

|| Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R)

SJB Institute of Technology

(A Constituent of BGS &SJB Group of Institutions and Hospitals) BGS Health and Education City, Dr.Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi. Affiliated to Visvesvaraya Technological University, Belagavi. 2(f) and 12(B) recognized by UGC, New Delhi. Accredited by NAAC. Accredited by NBA. Certified by ISO 9001-2015.

Department of Electrical & Electronics Engineering

Course Outcomes and CO-PO-PSO articulation Matrix

Batch 2018-22

Semester-I/II

Subject:	Basic E	lectric	al Eng	ineerin	ıg					Subj	ect Co	de: 18E	LE13/	23	
						Cou	rse Ou	tcomes	5						
CO1					-	s of D AC cir	,	circuits	and E	Electrica	al Mac	hines a	nd able	e to sol	ve
CO2										and theters in				altern	ating
CO3					0					d elect mer an		0	0		n the
CO4		uct a s lations	•	on safe	ety asp	pects, v	wiring	and co	onsum	ption o	of elect	trical p	ower	in don	nestic
					(CO-PC)-PSO	Mappi	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	2					2		2					2		
Average	2.75	2				2		2					2		

Subject:	Basic E	Electric	al Eng	ineerin	ıg Lab					Subj	ect Co	de: 18E	LEL1	7/27	
						Cou	rse Ou	tcome	5						
CO1		•				compor oratory		nd mea	suring	instrur	nents u	ised for	r condu	icting	
CO2	Evalu	ate an	d Com	pare po	ower fa	ctor of	lamps	•							
CO3	Deter	mine i	mpeda	nce of	an elec	ctrical c	circuit	and po	wer con	nsumed	l in a 3	-phase	load.		
CO4	Deter	mine e	earth re	sistanc	e and u	underst	and tw	'o way	and thr	ee-way	contr	ol of la	mps.		
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1			1	1			2		
CO2	3	2				1			1	1			2		
CO3	3	2				1			1	1			2		
CO4	3	2				1			1	1			2		
Average	3	2				1			1	1			2		

<u>Semester-III</u>

Subject:	Engine	ering N	Aathen	natics-I	II					Subj	ect Co	de: 18N	1AT31		
						Cou	rse Ou	tcome	S	•					
CO1		-					-			solvin s of en	-	erential ing.	/ integ	ral equ	ation
CO2						•			-	odic fu l theory		s and th	neir ap	plicatio	ons in
CO3				ier trar ropaga						ate disc	crete/co	ontinuo	us fun	ction a	rising
CO4				econd nd mul					l equa	tions a	rising	in eng	ineerii	ng prol	olems
CO5				ernals d bodi	es and	vibrati	onal ar	nalysis		variatio	ons an	d solve	e prob	lems a	rising
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject:	Electric	c Circu	it Ana	lysis						Subj	ect Co	de: 18E	E32		
						Cou	rse Ou	tcome	S	•					
CO1		rstand compl			1 /					f analys	sis of I	DC and	AC n	etwork	s and
CO2	Discu		onance		•		-					oehavio vavefor			
CO3	•	ze net systen		based		•				variab	oles and	d solve	unba	lanced	three
	1				()-PSO	Mapp	ıng						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3													3
CO2	3	3													2
CO3	2	2													2
Average	2.67	2.67										1			2.3

Subject:	Transfo	ormers	and Ge	enerato	ors					Subj	ect Co	de: 18E	E33			
						Cou	rse Ou	tcome	S							
CO1	Unde	rstandi	ng the	constr	uction	and op	eration	of trai	nsform	ers and	autotr	ansforr	ner			
CO2	Analy	ze the	ze the performance of transformer by various tests, phase conversion and parallel operation nation and understanding of construction and operation of DC and AC Generators.													
CO3	Expla	nation and understanding of construction and operation of DC and AC Generators. vze the performance of Synchronous machines by various tests, parallel operation and														
CO4							ous ma s on inf			ious tes	sts, par	allel op	peratio	n and		
	1.1		2)-PSO									
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2				1	1							2		

CO2	2	2		1	1				2	
CO3	3	2		1	1				2	
CO4	2	2		1	1				2	
Average	2.5	2		1	1				2	

Subject:	Analog	Electr	onic C	ircuits						Subj	ect Co	de: 18E	E34		
						Cou	rse Ou	tcome	S						
CO1	Illusti	rate the	e const	ruction	and w	orking	of dio	des, B.	IT and	FET					
CO2	Desig FET	n diffe	erent ar	nplifie	rs, osc	illators	and si	gnal co	ondition	ning cir	cuits u	sing di	odes, l	BJT an	d
CO3	Analy	is of t	ransiste	or beha	viour	at diffe	erent fre	equenc	ies.						
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		1
CO2	2	2											2		1
CO3	2	2											2		2
Average	2	2											2		1.33

