

Sri Adichunchanagiri Shikshana Trust (R)

SJB Institute of Technology (Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi.)

Department of Electrical & Electronics Engineering

Course Outcomes and CO-PO-PSO articulation Matrix

Batch 2017-21

Semester-I/II

Subject:	Basic E	lectric	al Eng	ineerin	g					Subj	ect Co	de: 17E	LE13/	23	
						Cour	rse Ou	tcome	5						
CO1			the bated to		-				d Mag	gnetic (circuits	s and a	also al	ole to	solve
CO2												esentat		altern	ating
CO3	Explain the construction, basic principle of operation, applications and also determine performance parameters of electrical Machines.Discuss the importance of Electrical Safety Rules & standards and types of electrical wiring and														
CO4	Discuss the importance of Electrical Safety Rules & standards and types of electrical wiring and domestic earthing.														
					(СО-РО	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												3		
CO2	3	2				2							3		
CO3	3	2				2							3		
CO4	2					2		2					3		
Average	2.75	2				2		2					3		

Semester-III

Subject: I	Engine	ering N	Aathen	natics-I	II					Subj	ect Coo	le: 15N	IAT3	1	
	-					Cou	rse Oı	utcome	5						
CO1		the the nunicat		f peri	odic	signals	and	Fourie	r seri	es to	analyz	e circ	uits a	and s	ystems
CO2	-		0		•	m theor z-trans	•	contino	us - tir	ne sigr	als and	l digita	l sign	al proc	cessing
CO3	Empl	oy app	ropriat	e nume	erical	nethod	s to so	olve alge	ebraic	and tra	nscedei	ntal eq	uation	s.	
CO4					-	-		n and S elds and					applic	ations	in the
CO5	Utiliz	e the	concep	ots of	functi	onal an	nd the	solve th ir varia nization	tions	in the	applica				
						CO-PC)-PSO) Mapp	ing						
COs						P	Os							PSO	S
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject:]	Electric	c Circu	iit Ana	lysis						Subj	ect Co	de: 17E	E32		
						Cou	rse Ou	tcome	S						
CO1	,Redu	ice the	e com	asic co plexity unsform	of ne	tworks					•				
CO2	Solve	comp	lex ele	ctric ci	rcuits 1	using n	etwork	theor	ems						
CO3	Discu	iss reso	onance	in seri	es and	paralle	l circu	its							
CO4			-	ance of sforma		conditi	ions an	d their	[•] evalua	ation ar	nd Synt	thesize	typica	l wave	forms
CO5	Evalu	ate the	e perfo	rmance	of two	o port r	networl	ks							
						CO-PC)-PSO	Mapp	ing						
00						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													3
CO2	2	2													2
CO3	2	2													2
CO4	2	2													2
				-	-	1	1	1	1	1					1
C04 C05	2	2													2

Subject:	Transfo	ormers	and Ge	enerato	ors					Subj	ect Co	de: 17E	E33		
						Cou	rse Ou	tcome	5						
C01	-				-		-			nsform s and a			iding d	ifferen	t
CO2	Analy	ze the	worki	ng and	operat	ion of	dc gen	erator a	and Syr	nchron	ous ma	chines.			
CO3	Analy	ze and	l explai	in the o	operation	on of th	ne sync	chronou	is mac	hine co	nnecte	d to int	finite n	nachine	e.
CO4	Compare the effects of various reactance's on the performance of synchronous machine and Dc generator. Evaluate and analyze the various regulation of Synchronous machines by different methods.														
CO5	Evaluate and analyze the various regulation of Synchronous machines by different methods.														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				1							2	3	
CO2	2	1				1							2	3	
CO3	3	2				1							2	3	
CO4	2	2				1							2	3	
CO5	2	3				1							2	3	
Average	2.2	2				1							2	3	

Subject:	Analog	Electr	onic C	ircuits						Subj	ect Co	de: 17E	E34		
						Cou	rse Ou	tcome	S						
CO1	Desig	n and	Analyz	the c	liode c	ircuits									
CO2	-	Compare different biasing circuits and apply the knowledge to transistor amplifiers and the transistor switching Explain the concept of feedback, its types and design of feedback circuits													
CO3	Expla	Explain the concept of feedback, its types and design of feedback circuits													
CO4	Desig	n and	analyz	e the p	ower a	mplifie	er circu	its and	oscilla	ators fo	r diffei	ent fre	quenci	es	
CO5	Unde	rstand	FET a	nd MO	SFET	amplif	iers in	the cor	nmon s	source	mode v	vith fix	ed bia	s.	
					(CO-PC)-PSO	Mapp	ing						
COs						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

CO1	2	3	1						2
CO2	2	3	2						3
CO3	2	2	2						2
CO4	2	2	2						2
CO5	2	2							3
Average	2	2.4	1.75						2.4

Subject:	Digital	Systen	n Desig	gn						Subj	ect Co	de: 17E	E35		
						Cou	rse Ou	tcome	5						
CO1	Solve	proble	ems bas	sed on	differe	ent Boc	lean e	xpressi	on min	imizati	on Tec	chnique	es.		
CO2	Analy	yse and	design	n differ	ent co	mbinat	ional c	ircuit							
CO3	Analy	yse and	design	n differ	ent sec	quentia	l circu	it							
CO4	Expla	ain and	analys	e State	Mach	ine Mo	odels								
CO5	Desci	ribe the	struct	ure of I	HDL n	nodule	, opera	tors,da	ta type	s					
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1													1
CO2	2	2	1												2
CO3	2	2	1												2
CO4	2	2													2
CO5					1										1
Average	2	1.75	1		1										1.6

