

# || JAI SRI GURUDEV || Sri AdichunchanagiriShikshana Trust (R)

#### SJB INSTITUTE OF TECHNOLOGY

BGS Health & Education City, Kengeri, Bangalore - 60.



#### DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

# COURSE OUTCOMES AND CO-PO-PSO ARTICULATION MATRIX

#### **BATCH 2020-24**

| SUBJECT NAME | Basic Electronics                                                                                      | SUBJECT CODE                                                                | 18ELN14/24                          |
|--------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|
|              | C                                                                                                      | O STATEMENTS                                                                |                                     |
| CO1          | Describe the operation of diodes, BJT and FET. Des                                                     | cribe general operating principles of SO                                    | CR's and its application            |
| CO2          | Design and explain the construction of rectifiers, reg                                                 | ulators, amplifiers and Oscillators.                                        |                                     |
| CO3          | Explain the working and design different types of op-                                                  | erational amplifiers.                                                       |                                     |
| CO4          | Explain the working and design of fixed voltage IC Understand the basic principle of operation of comm | regulator using 7805 and Astable oscill unication system and mobile phones. | ator using timer IC 555.            |
| CO5          | Recall and explain the different number system and using flipflops                                     | their conversions. Construct simple con                                     | mbinational and sequential circuits |

#### CO- PO-PSO MAPPING:

| i en de | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1     | 2   | 2   |     |     |     |     |     |     |     |      |      |      | 2    |      |      |
| CO2     | 2   | 2   | 2   |     |     |     |     |     |     |      |      |      | 2    |      |      |
| CO3     | 2   | 2   | 2   |     |     |     |     |     |     |      |      |      | 2    |      |      |
| CO4     | 2   |     | 2   |     |     |     |     |     |     |      |      |      | 2    |      |      |
| CO5     | 2   | 2   |     |     |     | ×   |     |     |     |      |      |      | 2    |      |      |

| SUBJECT NAME | Transform calculus, Fourier Series and Numerical Techniques SUBJECT CODE 18MAT31                                          |                                                                                                          |                         |  |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|--|
| FACULTY NAME | Mrs. Chaitra A C                                                                                                          |                                                                                                          |                         |  |  |  |  |  |  |  |  |
|              | CO STATEME                                                                                                                | ENTS                                                                                                     |                         |  |  |  |  |  |  |  |  |
| COl          | Use Laplace transform and inverse Laplace transform in solving analysis, control systems and other fields of engineering. |                                                                                                          |                         |  |  |  |  |  |  |  |  |
| CO2          | communications, digital signal processing and field theory.                                                               | Demonstrate Fourier series to study the behaviour of periodic functions and their applications in system |                         |  |  |  |  |  |  |  |  |
| CO3          | Make use of Fourier transform and Z-transform to illustrate disc<br>propagation, signals and systems.                     |                                                                                                          |                         |  |  |  |  |  |  |  |  |
| CO4          | Solve first and second order ordinary differential equations arisin multistep numerical methods.                          |                                                                                                          |                         |  |  |  |  |  |  |  |  |
| CO5          | Determine the externals of functional using calculus of variations bodies and vibrational analysis.                       | and solve problems arising                                                                               | ng in dynamics of rigid |  |  |  |  |  |  |  |  |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 2   |     |     |     |     |     |     |     |      |      |      |      |      |      |
| CO2 | 3   | 2   |     |     |     |     |     |     |     |      |      |      |      |      |      |
| CO3 | 3   | 2   |     |     |     |     |     |     |     |      |      |      |      |      |      |
| CO4 | 3   | 2   |     |     |     |     |     |     |     |      |      |      |      |      |      |
| CO5 | 3   | 2   |     |     |     |     |     |     |     |      |      |      |      |      |      |

Head

| SUBJECT NAME | Network Theory                                              | EMPO Pro-Concor                               |
|--------------|-------------------------------------------------------------|-----------------------------------------------|
| FACULTY NAME | Dr. Vijayakumar T                                           | SUBJECT CODE 18EC32                           |
|              | CO STAT                                                     | EMENTS                                        |
| CO1          | Distinguish the networks and discuss various circuit analy  |                                               |
| CO2          | Analyze the circuit parameters during switching transients  |                                               |
| CO3          | Apply network theorems to solve a given network.            | Try space dansform to solve the given network |
| CO4          | Evaluate the frequency response for resonant circuits and t | he network parameters for two port networks   |

