

Department of Electrical & Electronics Engineering

Course Outcomes and CO-PO-PSO articulation Matrix

Batch 2016-20

Semester-I/II

Subject:	Basic E	lectric	al Eng	ineerin	ıg					Subj	ect Co	de: 15E	LE13/	23		
						Cou	rse Ou	tcome	S							
CO1			the ba		-				d Mag	gnetic	circuits	s and a	also al	ole to	solve	
CO2			_									esentat circuits		falterr	nating	
CO3		tin the construction, basic principle of operation, applications and also determine rmance parameters of electrical Machines. Ice Electrical Safety Rules & standards and types of electrical wiring and domestic earthing.														
CO4	Practi	ce Ele														
					(CO-PO	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												3			
CO2	3	2				2							3			
CO3	3	2				2							3			
CO4	2					2		2			_		3			
Average	2.75	2				2		2					3			

Semester-III

Subject: 1	Engine	ering N	the externals of functional and solve the simple problems for calculus of variations. the concepts of functional and their variations in the applications of communication , decision theory, synthesis and optimization of digital circuits. CO-PO-PSO Mapping POS PSOS 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
						Cou	rse Ou	tcome	S							
CO1				of peri	odic	signals	and	Fourie	er seri	es to	analyz	ze circ	uits a	and sy	stems	
CO2			_		•		•	contino	ous - tir	ne sigr	nals and	d digita	l signa	al proce	essing	
CO3	Empl	oy app	ropriat	e nume	erical r	nethod	s to so	lve alg	ebraic	and tra	nscede	ntal eq	uation	s.		
CO4					_								applic	ations	in the	
CO5	Utiliz	Id of electro-magnetic and gravitational fields and fluid flow problems. etermine the extermals of functional and solve the simple problems for calculus of variations. elize the concepts of functional and their variations in the applications of communication estems, decision theory, synthesis and optimization of digital circuits. CO-PO-PSO Manning														
						CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2														
CO2	3	2														
CO3	3	2														
CO4	3	2														
CO5	3	2														
Average	3	2														

Subject: 1	Electric	Circu	it Anal	ysis						Subj	ect Co	de:15E	E32		
						Cou	rse Ou	tcome	S						
CO1	Famil	iarize	the bas	ic laws	s, theo	rems ar	nd the 1	nethod	ls of an	alyzing	g electr	ical cir	cuits		
CO2	Expla	in the	concep	ot of co	upling	, reson	ance ar	nd met	hods of	f analyz	zing ele	ectrical	circui	ts.	
CO3	Analy	ze net	works	based o	on two	port no	etwork	and st	ate var	iables					
CO4	Analy	ze the	transie	ent resp	onse o	of circu	its witl	h dc an	d sinus	soidal a	c inpu	t			
CO5	Impar	t basic	basic knowledge on network analysis using Laplace transforms CO-PO-PSO Mapping												
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													2
CO2	2	2													2
CO3	2	2													2
CO4	2	2													2
CO5	2	2													2
Average	2.2	2													2

Subject: 7	Γransfo	rmers	and Ge	enerato	ors					Subj	ect Co	de: 15E	E33		
						Cou	rse Ou	tcomes	S						
CO1	-									nsform s and a			ding d	ifferen	t
CO2	Analy	ze the	workii	ng and	operat	ion of	de gen	erator a	and Sy	nchron	ous ma	chines.	•		
CO3	Analy	ze and	l explai	in the o	operation	on of th	ne sync	chronou	ıs mac	hine co	nnecte	d to in	finite n	nachine	e .
CO4	Comp		ate and analyze the various regulation of Synchronous machines by different methods.												
CO5	Evalu	ate and	te and analyze the various regulation of Synchronous machines by different methods.												
			tte and analyze the various regulation of Synchronous machines by different methods. CO-PO-PSO Mapping												
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				1							2	3	
CO2	2	1				1							2	3	
CO3	3	2				1							2	3	
CO4	2	2				1							2	3	
CO5	2	3				1							2	3	
Average	2.2	2				1							2	3	

Subject:	Analog	Electr	onic C	ircuits						Subj	ect Co	de:15E	E34		
						Cou	rse Ou	tcome	S						
CO1	Desig	n and	Analyz	e the d	liode c	ircuits									
CO2	_		fferent vitching	-	g circui	its and	apply	the kno	owledg	e to tra	nsistor	amplif	iers a	nd the	
CO3	Expla	in the	concep	t of fee	edback	, its typ	pes and	d desig	n of fee	edback	circuit	S			
CO4	Desig	n and	analyz	e the po	ower a	mplifie	er circu	its and	oscilla	tors fo	r differ	ent fre	quenci	es	
CO5	Unde	rstand	FET ar	nd MO	SFET	amplifi	iers in	the cor	nmon s	source 1	mode v	vith fix	ed bias	s.	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	1												2
CO2	2	3	2												3
CO3	2	2	2												2

CO4	2	2	2						2
CO5	2	2							3
Average	2	2.4	1.75						2.4

Subject: 1	Digital	Systen	n Desig	gn						Subj	ect Co	de: 15E	E35		
						Cou	rse Ou	tcomes	S						
CO1	Solve	e proble	ems ba	sed on	differe	nt Boo	lean ex	kpressi	on min	imizati	on Tec	chnique	es.		
CO2	Anal	yse and	design	ı differ	ent co	mbinat	ional a	nd sequ	uential	circuit	s.				
CO3	Expla	ain and	analys	e State	Mach	ine Mo	odels								
CO4	Desc	ribe the	struct	ure of 1	HDL n	nodule	, opera	tors, da	ıta type	es					
			CO-PO-PSO Mapping												
COa			POs PSOs												
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													2
CO2	2	3	2												2
CO3	2	2													2
CO4					2										2
Average	2	2.3	2		2										2

