bridges to measure passive								
CO4	Describe the principle of operation of Digital instruments and PLC	S								
CO5	Use Instrumentation amplifier for measuring physical parameters a	and transducer								

CO- PO-PSO MAPPING:

en e	PO1	DO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	103	104	100				2				2		
CO1	1	2	1			C 5000			2						
CO2	1	2	1			1							2		
CO3	2	2	2										2		
CO3	2		-										2		
CO4	2	1	1							-			2		
CO5	1	1		2		2	1						2		

Head

THE WORLD NAME	Electronic Devices & Instrumentation Laboratory	SUBJECT CODE 18ECL37
SUBJECT NAME	Mr. Bhaskar B, Dr. K Somashekar (A2), Mrs. Geethanjali (A1)	(1948년 - 1945년 - 1947년 - 1948년 - 1948년 - 1948년 - 1948
FACULTY NAME	Mr. Bhaskar B, Dr. K Somashekar (122) Mrs. Geethanjali, Dr. Rekha K R (B2), Supriya (B1)	
	Dr. K Somashekar, Mrs. Supriya M CO STATEM	TENTS
	i i signita clamping circuits a	and voltage regulators.
CO1	Test circuits of rectifiers, clipping circuits, clamping circuits a	of norameters
	Test circuits of rectifiers, emphing enemacy Understand the characteristics of various electronic devices a	nd measurement of parameters.
000	Understand the characteristics of various	
CO2	· · · · · · · · · · · · · · · · · · ·	
	Design and test simple electronic circuits	
CO3	Use of circuit simulation software for the implementation and	d characterization of electronic circuits and devices.
	Use of circuit simulation software for the implementation and	d ollarassa
CO4	030 07 011	

)- PO-	PSO M	APPIN	G:					200	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	1010		1	2		
CO1	3	2		2									2		
CO2	3	2		2									2		
CO3	2	2	3	3	Contract of						1		2		
CO4	2	2	Married Married	2	3	The state of	1000 1000				1 1 1 1		30000		

SUBJECT NAME	Digital System Design Laboratory	SUBJECT CODE 18ECL38									
FACULTY NAME	COS	STATEMENTS									
CO1	Demonstrate the truth table of various expressions and o										
CO2	CO2 Design and test various combination circuits such as adders, subtractors, comparators, mux and demuxer.										
CO3	Construct flip flop using universal gates.										
CO4	Explain operation of counter and shift registers.										
CO5	Simulate serial adder and binary multiplier										

)- r O-	150 1	IAPPIN				201	DO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	100	107				2		
CO1	2	2	2							1	7777		2		
CO2	3	3	3										2		
CO3		2	2									3	2		
CO4			3					-				3	2		
CO5		2	3		3										

Head

SUBJECT NAME	Complex Analysis, Probability and Statistical Methods	SUBJECT CODE 18MAT41									
FACULTY NAME	Mrs. Chaitra A C / Mrs. Geetha B S / Mrs. Pushpa S										
	CO STATEMENTS										
CO1	Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory										
CO2 Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image process											
CO3	Leasting an arrelability distributions in analysing the probability models arising in engineering field.										
CO4	Make use of correlation and regression analysis to fit a suitable mathematical model for the statistical data.										
CO5	Construct joint probability distributions and demonstrate the validity of testing the hypothesis.										

0-10	150 1							700	non	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIU	1011	1012	2		
CO1	2	2				25 19							2		
CO2	2	2		1 18 1					110				2		
CO3	2	2											2		
CO4	2	2								1000	1		2		
CO5	2	2			100								2		

SUBJECT NAME	Analog Circuits	SUBJECT CODE	18EC42								
FACULTY NAME	Dr. K R Rekha / Dr. Anitha P CO STATEMENTS										
CO1	Understand the characteristics of BJTs and FETs.										
CO2	Design and analyze the BJT and FET amplifier circuits.										
CO3	Design and analyze the sinusoidal oscillators and power ampli										
CO4	Understand, analyze and design the functioning of linear ICs a	and their applications.									