Subject:	Electric	cal and	Electr	onic M	leasure	ments				Subj	ect Co	de: 17E	EE36		
						Cou	rse Ou	tcome	S						
CO1	Outlin	ne the i	importa	ance of	units	and dir	nensio	ns.							
CO2	Meas	ure res	istance	e, induc	tance	and cap	pacitan	ce by c	lifferer	nt meth	ods.				
CO3										for mea			ower a	ind ene	ergy.
CO4	Analyse the working of different electronic instruments and display devices.														
CO-PO-PSO Mapping															
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		1
CO2	2	2											2		1
CO3	2	2											2		2
CO4	2	2											1		2
Average	2	2											1.75		1.5

Subject:	Electric	cal Ma	chines	Lab 1						Subj	ect Co	de: 17E	EL37		
						Cou	rse Ou	tcome	5						
CO1		onstrate formers		rent te	sts on	transfo	ormers	to eva	aluate (the per	formai	nce cha	aracter	istics c	f the
CO2	Analy	halyze single phase transformers for three phase operation and phase conversion.													
CO3		aluate and compare the voltage regulation, performance of synchronous generator using the t data obtained in the laboratory.													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1			1	1			2	3	

CO2	3	2		1		1	1		2	3	
CO3	3	2		1		1	1		2	3	
Average	3	2		1		1	1		2	3	

Subject:	Electro	nics La	aborato	ory						Subj	ect Co	de: 17E	EL38		
						Cou	rse Ou	tcome	S						
CO1	Desig	gn and	test dif	ferent	diode c	rcuits	•								
CO2	Desig	gn and	test am	plifier	and os	cillato	r circui	its and	analys	e their	perform	nances	•		
CO3	Utiliz	ze unive	ersal g	ates an	d IC's f	for cod	e conv	ersion	and ari	thmeti	c opera	tion.			
CO4	Desig	gn and	verify	differe	nt cour	nters ar	nd sequ	ience g	enerato	ors					
					(CO-PC)-PSO	Mapp	ing						
CO -						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2			1				2	2					3
CO2	2	2			1				2	2					3
CO3	2	1			2				2	2					3
CO4	2	2			1				2	2					3
Average	2	1.8			1.3				2.5	2.5					2.5

Semester-IV

Subject: 1	Engine	ering N	/lathen	natics						Subj	ect Co	de: 17E	E41			
						Cou	rse Ou	tcome	S							
CO1			and se thods		order (DDE a	rising	in flo	w prob	lems u	ising s	ingle s	step ar	nd mul	tistep	
CO2									Bessel' ting to							
CO3	theory	y and	electro	magne	tic the	ory. D	escrib	e conf	es and ormal a rocessi	and bil		-	-			
CO4	proba	aerofoil theory, fluid flow visualization and image processing. Solve problems on probability distributions relating to digital signal processing. Describing joint probability distributions and stochastic matrix connected with the multivariable correlation problems for feasible random events.														
CO5	reject															
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2														
CO2	3	2														
CO3	3	2														
CO4	3	2														
CO5	3	2														
Average	3	2														

Subject:	Power Generation and Economics	Subject Code:17EE42
	Course Outc	omes
CO1	Interpret the working of hydroelectric, steam, ne equipment of the power plants.	clear power plants and state functions of major
CO2	Understand and classify various substations and	explain the importance of grounding.
CO3	Analyze the economic aspects of power system	operation and its effects.

CO4	Expla	in the	import	ance of	f powe	r facto	r impro	vemer	t meth	ods.					
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					2	2						3	2	
CO2	2					2	2						3	2	
CO3	2	2				2	2						2	2	
CO4	2	2				2	2						2	2	
Average	2	2				2	2						2.5	2	

Subject: '	Fransm	ission	and D	istribut	ion					Subj	ect Co	de: 17E	E43		
						Cou	rse Ou	tcome	s						
CO1	Expla	in the	concep	ots of v	arious	metho	ds of g	enerati	on of p	ower.					
CO2	Expla	in the	import	ance o	f HVA	C, EH	VAC, I	UHVA	C and	HVDC	transn	nission.	•		
CO3	Desig level.	n and	analyz	e overl	nead an	ıd unde	ergrour	d cable	es for t	ransmi	ssion s	ystem f	for a gi	ven vo	ltage
CO4			-		of the tevaluate					ent con	figurat	ions an	d asses	ss the	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3		
CO2	3	2				2	2						3		
CO3	3	2				2	2						3		
CO4	3	2				2	2						3		
Average	2.75	2				2	2						3		

Subject: 1	Electric	: Moto	rs							Subj	ect Co	de: 17E	E44		
						Cou	rse Ou	tcome	S						
CO1	Expla	in the	constr	uctiona	l featu	res of N	Motors	and se	elect a s	suitable	drive	for spe	cific a	pplicati	ion.
CO2	-			1		ance ch e metho		ristics	of DC	motors	by cor	ductin	g suita	ble test	ts
CO3	-	in the perform		uctiona	l featu	res of 7	Three F	Phase a	nd Sin	gle pha	se indu	iction I	Motors	and as	sess
CO4	Contr	ol the	speed	of indu	ction n	notor b	y a sui	table n	nethod						
CO5	Expla	in the	operat	ion of S	Synchr	onous	motor	and spe	ecial m	otors.					
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2							2	2	
CO2	3	2				2							2	3	
CO3	3	2				2							2	3	
CO4	2	2				2							2	2	
CO5	3	2				2							2	3	
	2.6	2				2							2	2.6	1