# CO- PO-PSO MAPPING:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | noo | 7 200       |      |      |      |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|------|------|------|------|------|------|
| CO1 | 1   | 2   | 1   |     | 103 | 100 | PO/ | PO8 | PO9         | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO2 | 1   | 2   | 1   |     |     |     |     |     |             |      |      |      | 1    |      |      |
| CO3 | 1   | 2   | 1   |     |     |     |     |     |             |      |      |      | 1    |      |      |
| CO4 | 2   | 2   | 1   |     |     |     |     |     | 1 - 11 - 11 |      |      |      | 1    |      |      |

| SUBJECT NAME | Electronic Devices                                         | SUBJECT                          | CODE     | 18EC33   |
|--------------|------------------------------------------------------------|----------------------------------|----------|----------|
| FACULTY NAME | Mr. Bhaskar B                                              |                                  |          |          |
|              | COS                                                        | <b>FATEMENTS</b>                 |          |          |
| CO1          | Understand the principles of semiconductor Physics         |                                  |          |          |
| CO2          | Understand the principles and characteristics of different | types of semiconductor devices   |          |          |
| CO3          | Understand the fabrication process of semiconductor devi   | ces                              |          |          |
| CO4          | Utilize the mathematical models of semiconductor junction  | ons and MOS transistors for circ | uits and | systems. |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3   | PO4 | PO5  | PO6        | PO7     | PO8 | PO9    | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-------|-----|------|------------|---------|-----|--------|------|------|------|------|------|------|
| CO1 | 2   | 2   | and y |     |      | A Complete |         |     |        |      |      |      | 2    |      |      |
| CO2 | 2   | 2   |       |     |      |            |         |     |        |      |      |      | 2    |      |      |
| CO3 | 2   | 2   |       |     |      |            |         |     | (Line) |      |      |      | 2    |      |      |
| CO4 | 2   | 2   |       |     | 1000 |            | FV1637. |     |        |      |      |      | 2    |      |      |

Head

| SUBJECT NAME | Digital System Design                                      | CUDIECT CONT                   |
|--------------|------------------------------------------------------------|--------------------------------|
| FACULTY NAME | Dr. Ravikumar A V                                          | SUBJECT CODE 18EC34            |
|              | COS                                                        | STATEMENTS                     |
| CO1          | Explain the concept of combinational and sequential log    |                                |
| CO2          | Analyze and design the combinational logic circuits.       |                                |
| CO3          | Describe and characterize flip-flops and its applications. |                                |
| CO4          | Design the sequential circuits using SR, JK, D, T flip-flo | ps and Mealy & Moore machines. |
| CO5          | Design applications of Combinational & Sequential Circu    |                                |

# CO- PO-PSO MAPPING:

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10    | PO44 |      |      |      |      |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|------|------|------|------|------|
| CO1           | 2   | 1   |     |     |     |     | 107 | 100 | 109 | PO10    | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO2           | 1   | 1   | 3   |     |     |     |     |     |     | 44.50   |      |      | 2    |      |      |
|               |     | 1   | 3   |     |     |     |     |     |     |         |      |      | 2    |      |      |
| CO3           | 1   | 2   | 2   |     |     |     |     |     |     | 1000000 |      |      |      |      |      |
| CO4           | 2   | 1   | 2   |     |     |     |     |     | 100 | W ( N ) |      |      | 2    |      |      |
| CO5           | 1   | 2   | 3   |     |     |     |     |     |     |         |      |      | 2    |      |      |
| Health Health |     | _   | 5   |     |     |     |     |     |     |         |      |      | 2    |      |      |