CO- PO	-P50 IV	IAPPIN	0.				-0-	noe	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	103	1010			2		
CO1	3												2		
CO2		2	2										2		
соз		2	2										2		
CO4	2	2	2							1 1				B BECKER SERVICE	a mananasasas

SUBJECT NAME	Control Systems	SUBJECT CODE 18EC43									
FACULTY NAME	Dr. Shilpa K Gowda / Mrs. Latha S CO STATEMENTS										
CO1	Understand and develop the mathematical model of mecha	anical, electrical systems									
CO2	Determine transfer function for a given control system using block diagram reduction techniques and signal flow graph metho										
CO3	Determine the time domain specifications for first and seco										
CO4	Analyze the stability of a system using Routh-Hurwitz Cri										
CO5	Develop a control system model in continuous and discret	te time using state variable techniques									

0-10-	1001	WALL III						non	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	109	-	-	-	2	14.1	-
CO1	3	2	1	-	-	-	-	-	-				3		
							_	_	- 1	-	-	-	2	-	1
CO2	3	3	-	-		-	-			-	-	-	2	-	-
CO3	3	2	-	-	-	-	-	-	-				2		
					1	14 19 19	-	_	_	-	-	-	3	2	1
CO4	3	3	2	-	1		-			-	-	1 1 1 m	3	2	-
CO5	3	3	2	- /	1	-	-	-	-				3		

SUBJECT NAME	Engineering Statistics & Linear Algebra SUBJECT CODE 18EC44										
FACULTY NAME	Dr. Anitha P / Mr. Bhaskar B										
	CO STATEMENTS										
CO1 Understand Single and Multiple Random Variables, and their extension to Random Processes.											
CO2	CO2 Compute the quantitative parameters for the functions of single and Multiple Random Variables and Processes.										
CO3	Familiarize with the concept of Vector spaces and orthogonal	ality with qualitative insight into applications.									
CO4	CO4 Compute the quantitative parameters for Matrices and Linear Transformations.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	-	-	-	-	1	2	2		1
CO2	3	2	2	-	-		-	-	-	-	1	2	2	-	1
CO3	3	2	1	-	2	-	-	-	-	-	2	2	2		1
CO4	3	1	2	_	2	-	-	-	-	-	2	2	2	3	1

Head J

SUBJECT NAME	Signals & Systems	SUBJECT CODE 18EC45										
FACULTY NAME	Mrs. Latha S / Mr. Rahul Rai CO STATEMENTS											
CO1	Understand & analyze the different types of signals and											
CO2	Determine the various properties of continuous and discrete time systems. Comprehend the knowledge of LTI systems and compute the response of a Continuous and Discrete LTI systems.											
CO3	in a convolution											
CO4	Determine the spectral characteristics of continuous and											
CO5	Apply the knowledge of Z-transforms to analyse discrete systems in frequency domain.											

CO- PO-PSO MAPPING:

U-PU	-roun	TAT I II.	10.							_			DCO1	PSO2	PSO3
				701	nos.	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	1302	100
	PO1	PO2	PO3	PO4	PO5	100	10,						2		
CO1	2	2	2								1000		2		
CO2	2	2	2										2		
CO3	2	2	2										2		
CO4	2	2	2	Marine Marin			10/16/		0,000				2		
CO5	2	2	2												

Head T

SUBJECT NAME	Microcontroller	SUBJECT COD	E 18EC46								
FACULTY NAME	Dr. Ravikumar A V/ Mrs. Uma S										
	CO STA	FEMENTS	ki ki turi sici i Kishir								
CO1	Explain the difference between MP and MC, architecture of 8 8051.	051 MC and external Memory int	erfacing and Instruction set of								
CO2	Analyze 8051 assembly level and C program to send and rece	ive serial data and generate timing	s waveforms								
CO3	Explain the interrupt systems, operation of timers/Counters and	d serial port of 8051									
CO4	Interface simple switches, simple LEDs, ADC0804,LCD and	stepper motor to 8051 using IO po	rts.								

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2											2		
CO2	2	2											2		
CO3	2	2									M. M.	772	2		
CO4	2	2											2		

Head

CANDIECT NAME	Microcontroller Lab	SUBJECT CODE 18ECL47							
SUBJECT NAME FACULTY NAME	Mr. Rahul Rai, Mrs. Anushree. Dr. Ravikumar A V, Mrs. Sowmya B J (B1), Mrs. Anushree Mrs. Uma S, Mrs. Sowmya B J, Mr. Rahul Rai(C1), Mrs. Nit	alya o (e2)							
		VIEW 10							
CO1	Demonstrate ability to handle data transfer, arithmetic operations, counters and Boolean and logical instructions using assembly language programming Understand and design of experiments demonstrating the usage of call and return instructions, code conversion, delay								
CO2	Understand and design of experiments demonstrating the usa								
CO3	Interface different input and output devices to 8051 and control them using Assembly language programs								
CO4	Interface the serial devices to 8051 and do the serial transfer using C programming.								