Subject:	Digital	System	n Desig	gn						Subj	ect Co	de: 18E	E35		
						Cou	rse Ou	tcome	S						
CO1		l a simp tate dia			ing equ	lation	using d	ifferen	t reduc	tion tec	chnique	es, mea	ly/Mo	ore mo	dels
CO2	Desig	gn diffe	rent se	quenti	al and	combin	nationa	l circu	its						
CO3	Expla	ain the f	functio	n of di	fferen	t seque	ntial, c	ombin	ational	circuit	s and n	nemory	eleme	ents	
						CO-PC)-PSO	Mapp	ing						
COs						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3													2
CO2	2	2													2
CO3	2	3	2												2
Average	2	2.67	2												2

Subject:	Electri	cal and	Electr	onic M	leasure	ements				Subj	ect Co	de: 18E	E36		
						Cou	rse Ou	tcome	S						
CO1		ain the volume												and	
CO2	Anal	yze and	l exhib	it proc	ess of a	adjustn	nents a	nd erro	ors in el	lectrica	l and e	lectron	ics inst	trumen	lts
CO3	Form	ulate th	ne tech	niques	to exte	end ran	ige of e	electica	l and e	lectron	ics inst	rumen	ts		
					(CO-PC)-PSO	Mapp	ing						
COs						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											1		1
CO2	2	2											1		1
CO3	2	1											1		1
Average	2	1.67											1		1

Subject:	Electrical Machines Lab 1	Subject Code:18EEL37								
	Course Outcomes									
CO1	Conduct different tests on transformers to evaluate the per	formance characteristics of the 1-phase								

	and 3	-phase	transfo	ormers	•											
CO2	Conn	ect sing	gle pha	se tran	sforme	ers for	three p	hase of	peration	n and p	hase c	onversi	ion.			
CO3	-				-			0	enerato		0				n the	
	labora	atory a	nd eva	luale li					ious ge	nerato	rs from	the tes	st data.			
								Tupp	8					PSOs		
COs	1	CO-PO-PSO Mapping POs PSOs 2 3 4 5 6 7 8 9 10 11 12 3 2 3 4 5 6 7 8 9 10 11 12 3														
CO1	3	1							1	1			2	3		
CO2	3	1							1	1			2	3		
CO3	3	1							1	1			2	3		
Average	3	1							1	1			2	3		

Subject:	Electro	nics La	aborate	ory						Subj	ect Co	de: 18E	EL38		
						Cou	rse Ou	tcome	5						
CO1	Desig gener		test re	ectifier	circui	t, BJT	/FET a	amplifi	er, osc	illator	circuit	, coun	ters a	nd sequ	lence
CO2		mine 1 iques.	h-parar	neter	models	of tr	ansisto	r for a	all mo	dels ar	nd real	ize the	e code	conve	rsion
CO3	Demo	onstrate	e and re	ealize l	boolear	n expre	ession,	adders	and su	btracto	rs usin	g gates	5.		
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1		2		1						1	1		2	
CO2	1		1								1	1		2	
CO3	1		1		2						1	1		2	
Average	1		1.3		1.5						1	1		2	

Semester-IV

Subject: 1	Engine	ering N	Mathem	natics-I	V					Subj	ect Co	de: 18E	E41		
						Cou	rse Ou	tcome	S						
CO1			ncepts (netic fie		•	unction	and c	omple	x poter	ntials to	o solve	e the p	roblen	ns arisi	ng in
CO2			formal n and ii				l comp	olex in	tegral	arising	in ae	rofoil	theory	, fluid	flow
CO3			ete and ng field		nous pr	obabil	ity dist	ributio	ns in a	nalysin	g the p	orobabi	lity mo	odels a	rising
CO4		use c tical da	of corre ata.	elation	and r	egressi	on ana	alysis t	o fit a	suitab	ole mat	themati	ical m	odel fo	or the
CO5	Const	truct jo	oint pro	babilit						ie valid	lity of t	testing	the hy	pothesi	s.
					(C O-P ()-PSO	Mapp	ing				1		
COs		r		1		P	Os	T			1			PSOs	
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject:	Power	Genera	ation ar	nd Eco	nomics	5				Subj	ect Co	de: 18E	EE42		
						Cou	rse Ou	tcome	5						
CO1	-		e worki of the p	0	•	ectric,	steam,	nuclea	ır powe	er plant	s and s	state fu	nctions	s of ma	jor
CO2	Unde	rstand	and cla	assify v	various	substa	tions a	nd exp	lain th	e impo	rtance	of grou	inding.		
CO3	Analy	ze the	econo	mic as	pects o	f powe	er syste	m oper	ation a	und its e	effects.				
CO4	Expla	in the	import	ance of	f powe	r factor	r impro	ovemen	t meth	ods.					
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					2	2						3	2	
CO2	2					2	2						3	2	
CO3	2	2				2	2						2	2	
CO4	2	2				2	2						2	2	
Average	2	2				2	2						2.5	2	