Subject:	Electromagnetic Field Theory	Subject Code:17EE45
	Course Outcomes	
CO1	Understand different coordinate systems and concept of gra	adient, divergence, curl of a vector.
CO2	Apply Coulomb's Law and Gauss Law for electric	fields produced by different charge

	config	guratio	ns.												
CO3	•		ctric fi lectric		ross a	bound	lary be	tween	a conc	luctor	and di	electric	and l	oetween	n two
CO4	Study	the m	agnetic	c fields	and m	agneti	c mate	rials.							
CO5	Unde	rstand	time va	arying	fields a	and pro	opagati	on of v	vaves i	n diffe	rent me	edia.			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1													1
CO2	2	3	1												2
CO3	2	2	1												2
CO4	2	2	1												2
CO5	2	2													2
Average	2	2	1												1.8

Subject:	Operati	onal A	mplifi	ers and	I LIC					Subj	ect Co	de: 17E	E46		
						Cou	rse Ou	tcome	S						
CO1	Descr	ibe the	e chara	cteristi	cs of id	deal an	d pract	ical op	eratior	nal amp	lifier a	nd thei	r appli	cations	5
CO2	Desig	n filter	rs and v	voltage	e regula	ators.									
CO3	Demo genera		e the ap	oplicati	ion of l	Linear	ICs as	compa	rators ,	rectifie,	ers, lim	iters cl	amper	s andsi	gnal
CO4	Utiliz	e 555 t	timer a	nd PLI	L IC										
						CO-PC)-PSO	Mapp	ing						
<u> </u>						Р	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													1
CO2	3	3	2												2
CO3	2	2													2
CO4	2	1													1
Average	2.25	2	2												1.5

Subject: 1	Electric	cal Ma	chines	Lab 2						Subj	ect Co	de: 17E	EL47		
						Cou	rse Ou	tcome	S						
CO1		onstrate iments		under	standiı	ng the	perfo	ormanc	e of	DC n	otors	by co	onducti	ng su	itable
CO2		ate th	-	formar	nce of	induc	ction a	and sy	ynchroi	nous 1	notor	by co	onducti	ng su	itable
CO3	Comp motor		ıd anal	yze th	e speed	d conti	rol tecl	hnique	s for s	ingle p	hase a	nd thre	ee-phas	se indu	uction
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1			1	1			2	3	
CO2	3	2				1			1	1			2	3	
CO3	3	2				1			1	1			2	3	
Average	3	2				1			1	1			2	3	

Subject:	Op-amps and Linear ICs Lab	Subject Code:17EEL48
	Course Outcomes	
CO1	Conduct experiment to determine the characteristic parameter	eters of OP-Amp
CO2	Design and test the OP-Amp as Amplifier, adder, sub	tractor, differentiator ,comparator and

	integr	ator													
CO3	Desig	n and	test the	e OP-A	mp as	oscilla	tors an	d filter	s and r	egulato	ors				
CO4	Desig	n and	study o	of Line	ar IC's	as mu	ltivibra	ator po	wer sup	oplies.					
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1							1	1				2	
CO2	3	1							1	1				2	
CO3	3	1							1	1				2	
CO4	3	1							1	1				2	
Average	3	1							1	1				2	

Semester-V

Subject:	Manag	ement	& Entr	eprene	urship					Subj	ect Co	de: 17E	EE51		
						Cou	rse Ou	tcome	S						
CO1	Expla	ain the	nature	of mar	nageme	ent, ent	reprene	eur and	l intrapi	reneurs	ship				
CO2	Appl	y the k	nowled	lge of p	oroject	propos	sal for	getting	the fur	ding f	rom di	fferent	fundin	g agen	cies
CO3	Utiliz	the s	cheme	and fa	cilities	s provid	led by	govern	ment se	ector					
CO4	Mana	ige the	humar	and n	naterial	l resour	rces an	d also i	manage	capita	l build	ing pro	ocess		
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1								2	3	2			1		
CO2								3	2	2	2		1		
CO3								3	2	2			1		
CO4								2	2	2	2		1		
Average								2.5	2.25	2	2		1		

Subject:	Microc	ontroll	ers							Subj	ect Co	de: 17E	E52		
						Cou	rse Ou	tcome	S						
CO1	Discu	iss the	archite	ectural	details	of mic	rocont	rollers	and ins	structio	n set				
CO2				yse the , branc						grams t ns	o facil	itate th	e data	1 move	ement,
CO3	-	n and contro		the kno	owledge	e of on	-chip p	periphe	rals an	d also t	to inter	face ex	ternal	hardw	are to
					(CO-PO)-PSO	Mapp	ing						
<u> </u>						Р	Os							PSOs	5
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3														2
CO2	2	2			2										2
	2	2			2										3
CO3	2	~			-										5