CO- PO-PSO MAPPING:

0-10-	150 1							noe	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	109	1010	1011		2		
CO1	2	2			2								2		
CO2	2	2			2				C A LINE S				2		
CO3	2	2	2		2				1		100		2		
CO4	2	2	2		2				1	100			2		

OURSE OUTCOMES A	AND CO-PO-PSO ARTICULATION MATRIX BATCH 2018-22										
SUBJECT NAME	Analog Circuits Lab	SUBJECT CODE									
FACULTY NAME	Dr. Shilpa K Gowda, Mrs. Chetana R, Ms. Geethanjali (A1 & A2) Mr. Bhaskar, Mr. Darshan, Ms. Geethanjali (B1), Mrs. Chetana R(B2) Dr. Anitha P Dr. K R Rekha (C1), Dr. T Vijaykumar (C2)Mr. Bhaskar	(C1), Mr. Darshan(C2)								
CO STATEMENTS											
CO1	Design analog circuit using BJT/FET and evaluate their performance character	Design analog circuit using BJT/FET and evaluate their performance characteristics									
CO2	Design analog circuit using opamp for different applications										
CO3	Simulate and analyze analog circuits that uses ICs for different electronics ap	plications									

CO-PO-PSO MAPPING:18ECL48

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3									2		
CO2	2	2	3	3						1			2		
СОЗ	2	3	1	2	3								2		

SUBJECT NAME	Technological Innovation Management and Entrepreneurship SUBJECT CODE 18ES51										
FACULTY NAME	Mrs. Pushpalatha G / Ms. Geethanjali										
	CO STATEMENTS										
CO1	Understand the fundamentals concepts of management and entrepreneurship and opportunities in order to set up the business										
CO2	Describe the functions of managers entrepreneur and their social responsibilities										
CO3	understand the components in developing business plan										
CO4	Awareness about various sources of funding and institution supporting entrepreneur and social responsibility of entrepreneur										
CO5	Understand the business plan and its model project design and project report preparation										

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2													2
CO2	2	2													2
CO3	2	2					2								2
CO4	2	2	a Tri Ai						2						2
CO5	2	2	100				2								2

SUBJECT NAME	Digital Signal Processing SUBJECT CODE 18EC52										
FACULTY NAME	Mr. Rahul R Rai / Mrs. Sowmya B J										
	CO STATEMENTS										
CO1	Compute DFT of real and complex discrete time signals and determine respetechniques.	onse of LTI systems u	sing time domain and DFT								
CO2	Computation of DFT using FFT algorithms and linear filtering approach.										
CO3	Design and realize FIR and IIR digital filters	pully straight of the second									
CO4	Understand the DSP processor architecture.										

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1											2		
CO2	2	1		- 1									2		
CO3	2	1	1										2		
CO4	2	1	1										2		

Head

SUBJECT NAME	Principles of Communication Systems	SUBJECT CODE 18EC53									
FACULTY NAME	Mrs. Supriya M /Dr. Shilpa K Gowda /Mr. Bhaskar B	To be or precipeting to the last the second transfer of the second t									
	CO STA	TEMENTS									
CO1	Determine the performance of analog modulation scheme	es in time and frequency domains									
CO2	Determine the performance of systems for generation and detection of modulated analog signals.										
CO3	Characterize analog signals in time domain as random p	processes and in frequency domain using Fourier transforms									
CO4	Characterize the influence of channel on analog modula	ted signals									
CO5	Understand the characteristics of pulse amplitude modulation	, pulse position modulation and pulse code modulation systems.									

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2													
CO2	2	2													
соз	3	1													
CO4	2	2				p Gardi									
CO5	3	3													

SUBJECT NAME	Information Theory & Coding	SUBJECT CO	DE 18EC54								
FACULTY NAME	Dr. Shilpa K G /Dr. K Somashekar /Mrs. Divyashree										
	CO STATEMENTS										
CO1	Ability to apply the mathematical knowledge of probability and independent source)										
CO2	Apply source encoding algorithms such as Shannon coding information of a discrete message source using minimum nu	g, Huffman coding, Arithmetic cumber of bits.	oding to ensure transmission of								
CO3	Ability to compute and analyze the capacity and efficiency										
CO4	Design encoding and decoding techniques for Linear block transmission of information of a discrete message source.	c code, Cyclic code& Convolution	n code to ensure error free								

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2											2		
CO2	2	2											3		
CO3	2	2									WAR FOR		2		
CO4	2	2	2										2		

Head

SUBJECT NAME	Electromagnetic Waves	SUBJECT CODE 18EC55
FACULTY NAME	Dr. Mahantesh K /Mrs. Anushree R	SUBJECT CODE 18EC55
	COS	FATEMENTS
CO1		oint, linear, volume charge by applying conventional methods and
CO2	Apply Guass law to evaluate electric fields due to different theorem.	t charge distributions and volume charge distribution by divergence
CO3	Determine potential and energy with respect to point charg and Ampere law for evaluating magentic field.	ge and capacitance using laplace equation and apply Biot savarts law
CO4		on with respect to magnetic materials and voltage induction in
CO5	Apply maxwell's equations for time varying fields, Electron associated with poynting theorem.	magnetic waves in free space and conductor's and evaluate power