Subject: I	Electric	cal and	Electr	onic M	leasure	ments				Subj	ect Co	de: 15E	E36		
						Cou	rse Ou	tcome	s						
CO1	Outli	ne the	importa	ance of	funits	and dir	nensio	ns.							
CO2	Meas	ure res	istance	, induc	ctance	and cap	pacitan	ce by c	lifferer	nt meth	ods.				
CO3										or mea			ower a	nd ene	ergy.
CO4	Analy	se the	workii	ng of d	ifferen	t electr	onic in	ıstrume	ents an	d displa	ay devi	ces.			
			e the working of different electronic instruments and display devices. CO-PO-PSO Mapping												
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		1
CO2	2	2											2		1
CO3	2	2											2		2
CO4	2	2											1		2
Average	2	2											1.75		1.5

Subject:	Electric	cal Ma	chines	Lab 1						Subj	ect Co	de: 15E	EL37			
						Cou	rse Ou	tcome	S							
CO1		onstrate		rent te	sts on	transfo	ormers	to eva	aluate	the per	formaı	nce cha	aracter	istics o	of the	
CO2	Analy	ze sin	gle pha	ise tran	sforme	ers for	three p	hase o	peratio	n and p	hase c	onversi	ion.			
CO3																
			obtained in the laboratory. CO-PO-PSO Mapping													
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2				1			1	1			2	3		
CO2	3	2				1			1	1			2	3		
CO3	3	2				1			1	1			2	3		
Average	3	2				1			1	1			2	3		

Subject: 1	Electro	nics La	aborato	ry						Subj	ect Co	de:15E	EL38			
						Cou	rse Ou	tcome	S							
CO1	Desig	gn and t	test dif	ferent	diode c	ircuits										
CO2	Desig	gn and 1	test am	plifier	and os	cillato	r circui	its and	analyse	e their	perforn	nances				
CO3	Utiliz	ze unive	ersal ga	ates an	d IC's f	for cod	e conv	ersion	and ari	thmetic	c opera	ition.				
CO4	Desig	gn and	verify (differe	nt coun	iters ar	ıd sequ	ence g	enerato	ors						
			and verify different counters and sequence generators CO-PO-PSO Mapping													
COs			POs PSOs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2			1				2	2					3	
CO2	2	2			1				2	2					3	
CO3	2	1			2				2	2					3	
CO4	2	2			1				2	2					3	
Average	2	1.8			1.3				2.5	2.5					2.5	

Semester-IV

Subject: 1	Engine	ering N	Mathen	natics						Subj	ect Co	de: 15E	E41		
						Cou	rse Ou	tcome	S						
CO1			and se		order (ODE a	rising	in flo	w prob	lems ı	ising s	ingle s	step ar	nd mul	tistep
CO2				-					Bessel' ting to			_	•		-
CO3	theory	y and	electro	magne	tic the	eory. D	escrib	e conf	es and ormal a processi	and bi			•		
CO4	proba	profoil theory, fluid flow visualization and image processing. The problems on probability distributions relating to digital signal processing. Describing joint to obability distributions and stochastic matrix connected with the multivariable correlation oblems for feasible random events. The proposed for the given sampling distribution in accepting or the proposed for the given sampling distribution in accepting or the proposed for the given sampling distribution in accepting or the given sampling distribution in accepting the given sampling distribution in acceptance or the given sampling distrib													
CO5	reject	·													
					(CO-PC	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject:	Power Generation and Economics	Subject Code:15EE42
	Course Outco	omes
CO1	Interpret the working of hydroelectric, steam, nu equipment of the power plants.	iclear power plants and state functions of major
CO2	Understand and classify various substations and	explain the importance of grounding.
CO3	Analyze the economic aspects of power system	operation and its effects.
CO4	Explain the importance of power factor improve	ment methods.
	CO-PO-PSO M	apping

COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3					2	2						3	2	
CO2	3					2	2						3	2	
CO3	2	2				2	2						2	2	
CO4	2	2				2	2						2	2	
Average	2.5	2				2	2						2.5	2	

Subject:	Transm	ission	and Di	stribut	ion					Subje	ect Co	de:15E	E43		
						Cou	rse Ou	tcomes	S						
CO1	Expla	in the	concep	ts of v	arious	method	ds of ge	eneratio	on of p	ower.					
CO2	Expla	in the	import	ance of	f HVA	C, EH	VAC, I	JHVA	C and I	HVDC	transm	ission.	1		
CO3	Desig level.	n and	analyze	e overh	nead an	d unde	rgroun	d cable	es for tr	ansmis	ssion sy	ystem f	or a gi	ven vo	ltage
CO4	Calculate the parameters of the transmission line for different configurations and assess the performance of line and evaluate AC distribution system CO-PO-PSO Mapping														
	· ·														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3		
CO2	3	2				2	2						3		
CO3	2	2				2	2						3		
CO4	2	2				2	2						3		
Average	2.25	2				2	2						3		

Subject: 1	Electric	Moto	rs							Subj	ect Co	de: 15E	E44			
						Cou	rse Ou	tcomes	5							
CO1	Expla	in the	constru	ıctiona	l featu	res of I	Motors	and se	lect a s	suitable	drive	for spe	cific ap	pplicati	ion.	
CO2	Analy	ze and	dassess	s the pe	erforma	ance ch	aracte	ristics (of DC	motors	by con	ductin	g suita	ble test	S	
CO2	and co	ontrol	the spe	ed by	suitable	e meth	od.									
CO3	Expla	in the	constru	ıctiona	l featu	res of 7	Three F	hase a	nd Sing	gle pha	se indu	iction I	Motors	and as	sess	
COS	their 1	· · · · · · · · · · · · · · · · · · ·														
CO4	Contr	Control the speed of induction motor by a suitable method.														
CO5	Expla	Explain the operation of Synchronous motor and special motors. CO-PO-PSO Mapping														
					(CO-PC	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2				2							2	2		
CO2	3	2				2							2	3		
CO3	3	2				2							2	3		
CO4	2	2				2							2	2		
CO5	3	2				2							2	3		
Average	2.6	2				2							2	2.6		

Subject:	Electromagnetic Field Theory	Subject Code: 15EE45
	Course Outcon	nes
CO1	Explain different coordinate systems, gradient, div	vergence and curl of vector.
CO2	Apply electrostatic laws for electric field produced	d by different charge configuration.
CO3	Evaluate the energy and potential due to system of	f charges.
CO4	Enumerate the behaviour of electric field across a	boundary.