Subject:	Transm	ission	and Di	stribut	tion					Subj	ect Co	de: 18E	E43		
						Cou	rse Ou	tcomes	5						
CO1	1					ution s Insula		, Identi	ify the	import	ance of	differ	ent trai	nsmissi	on
CO2	•		-		+	eters o nead lir		ansmis	sion li	ne for c	lifferer	nt confi	guratio	ons and	1
CO3	Interp	oret cor	ona, ez	kplain	the use	of und	lergrou	ind cab	les						
CO4	Class	ify diff	erent t	ypes of	f distri	bution	system	s; exar	nine its	s qualit	y & rel	liability	/.		
					(CO-PO)-PSO	Mappi	ing						
<u> </u>						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											3		
CO2	3	2											3		
CO3	3	3	3			2		2					3		
CO4	3	3	2			2		1					3		
Average	2.75	2.5	2.5			2		1.5					3		

Subject:	Electric	e Moto	rs							Subj	ect Co	de: 18E	E44		
						Cou	rse Ou	tcome	S						
CO1	-	in the cation.		uctiona	al feati	ures of	DC N	lotors	and se	lection	of a s	uitable	drive	for sp	ecific
CO2	-	ze and ontrol		1	-	nance	charac	teristic	s of D	C moto	ors by	conduc	cting s	uitable	e tests
CO3		rstand rs and					ional	feature	s of th	ree ph	ase an	d singl	e phas	se Indu	iction
CO4	Analy	se Sta	rters ar	nd Spee	ed cont	trol of	Inducti	ion Mo	tor						
CO5	Expla	inatior	n of op	eration	of Syı	nchron	ous mo	otor and	1 specia	al moto	ors.				
					(CO-PC)-PSO	Mapp	ing						
CO.						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1				1	1							3	
CO2	3	1				1	1							2	
CO3	3	1				1	1							2	
CO4	3	1				1	1							2	

CO5	3	1		1	1				2	
Average	3	1		1	1				2.2	

Subject: 1	Electro	magne	tic Fie	ld The	ory					Subj	ect Co	de: 18E	E45		
						Cou	rse Ou	itcome	S						
CO1		vledge nagneti			ctor ca	lculus	and fu	ndame	ntal lav	ws of p	hysics	to und	erstan	d the e	lectric
CO2				on and nfigura	•	sis of e	lectron	nagneti	c field	s in the	regior	n surrou	inded	by stat	ic and
CO3	illust	rate the	e behav	viour of	f electr	ric and	magne	tic fiel	d acros	s the b	oundar	y.			
						CO-P()-PSO	Mapp	ing						
COs						Р	Os							PSOs	;
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													1
CO2	2	2													1
CO3	2	2													2
Average	2	2						1			1				1.33

Subject:	Operati	onal A	mplifi	ers and	I LIC					Subj	ect Co	de: 18E	E46		
						Cou	rse Ou	tcome	S						
CO1	Descr	ibe ide	eal and	practio	cal opa	mps ar	nd desi	gn amp	lifier o	circuits	using o	opamps	5		
CO2	0		analyze gers, co	-	-			s, Sign	al proc	essing	and no	nlinear	circui	ts like	
CO3	Analy	vse and	l emplo	y volta	age reg	ulator	circuit	s and I	Cs						
CO4	Under	rstand	and exp	plain F	PLL, V	CO and	d timer	circui	ts						
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													2
CO2	3	3	2												2
CO3	2	2													2
CO4	2	1													2
Average	2.25	2	2												2

Subject:	Electric	cal Ma	chines	Lab 2						Subj	ect Co	de: 18E	EL47		
						Cou	rse Ou	tcome	5						
CO1		onstrate iments		under	standi	ng the	perfo	ormanc	e of	DC m	otors	by co	onducti	ng su	itable
CO2		ate th	-	formar	nce of	induc	ction	and sy	nchro	nous r	notor	by co	onducti	ng su	itable
CO3	Comp motor	•	ıd anal	yze th	e spee	d conti	ol tecl	hnique	s for s	ingle p	hase a	nd thre	ee-phas	se indu	uction
						CO-PC	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1			1	1			2	3	
CO2	3	2				1			1	1			2	3	
CO3	3	2				1			1	1			2	3	
Average	3	2				1			1	1			2	3	

Subject:	Op-am	ps and	Linear	ICs La	ab					Subj	ect Co	de: 18E	EL48		
						Cou	rse Ou	tcome	S						
CO1				aracteri , signal	-			OP-A1	np and	l utiliz	e op-a	mp as	linear	^r circui	t like
CO2		0	est the parato		np as A	Amplif	ier, ado	der, su	btractor	r, diffe	rentiat	or and	integra	ator, Sc	hmitt
CO3	To de	esign te	est the	OP-An	np as o	scillato	ors and	filters							
CO4	Desig	n and	study o	of Line	ar IC's	as mu	ltivibra	ator po	wer sup	oplies,	voltage	e regula	ator		
						CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2							1	1					2
CO2	3	2			1				1	1					2
CO3	3	2			1				1	1					2
CO4	3	2			1				1	1					2
Average	3	2			1				1	1					2