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	DCO2
CO1	2	2								1010	1011	1012	7301	PSU2	PSO3
CO2	1	2													
CO3	2	2													
CO4	2	2	g 30 10 g/s												Herita Tables
CO5	. 1														

Head

SUBJECT NAME	Verilog HDL SUBJECT CODE 18EC56											
FACULTY NAME	Mrs.Divyashree Y V											
4世界4月12年16年18	CO STATEM	ENTS										
CO1	Define the usage of Verilog hardware language in semiconductor te	echnology and design flow o	f digital circuits.									
CO2	Develop Verilog programs in gate, dataflow (RTL), behavioral and switch modelling level of abstraction.											
CO3	Design and verify the functionality of digital circuit/ system using to	est benches										
CO4	Analyze the program more effectively using Verilog tasks, function	s and directives.										
CO5	Interpret the various constructs in logic synthesis and perform timin	g and delay simulation										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2						1.7157				2		
CO2	2	2	2										2		
CO3	2	2	2		2		de mai						2		
CO4	2	2	2		2								2		
CO5	2	2	2		2								2		

Page 23 of 48

SUBJECT NAME	Digital Signal Processing Laboratory	SUBJECT CODE	18ECL57
FACULTY NAME	Mr. Rahul Rai, Mrs. Sowmya B J, Mrs. Uma S Mrs. Sowmya B J & Dr. Mahantesh K Mrs. Uma S, Dr. Mahantesh K, Mr.Rahul Rai		
	CO STATEMENTS		
CO1	Apply the concepts of signal processing in time and frequency domain using	simulation tool and D	OSP processor
CO2	Analyse and verify the properties of discrete time signals & systems		
CO3	Design digital filters using a simulation tool and a DSP processor and veri specifications	ify the frequency and	phase response for the given
CO4	Ability to work as an individual to design, implement and demonstrate signa	d/image processing me	ethods using matlab tool

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3								100				3	2	
CO2		2			11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		the city	11.11.11			hita y		3	2	
CO3		100	3		A. 7 (2)	Service 1	FF A ST						3	2	
CO4				1	1	in and			1	1	1	1	3	2	

Head

SUBJECT NAME	HDL Laboratory	SUBJECT CODE	18ECL58
FACULTY NAME	Mrs. Divyashree, Latha S, Dr. Supreeth		1 1241
	Mrs. Latha S & Mr. Darshan B D		
	Dr. Supreeth H S G, Mrs. Divyashree, Mr.Darshan		
	CO STATEMENTS		
CO1	Write the Verilog/VHDL programs to simulate Combinational circuits in Dat level Abstractions.	aflow, Behavioral an	d Gate
CO2	Describe sequential circuits like flip flops and counters in Behavioral descrip waveforms.	tion and obtain simul	ation
CO3	Synthesize Combinational and Sequential circuits on programmable ICs and	test the hardware.	
CO4	Interface the hardware to the programmable chips and obtain the required out	put	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2										2		
CO2	2	2	2										2		
CO3	2	2	2										2		
CO4	2	2	2										2		

Head

SUBJECT NAME	Digital communication	SUBJECT CODE	18EC61									
FACULTY NAME	Mrs. Jyothi H /Mrs. Supriya M											
	CO STATEMENTS											
COI	Associate and apply the concepts of bandpass sampling t											
CO2	Analyse symbol processing at the transmitter and the processing at the proce											
CO3	Demonstrate bandpass signals subjected to corrupt and demodulated and estimated at receiver to meet specific	distorted symbols in a bandlimited	d channel, can be									
CO4	Analyse and compute spread spectrum techniques.											

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2										2	2	
CO2	2	3	2	7. or 10	DE TOTAL	BURNEY.							2	2	
CO3	2	2	2			1							3	2	
CO4	3	2	3							1		Call St	2	3	

SUBJECT NAME	Embedded Systems	SUBJECT CODE 18EC62
FACULTY NAME	Dr. K Somashekar / Dr. D N Chandrappa	
	COS	FATEMENTS
CO1	Describe the architectural features and instruction set of 3	2-bit microcontroller ARM Cortex M3
CO2	Apply the knowledge gained for Programming ARM Con	tex M3 for different applications.
CO3	Understand the basic hardware components and their sele embedded system.	ction method based on the characteristics and attributes of an
CO4	Develop the hardware software co-design and firmware co	esign approaches.
CO5	Explain the need of real time operating system for embed	ded system applications.