Subject:	Power Electronics	Subject Code:17EE53
	Course Out	tcomes
CO1		
CO2	Formulate equations and estimate circuit com	ponents, power lossfor given specifications of

	opera	tion of	power	device	es unde	er stead	ly state	and d	ynamic	condit	ions.				
CO3	Apply	y releva	ant exp	pression	ns to ai	nalyze	the per	formar	nce of a	lifferen	t powe	er conv	erters.		
					(CO-PC)-PSO	Mapp	ing						
COa	POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
COs	1	2	3	4	12	1	2	3							
CO1	3	2										1		2	
CO2	3	2										1		2	
CO3	3	2										1		2	
Average	3	2										1		2	

Subject:	Signals	and S	ystems	5						Subj	ect Co	de: 17E	E54		
						Cou	rse Ou	tcome	S						
CO1	Expla	in basi	ic sign	als, it's	s classi	fication	n and p	roperti	ies of v	various	system	S			
CO2	2		0	iven co volutio			l discre	ete LT	I syste	em usin	g freq	uency	respon	se, dif	ferent
CO3	Solve	differ	ence a	nd diffe	erentia	l equat	ion and	l block	diagra	am repr	esentat	tion of	the LT	'I syste	m.
					(CO-P()-PSO	Mapp	ing						
COs						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1													2
CO2	3	3													2
CO3	3	3													2
Average	2.75	2.3													2

Subject:	Electri	cal Esti	matior	n & Co	sting					Subj	ect Co	de: 17E	E553		
						Cou	rse Ou	tcome	S						
CO1	Acqu	ire kno	wledge	e on ge	eneral p	orincip	les of e	estimati	ion & c	costing					
CO2		ify imp y rules	ortant	consi	deratio	ons reg	arding	motor	r insta	llation,	Resid	lential	wiring	App	olying
CO3	Analy	nalyse design aspects for service connections, Power circuits & their Earthing stimate the cost of Overhead Transmission & Distribution Lines, Sub-station.													
CO4	Estin														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1		1					2	2	
CO2	3	1	2			1		1					2	2	
CO3	3	1	2			1		1					2	2	
CO4	3	1	2			1		1					2	2	
Average	3	1.25	2			1		1					2	2	

Subject:	Renewable Energy Sources	Subject Code:17EE563
	Course Outcomes	
CO1	Summarize the conventional and non conventional energy and their representation related to solar geometry.	sources and discuss sun-Earth Angles
CO2	Discuss different types of solar collectors for various t working of solar cell system, characteristics and their applic	11 1
CO3	Understand and explain the different types of energy pro- system, wind and calculate the power in the wind.	oduction from hydrogen, geothermal
CO4	Describe the importance of tidal power generation, tidal en explain the methods of power generation.	ergy availability, sea wave energy and
	CO-PO-PSO Mapping	

COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3	2	
CO2	2	2				2	2						3	2	
CO3	2	1				1	1						3	2	
CO4	2	1				1	1						3	2	
Average	2	1.5				1.5	1.5						3	2	

Subject:	Microc	ontroll	er Lab	oratory	7					Subj	ect Co	de: 17E	EL57		
						Cou	rse Ou	tcome	8						
CO1	Form	ulate p	rogram	s to ha	undle d	ata mo	vemen	t, arith	metic a	nd log	ical ins	structio	ns		
CO2	Devel	lop coo	les to h	andle	differen	nt data	types								
CO3	Creat	e code	s in ord	ler to c	ontrol	the ext	ternal d	levices	using	nicroc	ontroll	er			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2		3				2	2					3
CO2	2	3	2		3				2	2					3
CO3	2	3	3		3				2	2					3
Average	2	3	2.3		3				2	2					3

Subject: I	Power	Electro	onics L	ab						Subj	ect Co	de: 17E	EL58		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	and Ar	nalyze	the stat	tic cha	racteris	tics of	power	semico	onducto	or devi	ces.		
CO2	Demo	onstrate	e the sp	beed co	ntrol o	of unive	ersal m	otor an	d DC 1	notor u	ising p	ower d	evices.		
CO3	Analy	ze nat	ural an	d force	e comr	nutatio	n techn	iques ı	using S	CRs					
CO4	Demo	Demonstrate the application of AC voltage controller for different loads. Demonstrate the working of controlled Rectifiers and inverters for different loads.													
CO5	Demo	Demonstrate the application of AC voltage controller for different loads. Demonstrate the working of controlled Rectifiers and inverters for different loads. CO-PO-PSO Mapping													
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2					2	2			3	2	
CO2	3	2		2					2	2			3	2	
CO3	3	2		2					2	2			3	2	
CO4	3	2		2					2	2			3	2	
CO5	3	2		2					2	2			3	2	
Average	3	2		2					2	2			3	2	

Semester-VI

Subject:	Contro	l Syste	ms							Subj	ect Co	de: 17E	EE61		
						Cou	rse Ou	tcome	S						
CO1	Anal	yze and	l mode	l electr	rical ar	nd mec	hanical	lsyster	n using	g analog	gous sy	stem.			
CO2	Form	ulate tr	ansfer	function	ons usi	ing blo	ck diag	gram ar	nd sign	al flow	graphs	5.			
CO3	-	gn and respons	•	the s	stabilit	y of co	ontrol s	ystem,	ability	to dete	ermine	transie	ent and	steady	state
CO4		rate the Root l							ne and	freque	ency d	omains	, stabi	lity and	alysis
					(CO-PO)-PSO	Mapp	ing						
COa						Р	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