CO5	Apply	y electi	omagn	netic la	ws for	magne	tic fiel	ds and	materi	als.						
CO6	Reph	rase the	e time	varyin	g fields	s and p	ropaga	tion of	waves	in diff	erent r	nedia.				
					(CO-PC)-PSO	Mapp	ing							
COa						P	Os							PSOs		
COs	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2														
CO1	2	2 1 1														
CO2	2	3	1					2								
CO3	2	2	1												2	
CO4	2	2	1												2	
CO5	2	2	1												2	
CO6	2	2													1	
Average	2	2	1												1.66	

Subject: (Operati	onal A	mplifi	ers and	LIC					Subj	ect Co	de: 15E	E46		
						Cou	rse Ou	tcome	S						
CO1	Descr	ibe the	chara	cteristi	cs of ic	deal an	d pract	ical op	eration	al amp	lifier a	nd thei	r appli	cations	3
CO2	Desig	n filter	s and v	voltage	regula	ators.									
CO3	Demo gener		the ap	plicati	ion of l	Linear	ICs as	compa	rators ,	rectifie	ers, lim	iters cl	ampers	s andsi	gnal
CO4	Utiliz	e 555 t	imer a	nd PLI	L IC										
					(CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													1
CO2	3	3	2												2
CO3	2	2													2
CO4	2	1													1
Average	2.25	2	2												1.5

Subject: 1	Electric	al Mad	chines	Lab 2						Subj	ect Co	de: 15E	EEL47		
						Cou	rse Ou	tcome	es						
CO1		onstrate iments		under	standir	ng the	perfo	ormano	ce of	DC n	otors	by co	onducti	ng su	itable
CO2	Compare and analyze the speed control techniques for single phase and three-phase induction														
CO3	CO3 Compare and analyze the speed control techniques for single phase and three-phase induction motors.														
					(CO-PO	-PSO	Mapp	oing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1			1	1			2	3	
CO2	3	2				1			1	1			2	3	
CO3	3	2				1			1	1			2	3	
Average	3	2				1			1	1			2	3	

Subject:	Op-amps and Linear ICs Lab	Subject Code:15EEL48
	Course Outcomes	
CO1	Understand the characteristic parameters of Op-Amp	
CO2	Design and test the OP-Amp as Amplifier, adder, subtracted	or, differentiator and integrator
CO3	Evaluate OP-Amp oscillators ,filter and regulator.	
CO4	Study of Linear IC's as multivibrator, comparators and con	nverter.

					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2						3							
CO2	3	2					2								
CO3	3	2							1	1					2
CO4	2	2							1	1					2
Average	2.75	2							1	1					2.25

Semester-V

Subject: 1	Manage	ement	& Entr	eprene	urship					Subj	ect Co	de: 15E	E51			
						Cou	rse Ou	tcome	S							
CO1	Expla	in the	nature	of mar	nageme	ent, ent	reprene	eur and	l intrap	reneurs	ship					
CO2	Apply	y the ki	nowled	lge of p	oroject	propos	sal for g	getting	the fur	nding f	rom di	fferent	fundin	g agen	cies	
CO3	Utiliz	e the s	cheme	and fa	cilities	provid	ded by	govern	ment se	ector						
CO4	Mana	Utilize the scheme and facilities provided by government sector Manage the human and material resources and also manage capital building process CO-PO-PSO Mapping														
	CO-PO-PSO Mapping															
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1								2	3	2			1			
CO2		1						3	2	2	2		1			
CO3								3	2	2			1			
CO4								2	2	2	2		1		_	
Average		1						2.5	2.25	2	2		1			

Subject: 1	Microc	ontroll	ers							Subj	ect Co	de:15E	E52		
						Cou	rse Ou	tcome	s						
CO1			history of the		8051	and fea	tures o	f other	8051 1	amily	membe	ers and	the int	ernal	
CO2	_	in the ctions.		an 805	1 asser	mbler,	the stac	ck and	the flag	g regist	er, loo	p, jump	o, and	call	
CO3				essing rogram		, access	sing da	ta and	I/O po	rt prog	rammiı	ng, aritl	hmetic	, logic	
CO4									ions, I/ alizatio		nanipul	ation, l	ogic a	nd	
CO5	comm device	nunicat es sucl	tion and as LC	d its in CDs and	terfaci d keyb ys, opt	ng of 8	051 to ADC, I tors an	the RS DAC c d moto	5232. Ir hips an ors.	nterface	8031/	serial d /51 with ernal m	n real v		55
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														2
CO2	3	1			2										2
CO3	2	2			2										3
CO4	2	2	2		2										3
CO5	2	3	2		2										3
Average	2.2	2	2		2										2.6

Subject: 1	Power	Electro	nics							Subj	ect Co	de: 15E	E53		
						Cou	se Ou	tcome	S	•					
CO1	_				of pow pecific		tronics	s, types	of pov	wer ele	ctronic	circuit	s and	Switch	es
CO2		ts. Stu								ne effec alysis o					er
CO3			•			ing cha tations		istics a	nd gate	e contro	ol requi	iremen	ts of d	ifferent	
CO4		ss differement	•	pes of	Thyri	stors, tl	neir op	eration	, gate	charact	eristics	and ga	ate cor	itrol	
CO5	Desig	n and	analysi	s of th	yristor	contro	lled re	ctifiers							
CO6		ss the C				on of si	ngle pl	nase an	d three	e phase	DC - I	DC, DC	C-AC	conver	ters
	•					CO-PO	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1				1	1							2	
CO2	2	1				1	1							2	
CO3	2	2				1	1							2	
CO4	2	1				1	1							2	
CO5	2	2				1	1							2	
CO6	2	2				1	1							2	
Average	2	1.5				1	1							2	