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1											2		
CO2	2	2	1										1	1	
CO3	2												1		
CO4	2		1						5/ 18.	92 33			1		
CO5	2	1											1		

Head

SUBJECT NAME	Microwave & Antennas	SUBJECT CODE	18EC63									
FACULTY NAME	Dr. Anitha P /Dr. Komala M											
	CO STATEMENTS											
CO1	Understand and analyze the various parameters related to microv											
CO2 Analyze the behavior of microwave devices using scattering parameters and Identify microwave devices for different applications.												
CO3	Apply the knowledge of electromagnetic theory to understand the	ne basics of antenna theory.										
CO4	Analyze various antenna configurations according to the applica	ation.										

CO- PO-PSO MAPPING:18EC63

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			n finde										
CO2	2	3	1										2		
CO3	3	2													
CO4	2	3	1		1	4-1							2		

SUBJECT NAME	Python App. Programming	SUBJECT CODE 18EC646
FACULTY NAME	PG /Dr. MK	SCEECE CODE 16EC040
	CO	STATEMENTS
CO1	Examine Python syntax and semantics and be flo	uent in the use of Python flow control and functions.
CO2	Demonstrate proficiency in handling Strings and	File Systems.
CO3	Create, run and manipulate Python Programs usi Expressions.	ng core data structures like Lists, Dictionaries and use Regula
CO4	Interpret the concepts of Object-Oriented Progra	mming as used in Python.
CO5	Implement exemplary applications related to Net	work Programming, Web Services and Databases in Python.
CO6		

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1									1011	1012	1501	1302	PS03
CO2	1	2			1								1		
CO3	2	2	1										1		
CO4	2	1			2						2		1		
CO5	2	2			3						1		2		

SUBJECT NAME	Operating System	SUBJECT CODE	18EC641
FACULTY NAME	Mrs. Nithya S		
	CO STATE	MENTS	
CO1	Explain the goals, structure, operation and types of operating system	ns.	
CO2	Apply scheduling techniques to find performance factors		
CO3	Understand the organization of file systems and IOCS		
CO4	Apply suitable techniques for contiguous and non-contiguous memor	ory allocation.	
CO5	Describe message passing, deadlock detection and prevention method	ods.	

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2											2		
CO2	2	3	2				F-45/64						2		
CO3	2	3	J. L. W.	W. Carlot					1 of the si	100			2		
CO4	3	2											2		
CO5	2	2	2				17.52	A STATE OF THE STA	1000				2		

SUBJECT NAME	Digital System Design using Verilog	SUBJECT CODE 18EC644
FACULTY NAME	Mrs. Divyashree Y V	Parallel 18EC044
特別的學科學學	COST	TATEMENTS
CO1	Understand the embedded systems, using small microconti	rollers, larger CPUs/DSPs, or hard or soft processor cores.
CO2	Design & Construct the combinational circuits using discre	ete gates and programmable logic devices.
CO3	Develop the Verilog model for sequential circuits and test	pattern generation
CO4	Explore the different types of semiconductor memories and	d their usage for specific chip design
CO5	Analyze and synthesis of processor and I/O controllers that	t are used in embedded system design

CO- PO-PSO MAPPING:

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	DCO2
3	1	2							1010	1011	1012	1301	PSU2	PSO3
2	3	3										3		
2	3	3										3		
2	3	3										3	1	
2	2	3										3		
2	2	2												
	3 2 2 2	3 1 2 3 2 3 2 2	3 1 2 2 3 3 2 3 3 2 2 3	3 1 2 2 3 3 2 3 3 2 2 3	3 1 2 2 2 3 3 2 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2	3 1 2 1 3 3 2 3 3 2 2 3 3 3 2 3 3 3 3 3	3 1 2 100 107 2 3 3 3 2 2 3 3 2 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	3 1 2 100 107 F08 2 3 3 3 2 2 3 3	3 1 2 100 107 F08 F09 2 3 3 3	3 1 2	3 1 2	3 1 2	3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

SUBJECT NAME	Embedded Systems Laboratory	SUBJECT CODE	18ECL66
FACULTY NAME	Mrs. Anushree R & Dr. K Somashekar Dr. Komala M & Mrs. Latha S		
	CO STAT	EMENTS	
CO1	Understand the Instruction set of 32-bit microcontroller. ARM C Assembly & C Language	Cortex M3 and the software tool req	uired for Programming in
CO2	Develop Assembly Language Programs using ARM Cortex-M3	for Different Applications	
CO3	Develop C Language Programs to Interface external device and	input output with ARM Cortex M3	

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			3								3		1000
CO2	3	-cymerie is	2	2	3				2	2			3	2	
CO3	3		2	2	3				2	2	2	2	3	2	