Semester-V

Subject:]	Manag	ement	& Entr	reprene	urship					Subj	ect Co	de: 18E	EE51		
						Cou	rse Ou	tcome	S						
CO1	-	ain the preneur		, charao	cteristi	c, need	ls and p	process	of mar	nageme	ent, ent	repren	eurship	o and	
CO2				<u> </u>		-			the fur pm/ pe	0			+	e and	
CO3	Utiliz	ze the s	cheme	s and f	acilitie	s provi	ided by	gover	nment,	social	respon	sibility	7		
CO4	Mana	age the	humar	n, mate	rial res	sources	and ca	pitol in	n enterp	orise, s	si.				
					(CO-PC)-PSO	Mapp	ing						
CO -						Р	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1								2	3	2			1		
CO2								3	2	2	2		1		
CO3								3	2	2			1		
CO4								2	2	2	2		1		
Average								2.5	2.25	2	2		1	I	

Subject:	Microc	ontroll	ers							Subj	ect Co	de: 18E	E52		
						Cou	rse Ou	tcome	5						
CO1	Discu	iss the	archite	ectural	details	of mic	rocont	rollers	and ins	structio	n set.				
CO2		-		yse the , brancl		•				rams to ns	o facili	itate th	e data	move	ment,
CO3	U U	n and contro	11.	the kno	wledge	e of on	-chip p	eriphe	rals an	d also t	o inter	face ex	ternal	hardw	are to
					(CO-PC)-PSO	Mapp	ing						
COs						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3														2
CO2	2	2			2										2
CO3	2	2			2										3
Average	2.3	2			2										2.3

Subject:]	Power	Electro	nics							Subj	ect Co	de: 18E	E53		
						Cou	rse Ou	tcome	S						
CO1		verviev iques fo				•					-			aracteri ⁄	stics
CO2	To el limita	1	differ	ent po	wer tr	ansisto	ors, the	eir stea	ady sta	ate and	l switc	hing c	charac	teristics	and
CO3	To ex	plain d	ifferen	nt types	s of Th	yristor	s, their	gate cl	haracte	ristics	and ga	te conti	ol req	uireme	nts
CO4		0	•		-	· .		-		rs and	l chara	acteristi	ics of	Contr	ollec
	rectif	iers, Cr	iopper	s, Inve	rters ai	nd Voli	tage co	ontrolle	rs						
	rectif	iers, Cr	iopper	s, Inve		nd Volt	0								
<u> </u>	rectifi	iers, Cr	opper	s, Inve		CO-PC	0							PSOs	
COs	1	iers, Cr	<u>aopper</u>	s, Inve		CO-PC)-PSO			10	11	12	1	PSOs 2	3
COs CO1				I	(CO-PC P	D-PSO Os	Марр	ing	10	11	12 1	1		3
	1			I	(CO-PC P	D-PSO Os	Марр	ing	10	11	12 1 1	1	2	3
CO1	1 3	2 1		I	(CO-PC P	D-PSO Os	Марр	ing	10	11	12 1 1 1	1	2 3	3
CO1 CO2	1 3 3	2 1 2		I	(CO-PC P	D-PSO Os	Марр	ing	10	11	12 1 1 1 1	1	2 3 3	3

Subject:	Signals	and S	ystems							Subj	ect Co	de: 18E	E54		
						Cou	rse Ou	tcome	S						
CO1	Expla	in basi	ic signa	als, it's	classi	fication	1 and p	roperti	es of v	rarious	system	S			
CO2	-		the gi & conv				l discre	ete LT	I syste	m usin	g freq	uency	respon	se, diff	ferent
CO3	3 Solve difference and differential equation and block diagram representation of the LTI system. CO-PO-PSO Mapping														
						СО-РС)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2		1							1			3
CO2	2	2	2		1							1			3
CO3	2	2	2		1							1			3
Average	2	2	2		1							1			3

Subject: I	Electric	al Ma	chines	Design	l					Subj	ect Co	de: 18E	E55		
						Cou	rse Ou	tcome	S						
C01	limita		of ele	ctrical					rties o ratio						
CO2	 Formulate, Design and solve the output equations, stator and rotor circuits of DC machines and AC machines. Design windings, core of transformer and Estimate the number of cooling tubes, no load current 														
CO3	Design windings, core of transformer and Estimate the number of cooling tubes, no load current														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2													2	
CO2	2	3	3											2	
CO3	2	3	3											2	
Average	2	3	3											2	

Subject:	High V	oltage	Engine	eering						Subj	ect Co	de: 18E	E56		
						Cou	rse Ou	tcome	6						
CO1				0) distin) standa	0	oreakdo	own ph	enome	non in	dielect	rics an	d spec	ificatio	ns of
CO2	Sumn	narize	genera	tion of	high v	oltages	s and c	urrents							
CO3	Outlin	ne mea	surem	ent tec	hnique	s for hi	gh vol	tages a	nd curi	ents					
CO4	Sumn	narize	overvo	ltage p	henom	nenon a	and insu	ulation	coordi	nation	in elec	tric po	wer sys	stems	
CO5	Acqu	ire the	knowl	edge o	f testin	g vario	ous mat	erials a	and ele	ctric ap	paratu	s in po	wer sys	stems.	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3	2	
CO2	3	2				2	2						2	2	
CO3	3	2				2	2						2	2	
CO4	2	1				1	1						3	2	
CO5	3	2				2	2						3	2	
Average	2.6	1.8				1.8	1.8						2.6	2	