Head

| SUBJECT NAME | Computer Organization & Architecture SUBJECT CODE 18EC35                                               |                                 |                             |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|--|--|--|--|--|--|--|
| FACULTY NAME | Dr. Komala M / Mrs. Jyothi H                                                                           |                                 |                             |  |  |  |  |  |  |  |
|              | CO STATEM                                                                                              | IENTS                           |                             |  |  |  |  |  |  |  |
| CO1          | Understand the basic Organization of computer, operational function instructions and addressing modes. | onal units and processor perfor | mance and analyze different |  |  |  |  |  |  |  |
| CO2          | Identifying the input output devices and utilization of interrupts, cor                                | ntrolling devices and memory    |                             |  |  |  |  |  |  |  |
| CO3          | Understand, analyze and design the various memory systems                                              |                                 |                             |  |  |  |  |  |  |  |
| CO4          | Analyzing the execution of complete instructions through hardwired                                     | and micro programmed Cont       | rol                         |  |  |  |  |  |  |  |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9   | PO10       | PO11     | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|------------|----------|------|------|------|------|
| CO1 | 2   | 3   | 2   |     |     |     |     |     | 7-11- |            |          |      | 2    |      |      |
| CO2 | 2   | 2   | 2   |     |     |     |     |     |       |            |          |      | 2    | 2    |      |
| CO3 | 2   | 2   |     |     |     |     |     |     |       | Addison La |          |      | 2    |      |      |
| CO4 | 2   | 3   | 2   |     |     |     |     |     | 14.11 | 199        | 11 12 15 |      | 2    |      |      |

Head

| SUBJECT NAME | Power Electronics & Instrumentation                                                         | SUBJECT CODE 18EC36                                   |  |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|--|
| FACULTY NAME | Dr. Rekha K R                                                                               | and and a second second                               |  |  |  |  |  |  |  |  |
|              | CO ST.                                                                                      | ATEMENTS                                              |  |  |  |  |  |  |  |  |
| CO1          | Build and Test circuits using Power Electronics Devics                                      |                                                       |  |  |  |  |  |  |  |  |
| CO2          | Analyze and design controlled rectifier, DC to DC converters, DC to AC inverters and SMPS.  |                                                       |  |  |  |  |  |  |  |  |
| CO3          | Define instrument errors and develop circuits for multirange component values and frequency | e Ammeters, Voltmeters and Bridges to measure passive |  |  |  |  |  |  |  |  |
| CO4          | Describe the principle of operation of Digital instruments as                               | nd PLCs                                               |  |  |  |  |  |  |  |  |
| CO5          | Use Instrumentation amplifier for measuring physical paran                                  | neters and transducer                                 |  |  |  |  |  |  |  |  |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 2   | 2   |     |     |     |     |     |     |     |      |      |      | 2    |      |      |
| CO2 | 2   | 3   |     |     |     |     |     |     |     |      |      |      | 2    |      |      |
| CO3 | 2   | 2   |     |     |     |     |     |     |     |      |      | 1    | 2    |      |      |
| CO4 | 2   | 2   |     |     |     |     |     |     |     |      |      |      | 2    |      |      |
| CO5 | 2   | 2   | 112 |     |     |     |     |     |     |      |      |      | 2    |      |      |

Head

| SUBJECT NAME                                                                                                                                    | Electronic Devices & Instrumentation Laboratory                                           | SUBJECT CODE                               | 18ECL37     |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|-------------|--|--|--|--|--|--|--|--|
| Dr. K Somashekar, Dr. Anitha P, Mrs. Anushree R Dr. Sunitha Y N, Mr. Bhaskar B (B1 & B2), Dr. K R Rekha (B3), Mr. Rahul (B1), Mrs. Latha S (B2) |                                                                                           |                                            |             |  |  |  |  |  |  |  |  |
| CO STATEMENTS                                                                                                                                   |                                                                                           |                                            |             |  |  |  |  |  |  |  |  |
| CO1                                                                                                                                             | Understand the characteristics of various electronic devices and measurement of parameter |                                            |             |  |  |  |  |  |  |  |  |
| CO2                                                                                                                                             | Design and test simple electronic circuits                                                | Design and test simple electronic circuits |             |  |  |  |  |  |  |  |  |
| CO3                                                                                                                                             | Use of circuit simulation software for the implementation and characteristics.            | eterization of electronic circuits         | and devices |  |  |  |  |  |  |  |  |

# **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 2   |     | 2   |     |     |     |     |     |      |      |      | 2    |      |      |
| CO2 | 2   | 2   | 3   | 3   |     |     |     |     |     | 114  |      |      | 2    |      |      |
| CO3 | 2   | 2   |     | 2   | 3   |     |     |     |     |      |      |      | 2    |      |      |