SUBJECT NAME	Communication Laboratory	CUD IF CIT CODY
FACULTY NAME	Mrs. Jyothi H & Mrs. Chetana R Mrs. Supriya M & Mrs. Sowmya B J	SUBJECT CODE 18ECL67
	COSTATEM	IENTS
CO1	Design and test the Analog, Digital modulation, and demodulation	
CO2	Determine the characteristics and response of microwave waveguid	e.
CO3	Determine the characteristics of microstrip antennas and devices and	d compute the parameters associated with it
CO4	Simulate the digital modulation systems and compare the error perfe	

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	DO10	DOM				
CO1	2	2	2	1			107	100		PO10	PO11	PO12	PSO1	PSO2	PSO3
			24	1					2	2		1	2		
CO2	2	2	2						2	2		1	2		
CO3	2	2	2						2	_		1	2		
CO4	2	2	2	1	2			_				1	2	1	
	2	2	2	1	3				2			1	2		

SUBJECT NAME	Mini – Project	SUBJECT CODE	18ECMP68
FACULTY NAME	Mrs. Latha S & Mrs. Nithya S		Apad 1
	CO STATEMENTS		
CO1	Understand how to identify the challenges & issues in industry, society	y, and environment.	
CO2	Perform analysis and design methodologies with novelty to devise so	ution for the problem	n statement.
CO3	Work in a team to achieve a common goal		
CO4	Communicate effectively and to present ideas clearly and coherently	n both written and o	oral forms.

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	\$ (m), 711	2		1		1	2				2	1	
CO2	3	3	3	2	1				2		1		2	1	
CO3	2	2		4. 1.36					3				2		
CO4								2	2	2		1	2		

SUBJECT NAME	Computer Networks	CVVD						
FACULTY NAME	Mrs. Pushpalatha G / Dr. Kumutha D	SUBJECT CODE 18EC71						
than firm a serie of the first	COSTA	FEMENTS						
CO1	Understand the concept of networking and its arc							
CO2	Describe the various protocols and services of di	fferent layers.						
CO3	Distinguish the basic network configuration and		each network					
CO4	Analyze a simple network and measure its param		caen network.					

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	DOG						
CO1	3	3				100	107	rus	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
			-	-	-	-	-	-	-	-	-	_	2		Homeone and
CO2	3	3	-	-	_	_								-	-
CO3	2	2					-	-	_	-	-	-	2		1
COS	3	3	-	-	-	-		_	0 <u>1</u>	8 2	9 27 37 1		2		Accessed to the
CO4	3	3	_								-	-	2		-
			-		-	-	-	-	-	_	_		2		

Head

SUBJECT NAME	VLSI Design	SUBJECT CODE	18EC72
FACULTY NAME	Dr. K V Mahendra Prashanth / Mrs. Chetana R		
	CO STATEMENTS		
CO1	Demonstrate the concepts of MOS transistor theory		
CO2	Elucidate the concepts of CMOS fabrication process, layout design rules, scaling		
CO3	Understanding the delay model and combinational circuit design		
CO4	Design of sequential circuits and dynamic logic circuits		
CO5	Interpret semiconductor memories testing, verification principles in VI	SI Design	

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2											2			
CO2	2											2			
CO3	2											2			
CO4	2	2	-1-27		- 5	A Company	1624		e de la company			3			
CO5	2	San The										2	1		

SUBJECT NAME	Real Time Systems	
FACULTY NAME	Mrs. Nithya S	SUBJECT CODE 18EC731
	COS	STATEMENTS
CO1	Understand the fundamentals of Real time systems a	
CO2	Understand the concepts of computer control, operat for real-time applications.	ting system and the suitable Computer hardware requirements
CO3	Develop the software languages to meet Real time ap	
CO4	Apply suitable methodologies to design and develop	

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	DOG							
CO1	3	2			100	100	FO/	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO2	3	2											2		
CO3	2	3	2										2		
CO4	2	3											2		

Hood -

SUBJECT NAME	Satellite Communication	SUBJECT CODE	18EC732
FACULTY NAME	Dr. Anitha P		1691
	CO STA	TEMENTS	
CO1	Describe the Satellite orbits and its trajectories with the defini	ition of parameters associated with it	
CO2	Describe the electronic hardware systems associated with a sa	atellite subsystem and earth station.	
CO3	Compute the satellite link parameters under the various propatechniques.	ngation conditions with the illustration	n of multiple access
CO4	Describe the communication satellites with the focus on natio	onal satellite system.	
CO5	Describe the satellites used for applications in remote sensing	, weather forecasting and navigation	

CO-PO-PSO MAPPING:18EC732

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2											2		
CO2	2	2											1		
CO3	3	2											2		
CO4	3	2							THE STATE OF			1	2		
CO5	3	2		- 15 7 3								- 1	2		

Head

Dept. of Electronics & Communication Engg.