Subject: 1	Microc	ontroll	er Labo	oratory	7					Subj	ect Co	de: 18E	EL57		
						Cou	rse Ou	tcomes	8						
CO1	Form	ulate p	rogram	is to ha	undle d	ata mo	vemen	t, arith	metic a	nd logi	ical ins	tructio	ns		
CO2	Deve	lop coo	les to h	andle	differe	nt data	types.								
CO3	5														
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2		3				2	2					3
CO2	2	3	2		3				2	2					3
CO3	2	3	3		3				2	2					3
Average	2	3	2.33		3				2	2					3

Subject:	Power	Electro	onics L	ab						Subj	ect Co	de: 18E	EL58		
						Cou	rse Ou	tcome	s						
CO1	To St	udy the	e static	charac	cteristi	cs and	perform	nance	of semi	conduc	ctor dev	vices			
CO2	To Le	earn the	e diffei	ent me	ethods	of trigg	gering S	SCR							
CO3			e perfo ith R a				nase co	ntrolle	d full w	ave re	ctifier a	and AC	C volta	ge	
CO4	To Analyze the Speed control of different motors and to Discuss the performance of a single- phase full bridge inverter connected to resistive load. CO-PO-PSO Mapping														
						СО-РС)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2						1	1		1		3	
CO2	3	2	2						1	1		1		3	
CO3	3	2	2						1	1		1		2	
CO4	3	2	2						1	1		1		2	
Average	3	2	2						1	1		1		2.5	

Semester-VI

Subject:	Contro	l Syster	ms							Subj	ect Co	de: 18E	E61		
						Cou	rse Ou	tcome	5						
CO1	Analy	yze and	mode	l electr	rical an	d mecl	hanical	system	n using	g analog	gous.				
CO2	11.	y block ion of s	U		uction	technic	ques an	d signa	al flow	/ graph	n meth	ods to	obtai	n trans	fer
CO3		gn and Arrespons	•	ze the s	tability	y of co	ntrol sy	vstem,	ability	to dete	rmine	transie	nt and	steady	state
CO4	Exam	nine the	perfo	rmance	e of sys	stem st	ability	using l	Root le	ocus,]	Bode j	plots a	d Nyqı	ist pl	ots.
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2												2	
CO2	2	1												2	
CO3	3	3	2											2	
CO4	3	3	2											2	
Average	2.5	2.25	2				1			1				2	

Subject:	Power	System	n Analy	ysis-1						Subj	ect Co	de: 18E	EE62		
						Cou	rse Ou	tcome	S						
CO1	Unde syster		one-lir	ne diag	ram, po	er unit	system	1 & cor	struct	per uni	t impeo	dance c	liagran	n of po	wer
CO2	-	yze thre er ratir	-	se sym	metrica	al faults	s on po	wer sy	stem a	nd und	erstand	l select	ion of	circuit	
CO3	Asses	ss unba	lanced	phaso	rs in te	rms of	seque	nce cor	nponei	nts and	develo	p sequ	ence n	etwork	s.
CO4	Analy	yze var	ious ur	nsymm	etrical	faults	on pov	ver syst	em.						
CO5	Inspe	ct dyna	amics o	of sync	hronou	is mach	nine an	d deter	mine t	he pow	er syst	em stal	bility.		
					(CO-PC)-PSO	Mapp	ing						
CO -						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											3	3	
CO2	3	3				2	2						3	2	
CO3	3	3				2	2						3	2	
CO4	3	3				2	2						3	2	
CO5	3	2											3	2	
Average	3	2.8				2	2						3	2.2	

Subject:	Digital	Signal	Proces	ssing						Subj	ect Co	de: 18E	EE63		
						Cou	rse Ou	tcome	S						
CO1				0						rm to u 1 proble		and the	frequ	ency do	omain
CO2	Appl	y FFT a	algorith	nms fo	r effici	ent coi	mputati	ion of I	DFT ar	nd IDF	Гofаg	given so	equenc	e.	
CO3	Analy	Analyze the mathematical model of digital filters using different realization structures.													
CO4	Appl	Apply the relevant theoretical knowledge to design and analyse IIR and FIR Filters.													
						CO-PO	D-PSO	Mapp	ing						
COs						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													3
CO2	3	2													3

CO3	2	1							3
CO4	3	3	2						2
Average	2.75	2	2						2.75

Subject:	Embed	ded sys	stems							Subj	ect Co	de: 18E	E644		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	about t	he con	nponen	nts and	interfa	ces of	embed	ded sys	tems				
CO2	Enum	nerate a	about tr	ade of	fs and	challer	nges of	embec	lded sy	stems					
CO3	CO-PO-PSO Mapping														
					(C O-P ()-PSO	Mapp	ing						
<u> </u>						Р	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1													1
CO2	2	1	1									1			1
CO3	2	1	1		1										1
Average	2	1	1		1							1			1