CO1	2	2						2		2
CO2	1	1						1		
CO3	2	2						2	2	
CO4	2	2						1	2	
Average	1.75	1.75						1.5	2	2

Subject:	Power	System	Analy	/sis-1						Subj	ect Co	de: 17E	E62			
						Cou	rse Ou	tcome	5							
CO1		v under liagram				systen	n, com	putatio	n and	its imp	lement	ation ir	n prob	lems of	one-	
CO2			•	-	•		using c	comple	x matl	nematic	al trar	nsforma	ations	under	short	
CO3	•															
CO4	Appl	ng symmetrical component transformations. ply mathematical techniques to evaluate system stability. CO-PO-PSO Mapping														
					(СО-РС)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3											3	3		
CO2	3	3				2	2						3	3		
CO3	3	3				2	2						3	2		
CO4	3	2											3	3		
Average	3	2.75				2	2						3	2.75		

Subject:	Digital	Signal	Proce	ssing						Subj	ect Co	de: 17E	E63		
						Cou	rse Ou	tcome	5						
CO1	-	-		-			ourier tabula			FT). A	and sol	lve pro	blems	on ci	rcular
CO2		proble thms.	ems or	n effici	ent con	nputat	ion of	DFT u	sing D	IT and	DIF-	FFT ar	nd con	nposite	DFT
CO3	Implement digital systems (FIR and IIR systems) in a variety of forms (direct form I and II, parallel, cascade, ladder structure and linear phase realization). Apply design (IIT and BLT) techniques for IIR type (Butterworth and Chebyshev) digital filters. Design FIR type digital filters using "windowing method" and "frequency sampling method														
CO4	Apply design (IIT and BLT) techniques for IIR type (Butterworth and Chebyshev) digital filters.														
CO5	Design FIR type digital filters using "windowing method" and "frequency sampling method.														
	5 Design FIR type digital filters using "windowing method" and "frequency sampling method. CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													3
CO2	3	2													3
CO3	2	2													3
CO4	3	3	2												3
CO5	3	3	2												3
Average	2.6	2.4	2												3

Subject:	Electrical Machines Design	Subject Code:17EE64
	Course Outcomes	
CO1	Discuss different design trends, factors, properties of limitations of electrical machines, short circuit ratio synchronous machines.	01
CO2	Formulate, Design and solve the output equations, stator AC machines.	and rotor circuits of DC machines and

CO3		n winc eakage	0						the nu	mber o	of cooli	ing tub	es, no	load cu	urrent	
		CO-PO-PSO Mapping POs PSOs														
COa					PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2													2		
CO2	2	3	3											2		
CO3	2	3	3											2		
Average	2	3	3											2		

Subject:	Compu	ter Aid	led Ele	ctrical	Drawi	ng				Subj	ect Co	de: 17E	E651			
						Cou	rse Ou	tcome	S							
CO1	Discu	iss the	termin	ology a	and dev	velop a	rmatur	e wind	ings fo	r DC a	nd AC	machin	nes			
CO2	Deve	Develop a layout for substation using the standard symbols for substation equipment.														
CO3	Sketch the sectional views of core and shell types transformers, assembled DC machine and													e and		
005	altern	alternators design data and its parts.														
					(СО-РС)-PSO	Mapp	ing							
COs						Р	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2		3								3	2		
CO2	3	2	2		3								3	2		
CO3	3	2	2		3								3	2		
Average	3	2	2		3								3	2		

Subject:	Control	syster	n lab							Subj	ect Co	de: 17E	EL67			
						Cou	rse Ou	tcome	S							
CO1	Desig	n and a	analyz	e Lead	, Lag ai	nd Lag	g – Lea	d com	pensato	rs for g	given s	pecific	ations.			
CO2			-		nce cha rol syst		ristics	of ac	and dc	servoi	notors	and s	ynchro	o-transi	nitter	
CO3	Simul	Simulate the DC position and feedback control system to study the effect of P, PI, PD and PID controller														
CO4	using	Write a script files to plot root locus, bode plot, Nyquist plots to study the stability of the system using a software package. Use software package or discrete components in assessing the time and frequency domain reposes of a given second order system.														
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3			3				2	2			2	2		
CO2	3	2			3				2	2			3	3		
CO3	3	2			3				2	2			2	2		
CO4	2	3			2				2	2			3	3		
Average	2.75	2.5			2.75				2	2			2.5	2.5		

Subject:	Digital Signal Processing Lab	Subject Code:17EEL68
	Course Outcomes	
CO1	Compute the frequency Response and time Response theorem.	of the gven system using sampling
CO2	Solve impulse response and step response of a given diffe a suitable software and compare the results.	rence equation theoretically & by using
CO3	Compute N-point DFT as well N-point FFT (Both DIT a	and DIF) of a given sequence and also

	plot n	nagnitu	ide and	l phase	respor	ise										
CO4	Perfo	rm Coi	nvoluti	on of	(Linear	and ci	ircular)	two se	equence	es usin	g DFT	and ID	DFT.			
CO5	c	Design and implement IIR and FIR digital filter to meet the given specification using suitable software														
	CO-PO-PSO Mapping															
CO -					PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2		2	3				2	2					3	
CO2	3	2		2	3				2	2					3	
CO3	3	2		2	3				2	2					3	
CO4	3	2		2	3				2	2					3	
CO5	3	2		2	3				2	2					3	
Average	3	2		2	3				2	2					3	