SJB Institute of Technology

Bengaluru-560060

46.3

SUBJECT NAME	Digital Image Processing	SIL 1- 1- 11
FACULTY NAME	Dr. D N Chandrappa	SUBJECT CODE 18EC733
	COSTATI	EMENTS
CO1	Describe the fundamental of digital image processing.	
CO2	Understand image formation and image analysis techniques.	
CO3	Apply image processing techniques in both the spatial and freque	ency (Fourier) domains
CO4	Conduct independent study and analysis of Image Enhancement a	and restoration techniques.

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	DOT.	700							
CO1	3	2			103	100	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	3	2	-	-	-	-	-	-	-	_			2		1503
CO ₂	3	2	-	-	1	_	_								1000 (-
CO3	3	2	-	1	2			-	-	-	-	-	2	1	-
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	1	
001	3	2	1	1	1	-	-	-	_		_		2		

Head

SUBJECT NAME	IOT & WSN	SUBJECT CODE	18EC741
FACULTY NAME	Mr. Darshan B D /Dr. Lakshminarayana		
	CO STATEMENT	ΓS	
CO1	Describe the OSI Model for the IoT/M2M Systems.		
CO2	Understand the architecture and design principles for IoT.		
CO3	Learn the programming for IoT Applications.		
CO4	Identify the communication protocols which best suit the V	VSNs.	

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	A PARTY	orac esta	francis i mili	- I					and the second		2	1	
CO2	2	2											2	1	
CO3	2	2			-			144.1				Treate	2	1	
CO4	2	2											2	1	

Head Dept. of Electronics & Communication Engg.
SJB Institute of Technology

Bengaluru-560060

SUBJECT NAME	Cryptography	SUBJECT CODE	18EC744
FACULTY NAME	Mrs. Uma S		
	COST	ATEMENTS	
CO1	Explain basic cryptographic algorithms to encrypt and decr	rypt the data.	
CO2	Use symmetric and asymmetric cryptography algorithms to	encrypt and decrypt the information.	
CO3	Apply concepts of modern algebra in cryptography algorith	nms.	
CO4	Apply pseudo random sequence in stream cipher algorithms.		

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	= 1			1	2	2					2		
CO2	3	2				1	2	2					2		
CO3	3	3	1			2	2	2		E N E de Cal	1	1	2	1	
CO4	3	3	1			2	2	2			1	1	2	1	

Head

SUBJECT NAME	Computer Networks Lab	SUBJECT CODE	18ECL76
FACULTY NAME	Dr. Kumutha D & Ms. Geethanajali N Mrs. Pushpalatha G & Mrs. Chetana R		
	CO STATEMENT	S	
CO1	Identify suitable tools to model a network and understand the protoc	ols at various OSI ref	erence levels.
CO2	Design a suitable network and simulate using a Network simulator too	ol.	
CO3	Simulate the networking concepts and protocols using C/C++ program	nming.	
CO4	Model the networks for different configurations and analyze the resul	ts.	

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2		1	1							100 E 100 Vini	2		
CO2	2	2	2										2	2	
CO3	2	2	2	1	1								2		
CO4	2	2	2					1					2		

SUBJECT NAME	VLSI Laboratory	OVER THE PROPERTY OF THE PROPE										
FACULTY NAME	Mrs. Jyothi H, Mrs. Uma S, Mrs. Nithya & Mrs. Supriya M	Mrs. Jyothi H, Mrs. Uma S, Mrs. Nithya & Mrs. Supriya M										
The state of the s	CO STAT	TEMENTS										
CO1	Design and simulate combinational and sequential digital											
CO2	Understand the synthesis process of digital circuits using EDA tool.											
CO3	Perform ASIC Design flow and understand the process of synthesis, synthesis constraints and evaluating the synthesis reports to obtains optimum gate level net list.											
CO4	Design and simulate basic CMOS circuits like inverter, co	ommon source amplifier and differential amplifiers										
CO5	Perform RTL-GDSII flow and understand the stages in the											

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	DOO	T 2011					
CO1	3	3	3	1	2	100	107	PU8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO2	2	2	3	1	3								3	2	1
COZ	3	3	3	1	3								3	2	
CO3	3	3	3	1	3								,		1
CO4	3	3	3	1	3			1711111111					3	2	1
CO5	2	2	2	1	3								3	2	1
003	3	3	3	1	3								3	2	1

Head

SUBJECT NAME	Wireless & Cellular Communication	SUBJECT CODE 18EC81								
FACULTY NAME	Dr. Komala M /Mrs. Anushree R	The state of the s								
	CO STATEME	NTS								
CO1	Interpret the concept of propagation mechanism in wireless chan	nels								
CO2	CO2 Compare the network architecture of GSM, TDMA and CDMA Technology in cellular network.									
CO3	Understand the system architecture and the functional standards	in LTE 4G.								
CO4	Analyze the hierarchical Channel Structure of LTE using OFDM	A and SC-FDMA principles .								