Subject: S	Signals	and S	ystems							Subj	ect Co	de: 15E	E54		
						Cou	rse Ou	tcome	S						
CO1	Expla	in basi	ic signa	als, it's	classi	fication	n and p	roperti	ies of v	arious	system	l			
CO2	11.		nalyze	convo	lution	in both	ontir	nuous a	and dis	crete do	omain	given tl	he resp	onse o	of a
CO3	Const		block (diagran	n of a	linear t	ime in	variant	systen	n.					
CO4	Analy	ze line	ear tim	e invar	iant sy	stems	using c	lifferer	nt trans	forms.					
		CO-PO-PSO Mapping													
COs		CO-PO-PSO Mapping POs PSOs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													3
CO2	3	3													2
CO3	2	2													2
CO4	3	3													2
Average	2.5	2.5													2.25

Subject:	Electrical Estimation & Costing	Subject Code:15EE553
	Course Outcomes	3
CO1	Summarize the general principles of estimation & co	osting
CO2	Identify important considerations regarding Resident	tial wiring & its installation Applying Safety
CO2	rules	
CO3	Analyse design aspects for Power circuits & their Ea	arthing

CO4	Estim	ate the	cost o	f servi	ce con	nection	s, Ove	rhead 7	Γransm	ission	& Dist	ributio	n Lines	S.	
CO5	Estim	ate & i	interpre	et the c	ost of	Sub-sta	ation.								
					(CO-PO	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2											1	2	3
CO1	2	2				2	2	2			2		2	2	
CO2	3	1	2			2		2	2						
CO3	3	1	2			2	2	2			2		2	2	
CO4	2	1	2			2	2	2			2		2	2	
CO5	2	2	2			2	2	2			2		2	2	
Average	2.4	1.4	2			2	2	2			2		2	2	

Subject: I	Renewa	able Er	nergy S	ources	}					Subj	ect Co	de: 15E	E563		
						Cour	rse Out	tcomes	S						
CO1							conven geome		energy	source	es and	discuss	s sun-E	Earth A	ngles
CO2							ectors istics a					cation	s and	explai	n the
CO3				-			types in the		rgy pro	oductio	n fron	n hydr	ogen,	geothe	ermal
CO4	Descr	ibe the	biom	ass and	d bioga	s energ	gy conv	ersion	systen	ı					
CO5	Discu	iss and	unders	tand in	nporta	nce of	tidal p	ower g	enerati	on.					
CO6	Expla	plain the power generation process from sea wave energy and ocean thermal energy.													
		CO-PO-PSO Mapping													
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				1	1						2		
CO2	2	2				1	1						2		
CO3	2	1				2	2						3		
CO4	2	1				2	2						3		
CO5	2	1				2	2						2		
CO6	2	1				2	2						2		
Average	2	1.3				1.67	1.67						2.3		

Subject:	Microc	ontrol	ler Labo	oratory	7					Subj	ect Co	de: 15E	EL57		
						Cou	rse Ou	tcome	S						
CO1	Write	codes	for co	de con	version	s and	data m	oveme	nts.						
CO2	Solve	the ar	ithmeti	c and l	logical	operat	tions th	rough	prograi	n.					
CO3	Deve	lop the	codes	for DA	AC, AI	OC and	l elevat	or inte	rfacing						
CO4	Desig	gn a co	de to co	ontrol	motors	and k	eypad.								
		CO-PO-PSO Mapping													
COs		POs PSOs													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3			3				2	2					3
CO2	2	3	2		3				2	2					3
CO3	2	3	3		3				2	2					3
CO4	2	3	3		3				2	2					3
Average	2	3	2.66		3				2	2					3

Subject: 1	Power	Electro	nics L	ab						Subj	ect Co	de: 15E	EEL58		
						Cou	rse Ou	tcome	S						
CO1	To A	nalyse	the cha	aracteri	stics o	f SCR	IGBT,	MOSF	ETand	TRIAC	7				
CO2	To ur	ndersta	nd Trig	gering	of the	SCR 1	y diffe	erent m	ethods	and to	protec	t SCR	by Snu	ıbber c	ircuit
CO3	1	nderstsi oller w	-			ingle p	hase co	ontrolle	ed full	wave re	ectifier	and A	C volta	age	
CO4	Anay	se the	speed o	control	of dc 1	notor,	univers	sal mot	or and	steppe	r moto	rs.			
		ayse the speed control of dc motor, universal motor and stepper motors. CO-PO-PSO Mapping													
COs		POs PSOs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2									3		2
CO2	3	2		2									1		2
CO3	3	2		2									3		2
CO4	3	2		2									1		2
Average	3	2		2									2		2

Semester-VI

Subject: (Control	l Systei	ms							Subj	ect Co	de: 15E	EE61			
						Cou	rse Ou	tcome	S							
CO1	Analy	ze and	l mode	l electr	rical an	d mec	hanical	systen	n using	ganalog	gous sy	stem .				
CO2		y block ion of s			uction	technic	ques an	d signa	al flow	graph	method	ds to ob	otain tr	ansfer		
CO3	_	gn and a	-	e the s	tability	y of co	ntrol sy	stem,	ability	to dete	rmine	transiei	nt and	steady	state	
CO4	Exam	ine the	perfo	rmance	e of sys	stem st	ability	using I	Root lo	cus, B	ode plo	ots ad N	Vyquis	t plots.		
		umine the performance of system stability using Root locus, Bode plots ad Nyquist plots. CO-PO-PSO Mapping														
COs		CO-PO-PSO Mapping POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2												2		
CO2	1	1												2	1	
CO3	3	3	2											2	2	
CO4	3	3	2											2		
Average	2.25	2.25	2											2	1.5	