Semester-VII

Subject: 1	Power	System	Analy	vsis-2						Subj	ect Co	de: 17E	E71			
						Cou	rse Ou	tcome	S							
CO1		to forr GS, NR			and C	Comput	the l	oad flo	ow sol	ution u	sing di	ifferent	iterati	ive me	thods	
CO2	Discu	Discuss optimal scheduling for hydro-thermal system, power system security and reliability														
CO3	Analyze short circuit faults in power system networks using bus impedance matrix															
CO4		Solve the swing equation of synchronous machine using Numerical technique and study multi- machine stability														
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3											2	2		
CO2	2	2	2			1	1						2	2		
CO3	2	2											2	2		
CO4	2	2											2	2		
Average	2	2.25	2			1	1						2	2		

Subject:	Power	System	Prote	ction						Subj	ect Co	de: 17E	EE72			
						Cou	rse Ou	tcome	5							
CO1	Class	ify & c	ompar	e vario	us rela	iys & it	ts prote	ective s	cheme	s.						
CO2	Analy	Analyse schemes of Overcurrent protection & distance protection Analyse schemes such as carrier current protection& differential protection														
CO3	Analy	Analyse schemes such as carrier current protection& differential protection														
CO4	Unde	Understand various circuit breakers, fuse used in power system. Discuss the protection against Over voltages and modern trends in power system protection.														
CO5	Discu	iss the	protect	tion aga	ainst O	ver vo	ltages a	and mo	dern tr	ends ir	n powe	r syster	m prote	ection.		
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	1	1										2	2		
CO2	1	2	1				1						1	2		
CO3	1	2	1				1						1	2		
CO4	1	2	1				1						2	2		
CO5	1	2	1				1						2	2		
Average	1.2	1.8	1				1						1.6	2		

Subject:]	High V	'oltage	Engin	eering						Subj	ect Co	de: 17E	E73			
						Cou	rse Ou	tcome	S							
CO1		y the k ators.	nowle	dge to	analyz	ze equi	valent	circuit	t mode	ls of t	he HV	AC, H	VDC a	and im	pulse	
CO2		Apply their knowledge to distinguish breakdown phenomenon in dielectrics and specifications of Equipment conforming to standards.														
CO3		Analyze the factors affecting HVAC & HVDC measurements, overvoltage phenomenon in electric power systems														
CO4	Analy	Analyze the knowledge of testing various materials and electric apparatus in power system.														
					(CO-PC)-PSO	Mapp	ing							
CO -						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2				2	2						3	2		
CO2	3	2				2	2						3	2		
CO3	3	2				2	2						3	2		
CO4	3	2				2	2						3	2		
Average	3	2				2	2	1		1			3	2	1	

Subject:	Utilizat	ion of	Electri	cal Po	wer					Subj	ect Co	de: 17E	E742			
						Cou	rse Ou	tcome	5							
CO1					he diff d indus				ical he	ating, v	welding	g and e	lectrol	ytic pr	ocess	
CO2		Understand and Apply the knowledge of fundamental engineering principles to design various lighting systems for different applications. Apply the basic knowledge of engineering to analyze the behavior of electrical traction systems														
CO3		Apply the basic knowledge of engineering to analyze the behavior of electrical traction systems under various conditions of operation.														
CO4		Understand and discuss the importance of electric vehicles and hybrid electric vehicles and its architectures.														
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2				2	2						3	2		
CO2	2	2				2	2						3	2		
CO3	3	2				2	2						3	2		
CO4	2					2	2						3	2		
Average	2.25	2				2	2						3	2		

Subject:	Testing and Commissioning of Power System Apparatus Subject Code:	7EE752
	Course Outcomes	
CO1	Describe corrective and preventive maintenance of electrical equipments.	
CO2	Demonstrate the process to plan, control and implement commissioning of e	lectrical equipment's
CO3	Demonstrate the routine tests for synchronous machine, induction m switchgears.	otor, transformer &
CO4	Differentiate the performance specifications of transformer, induction mo machines. Explain the different tests and factors to be considered while s cables .	•
CO5	Explain the operation and selection of an electrical equipment's such breakers, insulators and switchgears.	as isolators, circuit
	CO-PO-PSO Mapping	
COs	POs	PSOs

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1				2	1	1					3	3	
CO2	3	1				2	1	1					3	3	
CO3	3	1				2	1	1					3	3	
CO4	3	1				2	1	1					3	3	
CO5	3	1				2	1	1					3	3	
Average	3	1				2	1	1					3	3	

Subject:	Power	System	n Simul	lation I	Lab					Subje	ect Co	de: 17E	EL76		
						Cou	rse Ou	tcome	5						
CO1		-	MATL ler faul		-	gram	to acc	ess the	e perfo	ormance	e of N	ATL, I	LTL ai	nd trai	isient
CO2	Build	the M	ATLA	B prog	ram to	obtain	the po	wer an	gle cha	aracteri	stics o	f altern	ator		
CO3		-	e MAT			m to	formul	ate bu	s adm	ittance,	Jacoł	oian ar	nd bus	impeo	lance
CO4			AATLA stem vo	-	0		ermine	e Bus	current	t, Bus	power	and 1	ine flo	ows fo	r the
CO5		-	er pac Econo	0					ion usi	ng GS/	NR/FI	DLF me	ethod,	short c	ircuit
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2	1				2	2			2	3	
CO2	3	2		2					2	2			2	3	
CO3	3	2		2					2	2			2	3	
CO4	3	2		2	1	2			2	2			2	3	
CO5	3	2		2					2	2			2	3	
Average	3	2		2	1				2	2			2	3	