| SUBJECT NAME | Digital System Design Laboratory                                                                        | SUBJECT CODE       | 18ECL38 |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------|--------------------|---------|--|--|--|--|--|--|--|
| FACULTY NAME | Dr. Ravikumar A V & Mr. Darshan B D<br>Dr. Komala M & Dr. Shilpa K Gowda                                |                    |         |  |  |  |  |  |  |  |
|              | CO STATEMENTS                                                                                           |                    |         |  |  |  |  |  |  |  |
| CO1          | Demonstrate the truth table of various expressions and combination circuits                             | using logic gates. |         |  |  |  |  |  |  |  |
| CO2          | Design and test various combination circuits such as adders, subtractors, comparators, mux and demuxer. |                    |         |  |  |  |  |  |  |  |
| CO3          | Construct flip flop using universal gates.                                                              |                    |         |  |  |  |  |  |  |  |
| CO4          | Explain operation of counter and shift registers.                                                       |                    |         |  |  |  |  |  |  |  |
| CO5          | Simulate serial adder and binary multiplier.                                                            |                    |         |  |  |  |  |  |  |  |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9      | PO10 | PO11 | PO12  | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|------|------|-------|------|------|------|
| CO1 | 2   | 2   | 2   |     |     |     |     |     |          |      |      |       | 2    |      |      |
| CO2 | 3   | 3   | 3   |     |     |     |     |     |          |      |      |       | 2    |      |      |
| CO3 |     | 2   | 2   |     |     |     |     |     | 21121 PS |      |      | 3 × 4 | 2    |      |      |
| CO4 |     |     | 3   |     |     |     |     |     |          |      |      | 3     | 2    |      |      |
| CO5 |     | 2   | 3   |     | 3   |     |     |     |          |      |      | 3     | 2    |      |      |

Head

| SUBJECT NAME | Complex Analysis, Probability and Statistical Methods                                                                           | SUBJECT CODE 18MAT41                                 |  |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|--|--|
| FACULTY NAME | Mrs. Chaitra A C                                                                                                                |                                                      |  |  |  |  |  |  |  |  |
|              | CO STATEM                                                                                                                       | ENTS                                                 |  |  |  |  |  |  |  |  |
| CO1          | Use the concepts of analytic function and complex potentials to solve                                                           | the problems arising in electromagnetic field theory |  |  |  |  |  |  |  |  |
| CO2          | Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing |                                                      |  |  |  |  |  |  |  |  |
| CO3          | Apply discrete and continous probability distributions in analysing the                                                         | e probability models arising in engineering field.   |  |  |  |  |  |  |  |  |
| CO4          | Make use of correlation and regression analysis to fit a suitable mathe                                                         | ematical model for the statistical data.             |  |  |  |  |  |  |  |  |
| CO5          | Construct joint probability distributions and demonstrate the validity                                                          | of testing the hypothesis.                           |  |  |  |  |  |  |  |  |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3     | PO4 | PO5       | PO6     | PO7 | PO8 | PO9  | PO10 | PO11 | PO12    | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|---------|-----|-----------|---------|-----|-----|------|------|------|---------|------|------|------|
| CO1 | 2   | 2   |         |     |           |         |     |     |      |      |      | 4 11-11 | 2    |      |      |
| CO2 | 2   | 2   |         |     |           | 27 (3 m |     |     | 1233 | 19.0 |      |         | 2    |      |      |
| CO3 | 2   | 2   |         |     | T Andrews |         |     |     |      |      |      |         | 2    |      |      |
| CO4 | 2   | 2   | an week |     |           |         |     |     |      |      |      |         | 2    |      |      |
| CO5 | 2   | 2   |         |     |           |         |     |     |      |      |      |         | 2    |      |      |

| SUBJECT NAME | Analog Circuits                                          | SUBJECT CODE 18EC42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FACULTY NAME | Dr. K R Rekha / Mrs. Uma S                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | COS                                                      | TATEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CO1          | Understand and analyse the characteristics of BJTs and I | ETs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CO2          | Design and analyze BJT and FET amplifier circuits        | and the state of t |
| CO3          | Design and analyse sinusoidal oscillators and power amp  | lifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CO4          | Understand the functioning of linear ICs                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CO5          | Design of Linear IC based circuits                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **CO- PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 2   |     |     |     |     |     |     |     |      |      | 1    | 3    |      |      |
| CO2 | 3   | 2   | 1   |     |     |     |     |     |     |      |      | 1    | 3    | 1    |      |
| CO3 | 3   | 2   | 1   |     |     |     |     |     |     |      |      | 1    | 3    | 1    |      |
| CO4 | 3   | 2   |     |     |     |     |     |     |     |      |      | 1    | 3    |      |      |
| CO5 | 3   | 2   | 1   |     |     |     |     |     |     |      |      | 1    | 3    | 1    |      |