Subject:	Power	System	n Analy	sis-1						Subje	ect Co	de:15E	E62		
						Cou	rse Ou	tcome	S						
CO1	Show	under	standin	g of p	er unit	systen	n, com	putatio	n and i	ts impl	lement	ation ir	ı probl	ems of	one-
COI	line d	liagram	power	r systei	m.										
CO2	Mode	el and	analyz	e pow	er sys	tems ı	ısing c	comple	x math	ematic	al trar	sforma	ations	under	short
CO2	circui	ircuit and unbalanced conditions.													
CO3	Analy	Analyze different unsymmetrical faults on unloaded alternator and on complex power systems													
COS	using	symm	etrical	compo	nent tr	ansfor	mation	S.							
CO4	Apply	y math	ematica	al techi	niques	to eval	luate sy	stem s	tability	•					
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3											3	3	

CO2	3	3		2	2			3	2	
CO3	3	2		2	2			2	2	
CO4	3	2						3	3	
Average	2.75	2.5		2	2			2.75	2.5	

Subject: I	Digital	Signal	Proce	ssing						Subj	ect Co	de: 15E	E63		
						Cou	rse Ou	tcome	s						
CO1	Analy	ze sig	nals an	d perfo	orm va	rious s	ignal p	rocessi	ng ope	rations	using	DFT.			
CO2	Expla seque		d Appl	y FFT	algor	ithms	for eff	icient	compu	itation	of DF	T and	IDFT	of a	given
CO3	Desig	n of II	R anal	og and	digital	l filters	by usi	ng But	terwor	th and	Chebys	shev ted	chniqu	ie.	
CO4	Desig techn	•	IR dig	ital fil	ters by	y using	g impu	lse inv	ariant	technic	que an	d bilin	ear tra	nsforn	nation
CO5	Desig realiz	•	gital III	R and 1	FIR fil	ter by	using d	lirect, o	cascade	e, paral	lel and	linear	phase	metho	ods of
CO6	Desig	n FIR	filters	by use	of win	ndow f	unction	ns and	freque	ncy san	npling	method	l		
		sign FIR filters by use of window functions and frequency sampling method CO-PO-PSO Mapping													
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													2
CO2	2	2													3
CO3	2	2	2												3
CO4	2	2	2												2
CO5	2	2													2
CO6	2	2	2												2
Average	2	2	2												2.3

Subject: 1	Electric	cal Ma	chines	Design	1					Subj	ect Co	de: 15E	E64		
						Cou	rse Ou	tcome	S						
CO1		iss diff		_	rends,	factors	s, prope	erties o	f mate	rials, m	anufac	turing	and lin	nitatior	is of
CO2	0-0-0-				formar	nca da	cian wi	ndina	and co	re of tra	nefor	mar			
CO2		•					_			re of D					
CO4		•								c loadi		iiiie.			
											ngs.				
CO5		-				,	sign In								
CO6	A tho	brough knowledge of the design procedures in design of the Synchronous electric machines. CO-PO-PSO Manning													
		CO-PO-PSO Mapping													
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2	2	
CO2	2	2	3										2	2	
CO3	2	2	3										2	2	
CO4	2	2											2	2	
CO5	2	2	3										2	2	
CO6	2	2	3										2		
Average	2	2	3										2	2	

Subject: (Computer Aided Electrical Drawing	Subject Code:15EE651							
	Course Outcomes								
CO1	Discuss and develop the armature winding diagram for DC	and AC machines							
CO2	Develop a layout for substation using the standard symbols	for substation equipment.							

CO3	Draw	section	nal vie	ws of c	ore an	d shell	types	transfo	rmers ı	using tl	ne desi	gn data	ı			
CO4	Draw	section	nal vie	ws of a	issemb	led DC	mach	ine and	l altern	ator or	its par	ts usin	g the de	esign d	ata	
CO4	or the	sketch	nes.													
		CO-PO-PSO Mapping														
COa		POs PSOs														
COs	1	2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	2	2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 2 3 3 2 3 2														
CO2	2	2			3								2	2		
CO3	3	2	2		3								3	2		
CO4	3	2	2		3								3	2		
Average	2.5	2	2		3								2.75	2		

Subject: S	Sensors	and to	ansduc	cers						Subj	ect Co	de: 15E	E662			
						Cou	rse Ou	tcome	S							
CO1	Expla	in nee	d of tra	ınsduce	ers, the	ir class	ificatio	on, adv	antage	s and d	lisadva	ntages.				
CO2	Outlin	ne the	workin	g of di	fferent	types	of trans	sducers	and so	ensors.						
CO3	Discu	ss rece	ent tren	ds in s	ensor t	echnol	ogy an	d their	selecti	on.						
CO4	Utiliz	e signa	al cond	itionin	g and s	signal c	onditio	oning e	quipm	ent.						
CO5																
CO6	Infer measurement of various non-electrical quantities.															
	6 Infer measurement of various non-electrical quantities. CO-PO-PSO Mapping															
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2														2	
CO2	2	2													2	
CO3	2	2				1									2	
CO4	2	2													1	
CO5	2	2													1	
CO6	2														1	
Average	2	2				1									1.5	

										1					
Subject: (Contro	l syster	n lab							Subje	ect Co	de: 15E	EL67		
						Cou	rse Ou	tcome	S						
CO1	Desig	n and	analyze	e Lead,	Lag a	nd Lag	g – Lea	d comp	ensato	rs for g	given s	pecific	ations.		
CO2	Deter	mine t	he per	formai	nce ch	aracter	istics	of ac	and dc	servoi	motors	and s	ynchro	-transı	nitter
CO2	receiv	er pair	used i	n conti	rol syst	tems.									
CO3	Simu	late the	e DC p	osition	and f	eedbac	k cont	rol sys	tem to	study	the eff	ect of	P, PI, 1	PD and	l PID
	contr	oller													
	Write a script files to plot root locus, bode plot, Nyquist plots to study the stability of the system														
CO4	Write a script files to plot root locus, bode plot, Nyquist plots to study the stability of the system using a software package. Use software package or discrete components in assessing the time and frequency domain reposes of a given second order system.														
	frequ	ency d	omain	reposes	s of a g	given s	econd o	order s	ystem.						
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			3				2	2			2	3	
CO2	3	2			3				2	2			2	3	
CO3	3	2			3				2	2			2	3	
CO4	3	2			3				2	2			2	3	
Average	3	2			3				2	2			2	3	