Subject:	Relay a	nd Hig	gh Volt	age La	ıb					Subje	ect Co	de: 17E	EL77		
						Cou	rse Ou	tcomes	5						
CO1		cted fo												ir insul niform	
CO2			U		-	ty of the stren			oil sam	ple by	condu	icting	experi	ment a	s per
CO3	relay,	Static	under	rvoltag	e relag		roproc					-		over-vo croproc	-
CO4	-	ire the		ledge	experi	imenta	lly by	map	field l	ines fo	or co-a	axial c	able n	nodel	using
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
0.05	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2	2		2	2			3	3	
CO2	3	2				2	2		2	2			3	3	
CO3	3	2				2	2		2	2			3	2	
CO4	3	2				2	2		2	2			3	2	
Average	3	2				2	2		2	2			3	2.5	

Subject: 1	Project	Phase	Ι							Subj	ect Co	de: 17E	EEP78		
						Cou	rse Ou	tcome	5						
CO1		ty to r et topic		n litera	ature, a	ind for	mulate	a con	nplex	enginee	ering p	oroblen	n of th	eir sel	ected
CO2					nowled	U	mather	natics,	scienc	e and e	engine	ering p	rincipl	es in d	esigr
CO3		•			suitab ents lea	0		0		modeli	ng/data	a interj	pretatio	on/anal	ytica
CO4	Ŭ		tidescij tal con	•	engi	neering	g solut	ions to	o comp	olex pro	oblems	addre	essing	societa	l and
CO5	Comr	nunica	te effe	ctively	to a di	verse a	audienc	e and o	develop	techn	ical rep	ports a	nd pub	licatior	ıs.
CO6	Work	as a te	eam me	mber/	leader 1	to man	age pro	ojects a	nd cos	ts in a o	diversi	fied en	vironn	nent.	
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3								3	2	2	2
CO2	3	3	3										2	2	2
CO3	3	3			3								3	3	3
CO4	2	3	3	3		3	3						3	3	3
CO5										3		3	3	3	3
CO6						3			3	3	3		2	2	2
Average	3.75	3	3	3	3	3	3		3	3	3	3	2.5	2.5	2.5

Semester-VIII

Subject:	Power S	System	Operat	tion Ar	nd Con	trol				Subj	ect Co	de: 17E	EE81		
						Cour	se Out	tcomes	5						
CO1		ibe vari	ious lev	vels of	contro	ols in p	ower s	ystems	s, comp	onents	s, archi	tecture	and co	onfigui	ration
	of SC														
CO2		unit co		-		Ū				-		-			
CO3	Expla	in the n	nethods	s of pro	oblem	formul	ation a	ind solu	ution n	nethods	s for hy	drothe	ermal so	cheduli	ing
CO4	Expla	in, deve	elop an	id anal	yze m	athema	tical n	nodels	of Aut	omatic	: Load	Freque	ency C	ontrol	in an
04	interc	onnecte	ed powe	er syst	em										
CO5	Expla	in meth	nods of	f volta	ge and	l reacti	ive po	wer co	ontrol,	voltage	e stabi	lity in	an inte	erconn	ected
05	power	r systen	1												
CO6	Expla	in meth	nods of	f volta	ge and	l reacti	ive po	wer co	ontrol,	voltage	e stabi	lity in	an inte	erconn	ected
000	power	r systen	1												
					C	O-PO	-PSO	Mappi	ng						
COs						PC)s							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3				2					1			3		2
CO2	2	2											2		1
CO3	3												2		
CO4	3	2			1								3		1
CO5	2	2											3		
CO6	3		1										3		
Average	2.67	2	1		1.5					1			2.67		1.3

Subject: 1	ndustr	ial Driv	ves and	l Appli	cations	8				Subj	ect Co	de: 17E	EE82		
						Cou	rse Ou	tcome	6						
CO1	Expla	in diff	erent n	nodes c	of operation	ation o	f electi	ric driv	es.						
CO2	Analy	ze dc i	motor s	speed c	control	techni	ques us	sing co	ntrolle	d rectif	iers.				
CO3	Analy	ze the	perfor	mance	of indu	uction	motor	drives	under d	lifferer	t cond	itions.			
CO4	Study	the Co	ontrol	of sync	hronou	is moto	or and	stepper	motor	drives	•				
CO5	Identi	ify a su	itable	electric	cal driv	e for s	pecific	applic	ation ii	n the in	dustry	•			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											3	2	
CO2	3	3				2	2						2	3	
CO3	3	3				2	2						2	3	
CO4	2	3				2	2						2	3	
CO5	2	2				2	2						3	2	
Average	2.4	2.6				2	2						2.4	2.6	