Head

| SUBJECT NAME | Control Systems                                                                                                  | SUBJECT CODE 18EC43                                            |  |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|--|--|
| FACULTY NAME | Dr. Shilpa K Gowda / Mrs. Latha S                                                                                | SEEDLET CODE 16EC45                                            |  |  |  |  |  |  |  |
|              | CO                                                                                                               | CO STATEMENTS                                                  |  |  |  |  |  |  |  |
| CO1          | Develop the mathematical model of mechanical ar                                                                  | nd electromechanical systems.                                  |  |  |  |  |  |  |  |
| CO2          | Derive transfer function for a given control system using signal flow graph and block diagram reduction methods. |                                                                |  |  |  |  |  |  |  |
| CO3          | Determine the time domain specifications for first a                                                             | and second order systems.                                      |  |  |  |  |  |  |  |
| CO4          | Analyze the stability of a system using Routh-Hurwitz (                                                          | Criterion, Nyquist plots, bode plots and Root-locus techniques |  |  |  |  |  |  |  |
| CO5          | Develop a control system model in continuous and disc                                                            |                                                                |  |  |  |  |  |  |  |

## **CO-PO-PSO MAPPING:**

| PO1 | PO2      | PO3                      | PO4                              | PO5                                                                                                                         | PO6                                                                                                                                                       | PO7                                                                                                                                                             | PO8                                                                                                                                                                                     | PO9                                                                                                                                                                                                                   | PO10                                                                                                                                                                                                                        | PO11                                                                                                                                                                                                                                          | PO12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSO2                                                                                                                                                                                                                                                                                                                                                                                                  | PSO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------|--------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | 2        | 2                        | -                                | -                                                                                                                           | -                                                                                                                                                         | -                                                                                                                                                               | -                                                                                                                                                                                       | -                                                                                                                                                                                                                     | -                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                       | 1303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2   | 3        | -                        | -                                | -                                                                                                                           | -                                                                                                                                                         | -                                                                                                                                                               | -                                                                                                                                                                                       | -                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3   | 2        | -                        | -                                | -                                                                                                                           | -                                                                                                                                                         | -                                                                                                                                                               | _                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.  | 3        | 2                        | 2                                | - 1                                                                                                                         | _                                                                                                                                                         | -                                                                                                                                                               |                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2   | 3        | _                        | 2                                | _                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                       | -                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 3 2 3 2. | 3 2<br>2 3<br>3 2<br>2 3 | 3 2 2<br>2 3 -<br>3 2 -<br>2 3 2 | 3     2     2     -       2     3     -     -       3     2     -     -       2     3     2     2       2     3     2     2 | 3     2     2     -     -       2     3     -     -     -       3     2     -     -     -       2     3     2     2     -       2     3     2     2     - | 3     2     2     -     -     -       2     3     -     -     -       3     2     -     -     -       2     3     2     2     -       2     3     2     2     - | 3     2     2     -     -     -       2     3     -     -     -     -       3     2     -     -     -     -       2     3     2     2     -     -       2     3     2     2     -     - | 3     2     2     -     -     -     -     -       2     3     -     -     -     -     -       3     2     -     -     -     -       2     3     2     2     -     -     -       2     3     -     2     -     -     - | 3     2     2     -     -     -     -     -       2     3     -     -     -     -     -       3     2     -     -     -     -       2     3     2     2     -     -     -       2     3     -     2     -     -     -     - | 3     2     2     -     -     -     -     -     -       2     3     -     -     -     -     -     -       3     2     -     -     -     -     -       2     3     2     2     -     -     -       2     3     -     2     -     -     -     - | 3     2     2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td>3     2     2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<td>3     2     2     -     -     -     -     -     3       2     3     -     -     -     -     -     -     -     3       2     3     2     -     -     -     -     -     -     -     2       3     2     -     -     -     -     -     -     -     -     2       2     3     2     2     -     -     -     -     -     -     3       2     3     -     2     -     -     -     -     -     -     -     -</td><td>3     2     2     -     -     -     -     -     -     -     3     -       2     3     -     -     -     -     -     -     -     -     3     -       3     2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -</td></td> | 3     2     2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td>3     2     2     -     -     -     -     -     3       2     3     -     -     -     -     -     -     -     3       2     3     2     -     -     -     -     -     -     -     2       3     2     -     -     -     -     -     -     -     -     2       2     3     2     2     -     -     -     -     -     -     3       2     3     -     2     -     -     -     -     -     -     -     -</td> <td>3     2     2     -     -     -     -     -     -     -     3     -       2     3     -     -     -     -     -     -     -     -     3     -       3     2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -</td> | 3     2     2     -     -     -     -     -     3       2     3     -     -     -     -     -     -     -     3       2     3     2     -     -     -     -     -     -     -     2       3     2     -     -     -     -     -     -     -     -     2       2     3     2     2     -     -     -     -     -     -     3       2     3     -     2     -     -     -     -     -     -     -     - | 3     2     2     -     -     -     -     -     -     -     3     -       2     3     -     -     -     -     -     -     -     -     3     -       3     2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - |

Head

Dept. of Electronics & Communication Engg SJB Institute of Technology

Bengaluru-560060

| SUBJECT NAME | Engineering Statistics & Linear Algebra                      | SUBJECT CODE                              | 18EC44        |  |  |  |  |  |
|--------------|--------------------------------------------------------------|-------------------------------------------|---------------|--|--|--|--|--|
| FACULTY NAME | Mr. Bhaskar B                                                |                                           |               |  |  |  |  |  |
|              | COSTA                                                        | TEMENTS                                   |               |  |  |  |  |  |
| CO1          | Understand Single and Multiple Random Variables, and the     | r extension to Random Processes.          |               |  |  |  |  |  |
| CO2          | Compute the quantitative parameters for the functions of sin | gle and Multiple Random Variables ar      | nd Processes. |  |  |  |  |  |
| CO3          | Familiarize with the concept of Vector spaces and orthogona  | lity with qualitative insight into applic | cations.      |  |  |  |  |  |
| CO4          | Compute the quantitative parameters for Matrices and Linear  | r Transformations.                        |               |  |  |  |  |  |

## **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9  | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| CO1 | 3   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    | _    | 1    |
| CO2 | 3   | 2   | 2   |     | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    | _    | 1    |
| CO3 | 3   | 2   | 1   |     | 2   | -   |     | -   | 1-40 | -    | 2    | 2    | 2    |      | 1    |
| CO4 | 3   | 1   | 2   | - 1 | 2   | -   | -   | -   | -    | -    | 2    | 2    | 2    |      | 1    |

Head

| SUBJECT NAME | Signals & Systems                                                 | SUBJECT CODE 18EC45                                        |  |  |  |  |  |
|--------------|-------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| FACULTY NAME | Mr. Rahul Rai / Dr. Lakshminarayan M                              |                                                            |  |  |  |  |  |
|              | COS                                                               | TATEMENTS                                                  |  |  |  |  |  |
| CO1          | Understand & describe the different types of signals              | and systems.                                               |  |  |  |  |  |
| CO2          | Verify the properties of continuous and discrete time             | e systems.                                                 |  |  |  |  |  |
| CO3          | Comprehend the knowledge of LTI systems and comusing convolution. | npute the response of a Continuous and Discrete LTI system |  |  |  |  |  |
| CO4          | Determine the spectral characteristics of continuous a            | and discrete time signal using Fourier analysis.           |  |  |  |  |  |
| CO5          | Apply the knowledge of Z-transforms to analyse disc               | crete systems in frequency domain.                         |  |  |  |  |  |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5     | PO6 | PO7 | PO8 | PO9        | PO10     | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|---------|-----|-----|-----|------------|----------|------|------|------|------|------|
| CO1 | 2   |     |     |     | 2       |     |     | 1   | 2          | 1        |      |      | 3    | 1    |      |
| CO2 | 2   | 1   |     |     |         |     |     |     | ale to the |          |      |      | 3    | 1    |      |
| CO3 | 2   | 1   |     |     | 2       |     |     | 1   | 2          | 1        |      |      | 3    | 1    |      |
| CO4 | 2   | 1   |     |     | ac hors | 100 |     |     |            | gard for |      |      | 3    | 1    |      |
| CO5 | 2   | 1   |     |     | 2       |     |     | 1   | 2          | 1        |      |      | 3    | 1    |      |