Subject: 1	Digital	Signal	Proces	ssing L	ab					Subje	ect Co	de:15E	EL68		
						Cou	rse Ou	tcomes	5						
CO1	Utiliz doma		ΓLAB _]	platfor	m to pe	erform	interpr	etation	of san	npling 1	theorer	n in tin	ne and	freque	ncy
CO2	Perfo	rm the	impuls	se resp	onse, L	inear a	and circ	cular co	onvolut	ion of	given s	sequen	ces.		
CO3	Compute DFT and IDFT of a given sequence using the basic definition and also using FFT algorithms. Design and implementation of IIR and FIR filters for the given specifications.														
CO4															
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			3				2	2		1			3
CO2	3	2			3				2	2		1			3
CO3	3	2			3				2	2		1			3
CO4	3	2			3				2	2		1			3
Average	3	2			3				2	2		1			3

Semester-VII

Subject: 1	Power	System	Analy	sis-2						Subje	ect Co	de: 15E	E71		
						Cou	rse Ou	tcome	3						
CO1	Able	to form	nulate	Y-bus	and C	Comput	e the l	oad flo	w sol	ution u	sing di	fferent	iterat	ive me	thods
CO1	like C	S, NR	and F	DLF.											
002	Evolv	e a sy	stemat	ic gen	eral alg	gorithn	n so th	at a di	gital c	ompute	er can	be use	d for	short c	ircuit
CO2	analy	sis.													
002	Solve	the s	swing	equati	on of	synch	ronous	mach	ine us	sing N	umeric	al tecl	hnique	and	study
CO3	multimachine stability. Utilize optimization techniques to economically schedule the load among all the generators in a														
004	Utilize optimization techniques to economically schedule the load among all the generators in a														
CO4	power system.														
CO.5															
CO5															
					(CO-PO	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											2	3	
CO2	2	2											2	2	
CO3	2	3											2	2	
CO4	2	2					2				2		2	3	
CO5	2	2											2	2	
Average	2.2	2.4					2				2		2	2.4	
				1	l	1	1	1		1					

Subject:	Power System Protection	Subject Code:15EE72
	Course Outco	omes
CO1	Classify & compare various relays & its protect	ive schemes.
CO2	Analyse schemes of Overcurrent protection & d	istance protection
CO3	Analyse schemes such as carrier current protect	ion& differential protection
CO4	Understand various circuit breakers, fuse used in	power system.
CO5	Discuss the protection against Over voltages and	d modern trends in power system protection.

					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2			2	2									
CO2	2	2				2	2						2	2	
CO3	2	2				2	2						2	2	
CO4	2	2				2	2						2	2	
CO5	2	2				2	2						2	2	
Average	2	2				2	2						2	2	

Subject: 1	High V	oltage	Engine	eering						Subj	ect Co	de:15E	E73		
						Cou	rse Out	tcome	S						
CO1	Apply gener	y the k ators.	nowle	dge to	analyz	ze equi	valent	circuit	mode	ls of tl	he HV	AC, H	VDC a	and im	pulse
CO2		y their i		_		_	reakdo	wn ph	enome	non in	dielect	rics an	d spec	ificatio	ons of
CO3	Equipment conforming to standards. Analyze the factors affecting HVAC & HVDC measurements, overvoltage phenomenon in electric power systems Analyze the knowledge of testing various materials and electric apparatus in power system.														
CO4	Analyze the knowledge of testing various materials and electric apparatus in power system.														
	Analyze the knowledge of testing various materials and electric apparatus in power system. CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3	2	
CO2	3	2				2	2						2	2	
CO3	2	1				1	1						2	2	
CO4	3	2				2	2						3	2	
Average	2.5	1.75				1.75	1.75						2.5	2	

Subject: 1		ion of	Electri	cal Po	wer					Subj	ect Co	de:15E	EF742		
						Cou	rse Ou	tcome	S						
CO1					he diffe d indus	•			cal hea	ating, w	velding	and el	ectroly	tic pro	cess
CO2				_	undam	ental e	nginee	ring pı	inciple	es to de	sign va	rious l	ighting	syster	ns
CO3	for different applications. Apply the basic knowledge of engineering to analyze the behavior of electrical traction systems under various conditions of operation. Understand and Discuss the importance of electric vehicles, hybrid electric vehicles and its														
CO4	*														
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3		
CO2	2	2				2	2						3		
CO3	3	2				2	2						3	2	
CO4	2					2	2						2	2	
Average	2.25	2				2	2						2.75	2	

Subject:	Testing and Commissioning of Power System Apparatus	Subject Code:15EE752
	Course Outcomes	
CO1	Describe corrective and preventive maintenance of electric	al equipment's.
CO2	Demonstrate the process to plan, control and implement co	mmissioning of electrical equipment's

CO3	Analy	ze the	routin	e tests	for syn	chrone	ous ma	chine, i	inducti	on mot	or, trai	nsforme	er & sv	vitchge	ears.	
CO4					-					and in underg		n moto: cables.	r and I	Explain	the	
CO5			1				an elec	trical e	quipm	ent's si	uch as	isolatoı	rs, circ	uit		
		CO-PO-PSO Mapping PO- PSO-														
COs	POs PSOs															
COS	1	POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	2	1				2	1	1								
CO2	2	1				2	1	1								
CO3	2	1				2	1	1								
CO4	2	1				2	1	1								
CO5	2	1				1	1	1								
Average	2	1				1.8	1	1								