Subject:	Smart C	Grid								Subj	ect Co	de: 17E	EE831		
						Cou	rse Ou	tcome	S						
CO1					•			0	nd des <u>Units</u>	0	-		d perfo	ormanc	e on
CO2	comm	unicat izatior	ion, 1	neasur	ement,	and	moni	toring	techn	ology	tools	and	discus	technie ss clas anning	ssical
CO3	Devel	op clea	aner, n	nore en	vironn	nentally	y respo	nsible	techno	logies	for the	electri	c syste	m.	
CO4	smart	er by i	nvestir	ng in n	ew tec ment o	hnolog of smar	y and t grid.	discus	s the p					sion sy stakeho	
					(CO-PC)-PSO	Mapp	ing						
COs			-	-		P	Os			-				PSOs	
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2	2						3	1	
CO2	2	2				2	2						2	1	
CO3	3	2				2	2						3	2	
CO4	3	2				2	2						3	1	
Average	2.75	2				2	2						2.75	1.25	

Subject:	Integra	tion of	Distril	outed C	Generat	tion				Subj	ect Co	de: 17E	EE833		
						Cou	rse Ou	tcome	S						
CO1	Expla	ain Dis	tribute	d Gene	ration	by vari	ious Sc	ources	of Ener	gy.					
CO2		tudy tl ration	ne Pov	ver Sy	/stem	Perfori	nance,	Over	oading	g and 1	Losses	impao	ets on	Distri	buted
CO3	To st	udy the	e Volta	ge Mag	gnitude	e Varia	tions ii	npacts	on Dis	stribute	d Gene	eration			
CO4	To st	udy the	Powe	r Quali	ity Dist	turband	ces imp	oacts of	n Distr	ibuted (Genera	tion			
					(CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2	2	

CO2	3	2		2	2			3	2	
CO3	3	2		2	2			3	2	
CO4	3	2		2	2			3	2	
Average	3	2		2	2			2.8	2	

Subject:	Internsł	nip								Subj	ect Co	de: 17E	E84		
						Cou	rse Ou	tcome	S						
CO1	Gain	practic	al expe	erience	and ki	nowled	lge of t	he Indu	ustry an	ld prof	essiona	ıls			
CO2	Devel	op and	l exper	ience c	commu	nicatio	on, inter	rpersor	nal and	other c	critical	skills i	n techi	nical fi	elds
CO3	Demo	onstrate	e the ab	oility to	asses	s and re	eport th	ne tech	nical do	ocumei	nts				
CO4		op a g ical fie	-	unders	standin	g abou	ut caree	er opti	ons to	achiev	e caree	er goal	s in th	e inter	rested
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1		2			1					3	3	3
CO2	2	2						1	2	2			3	3	3
CO3	2	2							1	2			3	3	3
CO4	2	2									1	3	3	3	3
Average	2.25	2	1		2			1	1.5	2	1	3	3	3	3

Subject:	Project	Phase	II							Subj	ect Co	de: 17E	EP85		
						Cou	rse Ou	tcome	S						
CO1		y to r t topic		n litera	ture, a	and for	mulate	e a cor	nplex	engine	ering p	roblen	n of th	neir sel	ected
CO2	Apply	the fu				0	mather	natics,	scienc	e and o	engine	ering p	rincipl	es in d	esign
CO3			lect, A duct ex			U		0		modeli	ng/data	a interj	pretatio	on/anal	ytical
CO4	U		tidescij tal con	•	engi	neering	g solut	ions to	o comp	olex pro	oblems	addre	essing	societa	l and
CO5	Comm	nunica	te effe	ctively	to a di	verse a	audienc	e and	develoj	p techn	ical rep	ports ai	nd pub	licatior	ns.
CO6	Work	as a te	eam me	mber/l	leader 1	to man	age pro	ojects a	and cos	ts in a o	diversi	fied en	vironn	nent.	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3								3	2	2	2
CO2	3	3	3										2	2	2
CO3	3	3			3								3	3	3
CO4	2	3	3	3		3	3						3	3	3
CO5										3		3	3	3	3
CO6						3			3	3	3		2	2	2
Average	2.75	3	3	3	3	3	3		3	3	3	3	2.5	2.5	2.5

Subject:	Semina	ar								Subj	ect Co	de:17E	ES86	3	
						Cou	rse Ou	tcome	s						
CO1	Ident	ify, un	derstan	d and	discuss	s curre	nt. real-	time i	ssues.						<i>x</i>
CO2	Impr	ove ora	al and w	vritten	comm	unicati	on skil	ls.							
CO3	Attai	n, use a	and dev	velop k	nowle	dge in	the fiel	d of e	ectrical orative	and el	ectron	ics engi	ineerin	ig and	other
CO4	Expl	ore an a	appreci	ation c	of the s	elf in r	elation	to its	larger d	liverse	social	and aca	demic	conte	xts
CO5	Dem	onstrate	e the al	oility to	o asses	s and r	eport.		8					vonter	10.
)-PSO	Map	ing			1			
COs						P	Os			r. F				PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3		1			1.1.1		3		3	3	3
CO2										3		20, ,	3	3	3
CO3				3		1		6. t., t. t.	ing the			3	3	3	3
CO4	3	3				1 - E.	13		5. 1971 - 177		3		3	3	3
CO5						10-1-10		ic.	3	19		in the	3	3	3
Average	3	3		3		27 ° 1	· · · · · · · · · · · · · · · · · · ·	1. 1	3	3	3	3	3	3	3

U Co-ordinator Mr. Kubera U

HOD Dr. Babu N V

Page **18** of **18**