Head

| SUBJECT NAME | Microcontroller                                                             | SUBJECT CODE               | 18EC46 |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------|----------------------------|--------|--|--|--|--|--|
| FACULTY NAME | Dr. Ravikumar A V/ Mrs. Pushpalatha G                                       |                            |        |  |  |  |  |  |
|              | CO STATE                                                                    | MENTS                      |        |  |  |  |  |  |
| CO1          | Familiarize the basic architecture of 8051 microcontroller                  |                            |        |  |  |  |  |  |
| CO2          | Analyze Assembly level programs using 8051 microcontroller Instruction set. |                            |        |  |  |  |  |  |
| CO3          | Understand the Interrupt system, operation of Timers/counte                 | rs and serial port of 8051 |        |  |  |  |  |  |
| CO4          | Program the 8051 microcontroller using Assembly Level and                   | d C Language               |        |  |  |  |  |  |
| CO5          | Interface peripheral devices using 8051 I/O ports.                          |                            |        |  |  |  |  |  |

#### **CO- PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11    | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|------|------|------|------|
| CO1 | 3   | 2   | -   | -   | -   | -   | -   |     |     | -    |         | 1    | 2    | -    | -    |
| CO2 | 3   | 2   | _   | -   | -   | -   | -   | -   | -   | -    | -       | -    | 2    |      |      |
| CO3 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | - 1  | (1) - J | -    | 2    |      | -    |
| CO4 | 3   | 2   | -   | -   | 1   | -   | -   | -   | -   | -    | -       | -    | 2    |      | -    |
| CO5 | 3   | 2   | 1   | -   | 1   | -   | _   | _   | -   | -    | -       | -    | 2    | _    |      |

Dept. of Electronics & Communication Engg
SJB Institute of Technology
Bengaluru-560060

Page 15 of 17

| SUBJECT NAME | Microcontroller Lab                                                                                    | SUBJECT CODE                  | 18ECL47                   |
|--------------|--------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|
| FACULTY NAME | Mr. Rahul Rai, Mrs. Anushree R, Dr. AVR (A1 & A2)<br>Mrs. Pushpalatha G, Mrs. Nithya S, Dr. MK (B1)    |                               |                           |
|              | CO STATEM                                                                                              | MENTS                         |                           |
| CO1          | Demonstrate ability to handle data transfer, arithmetic operations using assembly language programming | ions, counters and Boolean a  | nd logical instructions   |
| CO2          | Understand and design of experiments using call and return in port programs                            | nstructions, code conversion, | delay programs and serial |
| CO3          | Interface different input and output devices to 8051 and control                                       | ol them using Assembly lang   | guage programs            |
| CO4          | Interface the serial devices to 8051 and do the serial transfer u                                      | using C programming.          |                           |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11    | PO12   | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|--------|------|------|------|
| CO1 | 3   | 2   |     |     | 2   |     |     | 1   | 1   | 1    |         |        | 3    | 1    |      |
| CO2 | 3   | 2   | 2   | 2   | 2   |     |     | 1   | 1   | 1    |         |        | 3    | 2    |      |
| CO3 | 3   | 2   | 2   |     | 2   |     |     | 1   | 1   | 1    | P. Line |        | 3    | 2    |      |
| CO4 | 2   | 2   | 2   |     | 2   |     |     | 1   | 1   | 1    |         | × 1 -1 | 3    | 2    |      |

Head 🕇

| SUBJECT NAME | Analog Circuits Lab                                                                                                             | SUBJECT CODE | 18ECL48 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| FACULTY NAME | Dr. KRR(A1), Ms. Geethanjali N, Mrs. Divyashree Y V, Dr. Sunitha Y Dr. Lakshminarayan N, Mrs. Uma S, Dr. SYN (B1), Dr. TVK (B2) | N(A1&A2)     |         |
|              | CO STATEMENTS                                                                                                                   |              |         |
| CO1          | Design analog circuits using BJT/FET and evaluate their performance                                                             |              |         |
| CO2          | Design analog circuits using opamps for different applications                                                                  |              |         |
| CO3          | Simulate and analyze analog circuits for different electronics applications                                                     |              |         |

#### **CO-PO-PSO MAPPING:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 2   | 2   | 1   |     |     |     | 2   | 2   | 1    |      |      | 3    | 2    |      |
| CO2 | 3   | 2   | 2   | 1   |     |     |     | 2   | 2   | 1    |      |      | 3    | 2    |      |
| CO3 | 3   | 2   | 2   | 1   |     |     |     | 2   | 2   | 1    |      |      | 3    | 2    |      |