Subject:	Object	Orient	ed Prog	gramm	ing					Subj	ect Co	de: 18E	E645		
						Cou	rse Ou	tcome	s						
CO1	Desci	ribe the	e basics	s of Ob	ject-O	riented	Progra	ammin	g conc	epts.					
CO2		•	5						1	ing con nd oper		ors and	d dest	ructors	also
CO3			operati le to ev				-	ograms	and th	ne conc	ept of	inherit	ance to	o reduc	e the
CO4			oncept ss in pr		-	olymo	rphism	by usi	ng virt	ual fun	ctions,	overri	ding fu	unction	s and
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2				2										2
CO2	2				2										2
CO3	2				2			1							2
CO4	2				2			1							2
Average	2				2			1							2

Subject:	Renewa	able Er	nergy F	Resourc	ces					Subj	ect Co	de: 18E	E653		
						Cou	rse Ou	tcome	5						
CO1		iss cau vable ei		f ener	gy sca	rcity	and it	's solı	ition, e	energy	resou	rces ai	nd ava	ailabilit	y of
CO2		ne ene cations		om si	ın, en	ergy r	eachin	g the	Earth's	s surfa	ace an	d sola	r ther	mal er	nergy
CO3	Discuss types of solar collectors, their configurations, solar cell system, it's characteristics and their applications. Explain generation of energy from hydrogen, wind, geothermal system, solid waste and														
CO4	-	0			energy ization		hydro	ogen, v	wind, g	geother	mal s	ystem,	solid	waste	and
CO5				-	product nermal		0	y from	bioma	ss, bio	gas, tic	lal ene	ergy re	sources	s, sea
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														2

CO2	3	1		2					2
CO3	2	2		2					3
CO4	2	2	2	2					3
CO5	2	3	2	2					3
Average	2.2	2	2	2					2.6

Subject: (Control	syster	n lab							Subj	ect Co	de: 18E	EL67		
						Cou	rse Ou	tcome	5						
CO1		-			freque crete co	-		repose	s of a	given	second	d order	r syste	em by	using
CO2	Desig	n, anal	yze an	d simu	late Le	ead, La	g and I	Lag – I	Lead co	mpens	ators fo	or give	n spec	ification	ns
CO3			-		ice cha rol syst		stics o	f AC a	and DC	C servo	motors	s and s	ynchro	o-transr	nitter
CO4			-					•		study t e syste		ect of]	P, PI, 1	PD and	PID
CO5				-	root leng a sot		-	•	quist pl	lots to	study a	and con	mpare	the sta	bility
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1			2				2	2				2	2
CO2	3	1			2				2	2				2	2
CO3	3								2	2				2	1
CO4	2	2			2				2	2				1	2
CO5	2	2			2				2	2					3
Average	2.6	1.5			2				2	2				1.75	2

Subject:	Digital	Signal	Proces	ssing L	ab					Subj	ect Co	de: 18E	EL68		
						Cou	rse Ou	tcome	5						
CO1	-		e freq	uency	Respo	nse ar	nd time	e Resp	onse o	f the	given	system	using	g sam	pling
	theor		~ ~ ~ ~ ~ ~ ~				naa af		diffee			41	4.0011-	. <u>0</u> _ 1	
CO2		-	-		-	-		a giver	n differ	ence ed	quation	theore	etically	a by	using
			oftware		_			(Deth			7) of o	airran			
CO3	-		-point ide and			-	ιι ΓΓΙ	(Бош	DIT a		r) of a	given	sequer	ice and	i aiso
CO4	-	<u> </u>					ircular)) two s	equence	es usin	g DFT	and ID	DFT.		
CO5		gn and							meet		•			sing su	itable
	50101				(CO-PC)-PSO	Марр	ing						
CO-							Os		0					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2	3				2	2					3
CO2	3	2		2	3				2	2					3
CO3	3	2		2	3				2	2					3
CO4	3	2		2	3				2	2					3
CO5	3	2		2	3				2	2					3
	3	2	i	i	3		1	i	2	2	1	1		1	1

Semester-VII

Subject:	Power	System	n Analy	ysis-2						Subj	ect Co	de: 18E	E71		
						Cou	rse Ou	tcome	S						
CO1	Form	ulate n	etwork	c matri	ces and	l mode	ls for s	olving	load fl	ow pro	blems				
CO2	Perfo	rm pov	ver flo	w anal	ysis of	power	system	ns usin	g nume	erical it	erative	techni	ques		
CO3	Solve	issues	of ecc	onomic	load d	ispatch	n and u	nit con	nmitme	ent prob	olems				
CO4	Analy	yze sho	ort circu	uit faul	ts in po	ower sy	ystem r	networl	ks usin	g bus ii	mpedar	nce ma	trix		
CO5	Apply	y nume	erical te	echniqu	ues to s	solve sv	wing e	quation	for sta	ability a	analysi	S			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											3	3	
CO2	3	3				2	2						3	2	
CO3	3	3				2	2						3	2	
CO4	3	3				2	2						3	2	
CO5	3	2											3	2	
Average	3	2.8				2	2						3	2.2	