Subject: I	Power	System	Simul	lation I	Lab					Subje	ect Co	de: 15E	EEL76		
						Cou	rse Ou	tcomes	S						
CO1	Devel	lop a	MATL	AB/C-	++ pro	gram	to acc	ess the	perfo	rmanc	e of N	ITL, I	LTL aı	nd trai	nsient
COI	stabil	ity und	ler faul	t condi	tions										
CO2	Build	the M	ATLA	B prog	ram to	obtain	the po	wer an	gle cha	aracteri	stics of	f altern	ator		
CO3	Devel	lop the	e MAT	TLAB	progra	m to	formul	ate bu	s adm	ittance,	Jacob	oian ai	nd bus	impe	dance
COS	matri	ces of 1	power	system											
CO4	Build the MATLAB program to determine Bus current, Bus power and line flows for the specified system voltage profile.														
CO4	specified system voltage profile.														
CO5	Use Mi-power package to solve the load flow solution using GS/NR/FDLF method, short circuit														
COS	analysis and Economic load dispatch problems.														
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3			3				2	2			3	3	
CO2	3	3			3				2	2			3	3	
CO3	3	3			3				2	2			3	2	
CO4	3	3			3				2	2			2	3	
CO5	3	3			3	2			2	2		2	3	3	
Average	3	3			3	2			2	2		2	2.8	2.8	

Subject:	Relay and High Voltage Lab	Subject Code:15EEL77
	Course Outcomes	
CO1	Apply knowledge on conduct experiment for obtaining bre subjected for HVAC, HVDC applications to distinguish conditions. applications to distinguish between Uniform/No.	between Uniform/Non-uniform field
CO2	Apply knowledge on the quality of transformer oil sam standards and assessing dielectric strength of it.	ple by conducting experiment as per
CO3	Analyse the experiment on an Electromechanical type relay, Static undervoltage relay, Microprocessor based obased overvoltage/under-voltage relay.	•
CO4	Acquire the knowledge experimentally by map field l electrolytic tank.	ines for co-axial cable model using
CO5	Acquire the skills of safety handling high voltage sources/u experiments conducted.	units and prepare the effective report of
	CO-PO-PSO Mapping	

COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2	2		2	2			3	3	
CO2	3	2				2	2		2	2			3	3	
CO3	3	2				2	2		2	2			3	3	
CO4	3	2				2	2		2	2			3	2	
CO5	3	2				2	2		2	2			3	2	
Average	3	2				2	2		2	2			3	2.6	

Subject: 1	Project	Phase	I							Subje	ect Co	de: 15E	EP78			
						Cou	rse Ou	tcome	S							
CO1		y to r		n litera	iture, a	and for	mulate	a cor	nplex	engine	ering p	roblen	n of th	eir sel	ected	
CO2	Apply	the fi	undam		nowled	_	mather	matics,	scienc	e and e	engine	ering p	rincipl	es in d	lesign	
CO3		•				_		_	ool in : lution.	modeli	ng/data	a interp	oretatio	on/anal	ytical	
CO4	enviro	Studies, conduct experiments leading to a logical solution. Design multidesciplinary engineering solutions to complex problems addressing societal and environmental concerns. Communicate effectively to a diverse audience and develop technical reports and publications. Work as a team member/leader to manage projects and costs in a diversified environment.														
CO5	Comr	ommunicate effectively to a diverse audience and develop technical reports and publications.														
CO6	Work	Vork as a team member/leader to manage projects and costs in a diversified environment.														
		Work as a team member/leader to manage projects and costs in a diversified environment. CO-PO-PSO Mapping														
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3		3								3	2	2	2	
CO2	3	3	3										2	2	2	
CO3	3	3			3								3	3	3	
CO4	2	3	3	3		3	3						3	3	3	
CO5										3		3	3	3	3	
CO6						3			3	3	3		2	2	2	
Average	3.75	3	3	3	3	3	3		3	3	3	3	2.5	2.5	2.5	

Semester-VIII

Subject:	Power	System	Operat	ion Aı	nd Con	trol				Subj	ect Co	de: 15E	EE81		
						Cour	se Out	tcomes	3						
CO1	comp	ibe va onents,	archite	cture a	and cor	nfigura	tion of	SCAI	OA.		vulne	erability	y of	the sy	stem,
CO2	Solve	unit co	mmitm	ent pr	oblems	s in pov	wer sys	stem o	peratio	n.					
CO3	Discu	ss the i	ssues o	f hydro	otherm	al sche	duling	and so	olution	s to hy	dro-the	ermal p	roblen	ns.	
CO4		op and onnecte	•			atical	models	s of A	Automa	atic Lo	oad Fi	equenc	су Со	ntrol	n an
CO5	Discu syster	ss diffe n.	erent n	nethod	s of v	oltage	and re	eactive	power	r contr	ol in	an inte	erconn	ected p	ower
CO6	_	in the i	_		reliab	ility, s	ecurity	, conti	ngency	analy	sis, sta	ite estii	mation	and r	elated
ı					C	O-PO	-PSO	Mappi	ing						
COa						PC)s							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3									2		2	3	3	
CO2	2	3				2	2				2		2	3	

CO3	3			2	2					3	2	
CO4	2	3								2	2	
CO5	2	2								2	3	
CO6	3			2					2	3	2	
Average	2.5	2.667		2	2		2	2	2	2.5	2.5	

Subject:	Industr	ial Driv	ves and	l Appli	cations	S				Subj	ect Co	de: 15E	EE82		
						Cou	rse Ou	tcome	S						
CO1	Expla	in diff	erent n	nodes o	of opera	ation o	f electr	ic driv	es.						
CO2	Analy	yze dc 1	motor	speed o	control	techni	ques us	sing co	ntrolle	d rectif	iers.				
CO3	Analy	ze the	perfor	mance	of ind	action	motor	drives	under o	lifferer	nt cond	itions.			
CO4	Study	the Co	ontrol (of sync	hronou	ıs moto	or and s	stepper	motor	drives					
CO5	Identi	ify a su	itable	electric	cal driv	e for s	pecific	applic	ation i	n the in	dustry	•			
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											3	2	
CO2	3	3				2	2						2	3	
CO3	3	3				2	2						2	3	
CO4	2	3				2	2						2	3	
CO5	2	2				2	2						3	2	
Average	2.4	2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 2 2 2 2 3 2 3 3 2 3													