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	11 Pg = 100 P	-	-	- ·	-	-	-	- n-	-	2		
CO2	2	-	-	-	-	2	-	-	-	- 1	1	1	2		a a to a
CO3	3	2	-	-	-	-	2	-	-	-	- 1	-	2	2	-
CO4	2	2	-	-		-	-	-	1-	-	-	1	2	- 1	-

SUBJECT NAME	Network Security	SUBJECT CODE	18FC821									
FACULTY NAME	Dr. Vijayakumar T /Mrs. Chetana R											
	CO S	FATEMENTS										
CO1	Understand the network security services and mechanisms v	vith security concepts										
CO2	Explain the concept of Transport Level Security and Secure Socket Layer											
CO3	Explain the Security concerns in Internet Protocol security											
CO4	Explain and Analyse the concepts of Intruders, Intrusion det	ection and Malicious Software										
CO5	Describe Firewalls, Firewall Characteristics, Biasing and Co	nfiguration										

CO-PO-PSO MAPPING:

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
3	2											2	1002	3
2	2											2		1
3	2	1										2		
2	2			1	2					1		L		1
3	3									1				3
	3 2 3 2	3 2 2 2 3 2 2 2	3 2 2 2 3 2 1 2 2	3 2 2 3 3 2 1 2 2 2	3 2 2 2 3 3 2 1 2 2 1	3 2 2 3 3 2 1 2 2 1 2	3 2 2 3 3 2 1 2 2 2 1 2 2 2 1 2	3 2 2 3 3 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1	3 2 2 3 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 2 1 1 2 1 1 2 POIN	3 2 2 2 3 3 2 1 2 1 2 1 1 2 1 1	3 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 2 2 3 2 2 2 3 2 1 2 2 2 3 3	3 2 2 2 3 2 3 2 3 2 3 2 2 2 2 2 2 2 2 1 2 2 1 2

Page 45 of 48

SUBJECT NAME	Project work phase – 2 SUBJECT CODE 18ECP83												
FACULTY NAME	Dr. Mahantesh K & Mr. Bhaskar B												
	CO STATEMENTS												
CO1	Identify the domain of interest and problem with multidisciplinary approach by applying acquired knowledge.												
CO2	Perform requirement analysis and identify design methodologies with novelty & societal relevance in it.												
CO3	Apply advanced engineering tools and perform hardware/s	Apply advanced engineering tools and perform hardware/software design from a product perspective.											
CO4	Combine all the modules through effective team work after efficient testing.												
CO5	Task completion and compilation of the project report.												

CO- PO-PSO MAPPING:

Bay ash	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	3	-	-	-	3	-	-	-	-	3		_
CO2	-	3	3	3	-	2	-	2	2	-	3	- 3	3	-	-
CO3	3	3		-	3	-	3	-	3	-	-	- 3	-		3
CO4	3	3	36. - 748	on version	3	3	100 P	90 - 4	3	-	(3	
CO5	3	3	-		-	-	-	-	3	3	3	3	_		3

SUBJECT NAME	Technical Seminar	SUBJECT CODE 18ECS84
FACULTY NAME	Dr. Rekha K R & Mrs. Chetana R	
	CO	STATEMENTS
CO1	Acquire, establish and emphasize the information from	literature and beyond of upcoming technologies.
CO2	Based on the engineering knowledge, analyze the comp	orehensive solution related to societal, health and safety.
CO3	To impart skills in report writing describing the paper a	nd results.
CO4	Ability to work independently and demonstrate for effe	ctive collection, analyze and organize scientific information.

CO- PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		2				1					2		
CO2		3	2	2		1	15-7-1	2					2		2
CO3	2	3			2		2		2		2				
CO4	2	3			2	3			2					2	

SUBJECT NAME	Internship SUBJECT CODE 18EC185										
FACULTY NAME	Dr. Ravikumar A V & Dr. Manjunath M										
	CO STATEMENTS										
CO1	Ability to develop employee-valued skills such as thinking and adaptability.	teamwork, communication, ethical values, multidisciplinary critical									
CO2	Manifest the student to the environment and expectation in private and public sectors.	ons of performance on the part of technical and professional to practice									
CO3	Develop work habits and attitudes necessary for success	sful employability.									
CO4	Adopting theory and practices learnt by the students to	enhance their abilities in the field of study.									

CO-PO-PSO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2	Ing in park	2	1		3	3	2				2	2
CO2	2	2	2	2			2				3		2	2	
CO3						-10 m		2	2	2	1	3		1	2
CO4	3	2		2		2	1		1				3	2	