Subject:	Power	System	Prote	ction						Subj	ect Co	de: 18E	E72		
						Cou	rse Ou	tcome	S						
CO1	Class	ify & c	ompar	e vario	us rela	ıys & i	ts prote	ective s	cheme	s.					
CO2	Analy	se sch	emes c	of Over	curren	t prote	ction 8	z distar	nce pro	tection					
CO3	Analy	se sch	emes s	uch as	carrie	currer	nt prote	ection8	z differ	ential p	orotecti	on.			
CO4	Unde	rstand	variou	s circui	it breal	kers, fu	ise use	d in po	wer sys	stem.					
CO5	Discu	iss the	protect	tion aga	ainst O	ver vo	ltages	and mo	odern tr	ends in	n power	r systei	n prote	ection.	
					(C O-P C)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1										2	2	
CO2	1	2	1				1						1	2	
CO3	1	2	1				1						1	2	
CO4	1	2	1				1						2	2	
CO5	1	2	1				1						2	2	
Average	1.2	1.8	1				1						1.6	2	

Subject:	Integra	tion of	Distrib	outed C	Generat	ion.				Subj	ect Co	de: 18E	E733		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	and Ex	plain t	he con	cepts o	of Distr	ibuted	Genera	ation by	y vario	us Sou	rces of	Energ	y.
CO2	-	vse the ration	e Pow	er Sys	stem P	erform	nance,	Overle	oading	and I	Losses	impac	ts on	Distri	buted
CO3	Interp	oret Vo	ltage N	/lagnitu	ide Va	riation	s impa	cts on I	Distrib	uted G	enerati	on			
CO4	Study	and S	olve P	ower (Quality	Distur	bances	s impac	ets on I	Distribu	ited Ge	eneratio	n		
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1	1						1	1	

CO2	3	2		1	1			1	1	
CO3	3	2		1	1			1	1	
CO4	3	2		1	1			1	1	
Average	3	2		1	1			1	1	

Subject:	Utilizat	ion of	Electri	cal Po	wer					Subj	ect Co	de: 18E	EE742		
						Cou	rse Ou	tcomes	5						
CO1							ypes of oplicati		ical he	ating, v	velding	g and e	electrol	ytic pro	ocess
CO2			nowle applic	U		nental	engine	ering	princip	les to	design	variou	is light	ing sys	stems
CO3	Analy	ze the	behav	ior of e	electric	al tract	tion sys	stems u	nder va	arious	conditi	ons of	operati	on.	
CO4	Discu	ss the	import	ance of	f electr	ic vehi	cles, h	ybrid e	lectric	vehicle	es and i	its arch	itectur	es.	
					(CO-PC)-PSO	Mappi	ing						
<u> </u>						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1	2					1	3		
CO2	3	2				1	2					1	3		
CO3	3	2				1	3					1	3		
CO4	2					1	3					1	2		
Average	2.75	2				1	2.5					1	2.75		

Subject: 1	Electric	c Vehic	eles							Subj	ect Co	de: 18E	EE752		
						Cou	rse Ou	tcome	5						
CO1		rstand haracte	• 1			ilize th	e conc	epts of	f kineti	cs, dyr	namics,	perfo	rmance	e param	neters
CO2	Expla	ain and	adopt	differe	nt driv	e trains	s and p	ropulsi	on syst	tems fo	or EV a	nd HE	V		
CO3	Desig	gn and a	anaylze	e electr	ric and	hybrid	electri	c vehi	cles						
CO4	Mode	el energ	gy stora	age sys	tems fo	or EV a	and HE	EV.							
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2			1	1							1	
CO2	2	2	2	1		2	2						1	3	
CO3	2	2	3	1		2	2						1	3	
CO4	2	2				2	2						1	3	
Average	2	1.75	2.33	1		1.75	1.75						1	2.5	

Subject:	Electrical Energy Conservation and Auditing	Subject Code:18EE754
	Course Outcomes	
CO1	Understand & Explain: energy scenario & importance of Er	ergy Conservation
CO2	Discuss load management techniques and energy efficiency	
CO3	Demonstrate the need of energy audit, energy audit methodo	logies & DSM.
	CO-PO-PSO Mapping	
COs	POs	PSOs

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					2	2						2		
CO2	2	1				2	2						2	2	
CO3	2	1			2	2	2						2	2	
Average	2	1			2	2	2						2	2	