Subject: S	Smart C	Grid								Subj	ect Co	de: 15E	EE831		
						Cour	se Ou	tcomes	S						
CO1	Discu	ss tool	s used	for the	analys	sis, des	ign, op	eration	n and p	erform	ance o	f smart	grid		
CO2		in pred peratio		grid m	anager	nent ar	nd cont	rol tec	hnolog	y using	g for sn	nart gr	id desig	gn, plaı	nning
CO3	Devel	op cle	aner, n	nore en	vironn	nentally	y respo	nsible	techno	logies	for the	electri	c syste	m.	
CO4	smart	er by i	nvestir	ng in n	ew tec	_	y and t grid.	discuss	s the p	_		_		sion sy stakeho	
							0s	wapp	mg					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1	2						3	1	
CO2	2	2				2	2						2	1	
CO3	3	2				2	2						3	2	
CO4	3	2				2	2						3	1	
Average	2.75	2				1.75	2						2.75	1.25	

Subject:	Integration of Distributed Generation	Subject Code:15EE833
	Course Outco	omes
CO1	Explain energy generation by different renewal production capacity at different timescales.	blle energy sources and Discuss the variation in
CO2	Explain the performance of the system when dissystem.	tributed generation is integrated to the distributed
CO3	Discuss the effects of the integration of DG wincreased losses.	ith respect to the increased risk of overload and
CO4	Study the effect of DG on increased risk of ov	er voltages and increased levels of power quality

	distur	bances	S.												
CO5	Discu	ss the	integra	tion of	DG fo	r the p	ower s	ystem	stabilit	y and c	peratio	on.			
					(CO-PO	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3					2	2						2	2	
CO2	2	2				2	2						3	2	
CO3	2	2				2	2						3	2	
CO4	2	2				2	2						3	2	
CO5	2	2				2	2						3	2	
Average	2.2	2				2	2						2.8	2	

Subject: 1	Internsl	hip								Subje	ect Co	de:15E	E84		
						Cou	rse Ou	tcome	S						
CO1	Demo	onstrate	e the at	oility to	learn	indust	ry worl	king sta	andards	and te	chnica	l repor	t writir	ıg.	
CO2	Acqu	ire han	ds on e	experie	nce in-	-line w	ith ind	ustry ai	nd acad	lemia.					
CO3			e the ab studies	•	plan,	impler	nent, p	rofessi	onal, et	thical p	ractice	and ev	valuate		
CO4	Devel	lop cor	nmuni	cation,	interp	ersonal	and ot	her cri	tical sk	ills in t	the job	intervi	ew pro	cess.	
					(CO-PC)-PSO	Mapp	ing						
COs		Develop communication, interpersonal and other critical skills in the job interview process. CO-PO-PSO Mapping POs PSOs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												3	3	3
CO2	3											3	3	3	3
CO3	3							3			3		3	3	3
CO4									3	3			3	3	3
Average	3							3	3	3	3	3	3	3	3

Subject:	Project	Phase	II							Subje	ect Co	de: 15E	EP85		
						Cou	rse Ou	tcomes	5						
CO1		y to r		litera	ture, a	nd for	mulate	a con	nplex	engine	ering p	roblen	n of th	eir sel	ected
CO2			undame s or sys			_	mather	natics,	scienc	e and e	engine	ering p	rincipl	es in d	esign
CO3		•	lect, A			_		_		modeli	ng/data	a interp	pretatio	on/anal	ytical
CO4	_		tidesci _j tal con		engi	neering	g solut	ions to	comp	lex pro	oblems	addre	essing	societa	l and
CO5	Comr	nunica	te effe	ctively	to a di	verse a	udienc	e and	develop	techn	ical rep	orts a	nd publ	licatior	ıs.
CO6	Work	as a te	eam me	mber/	leader t	o man	age pro	ojects a	nd cos	ts in a c	diversi	fied en	vironm	nent.	
					(CO-PO	PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3								3	2	2	2
CO2	3	3	3										2	2	2
CO3	3	3			3								3	3	3
CO4	2	3	3	3		3	3						3	3	3
CO5										3		3	3	3	3
CO6						3			3	3	3		2	2	2
Average	2.75	3	3	3	3	3	3		3	3	3	3	2.5	2.5	2.5

Subject:	Semina	ar								Subje	ect Co	de:15E	ES86		
						Cou	rse Ou	tcome	s						
CO1	Ident	ify, un	derstan	d and	discuss	currer	nt real	time is	ssues						
CO2	Impr	ove ora	al and v	vritten	comm	unicati	on skil	le	33403.						
CO3	Attai	n, use	and dev	velop k	nowle	dge in	the fiel	d of el	ectrical	and el	ectroni	ics eng	ineerin	g and o	other
CO4	Explo	ore an	appreci	ation o	of the s	elf in r	elation	to its l	arger d	iverse	social	and aca	demic	contex	ztc
CO5	Demo	onstrat	e the al	oility to	o asses	s and r	enort.	10 110 1	urger u	170150	Social	and acc	ucillo	COILC	113.
	•							Mapp	ing						
COs	9						Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO ₁	3	3		3							3	, ,	3	3	3
CO2										3			3	3	3
CO3				3								3	3	3	3
CO4	3	3			,	T				17	3		2		
CO5		-				1) =)		2	,	3		3	3	3
						, 10		S //	3		1		3	3	3
Average	3	3		3					3	3	3	3	3	3	3

Co-ordinator Mr. Kubera U

HOD Dr. Babu N V