Subject: 1	Power	System	n Simul	ation I	Lab					Subje	ect Co	de: 18E	EL76		
						Cou	rse Ou	tcome	5						
CO1		lop a nissior		m in 1	MATL	AB pa	ackage	to as	sess th	e perfe	ormano	ce of i	mediur	n and	long
CO2		lop a cteristi				-	•	e to o	btain 1	oad fl	ow an	alysis	and p	ower	angle
CO3	Devel	lop a p	rogram	in MA	ATLAE	B packa	age to a	assess t	he tran	sient st	ability	under	three p	phase f	ault.
CO4			0			-	U		nulate	bus ac	lmittar	nce, bu	ıs imp	edance	e and
CO5		evelop programs in MATLAB package to formulate bus admittance, bus impedance and cobian matrices of interconnected power systems lowe Power flow, economic load dispatch and short circuit problems on power system using IPOWER package. CO-PO-PSO Mapping													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			3				3	3			3		3
CO2	3	3			3				3	3			3	2	3
CO3	3	3			3				3	3			3		2
CO4	3	3			3				3	3			3		3
CO5	3	3			3				3	3			3		3
Average	3	2.8			3				3	3			3	2	2.8

Subject: l	t: Relay and High Voltage Lab Subject Code:18EEL77 Course Outcomes														
						Cou	rse Ou	tcome	5						
C01	subje	Apply knowledge on conduct experiment for obtaining breakdown characteristic of air insulation subjected for HVAC, HVDC applications to distinguish between Uniform/Non-uniform field conditions													
CO2		Apply knowledge to assess quality of transformer oil sample by conducting experiment as per standards and assessing dielectric strength of it.													
CO3	Analyse the Electromechanical & Microprocessor based type of over current, overvoltage & under voltage relays.													ge &	
CO4	-	Acquire the knowledge experimentally by map field lines for co-axial cable model using electrolytic tank and protection of Motor & Generator.												using	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2	2		2	2			3	3	
CO2	3	2				2	2		2	2			3	3	
CO3	3	2				2	2		2	2			3	2	
CO4	3	2				2	2		2	2			3	2	
Average	3	2				2	2		2	2			3	2.5	

Subject:	Project	Phase	Ι							Subje	ect Co	de: 18E	EP78		
						Cou	rse Ou	tcome	5						
CO1		•	dentify proble					•	monstr	ate tec	hnical	knowl	ledge	on con	nplex
CO2		•	lect, A duct pi			U		0	ol in n n	nodelli	ng/data	a interp	oretatio	on/analy	ytical
CO3	_	Design multi-disciplinary engineering solutions to complex problems addressing societal and environmental concerns													
CO4	Comr	nunica	te effe	ctively	to a di	verse a	audienc	ce and o	develop	techni	ical rep	orts ar	nd publ	lication	IS
CO5	Work	as a te	eam me	mber/	leader	to man	age pro	ojects a	nd cost	s in a c	diversit	fied en	vironm	nent	
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3				1				3	3	3	3
CO2	3	3	3		3			1					3	3	3
CO3	3	3	2			3	3	1					3	3	3
CO4	3							2	2	3			3	3	3
CO5	3							2	3	3	3	3	3	3	3
Average	3	3	2.5	3	3	3	3	1.4	2.5	3	3	3	3	3	3

Semester-VIII

Subject:	Power	System	Operat	ion an	d Cont	rol				Subj	ect Co	de: 18E	EE81		
						Cour	se Out	tcomes	5						
CO1	Unde Energ	rstand a gy.	ind Exp	olain th	ne Con	cepts E	Explain	Distri	buted (Genera	tion by	variou	is Sour	ces of	
CO2		udy the ration	Power	Syster	n Perfo	ormanc	e, Ove	rloadii	ng and	Losses	impac	ts on I	Distribu	ited	
CO3	To stu	udy the	Voltag	e Mag	nitude	Variat	ions in	npacts	on Dis	tribute	d Gene	ration			
CO4	To stu	udy the	Power	Qualit	y Dist	urbanco	es imp	acts on	Distri	buted (Generat	tion			
					C	CO-PO	-PSO	Mappi	ing						
COs						PO)s							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2								1			3		2
CO2	3	2											2		1
CO3	3	2											2		
CO4	3	2	1										3		1
Average	3	2	1							1			2.67		1.3

Subject:	: Electrical Estimation and Costing Subject Code:18EE822															
		Course Outcomes														
CO1	Acqu	ire kno	owledg	e on ge	eneral p	orincip	les of e	stimat	ion & c	costing,	, IE rul	es.				
CO2	Identi	Identify considerations & types of Residential wiring, Applying Safety rules														
CO3	Analy	Analyse design aspects for service connections, Power circuits & their Earthing														
CO4	Estim	ate the	e cost o	of Over	head T	'ransmi	ission a	& Distı	ribution	n Lines	, Sub-s	station.				
					(C O-P C)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	

CO1	3	2	2		1				1	1	
CO2	3	1	1		1				1	1	
CO3	3	1	1		1				1		
CO4	3	1	1		1				1	1	
Average	3	1.25	1.25		1				1	1	

Subject: 1	Project	Phase	II							Subj	ect Co	de: 18E	EP83		
						Cou	rse Ou	tcomes	5						
CO1					nowlec mponei	U	mather	natics,	science	e and e	enginee	ering p	rincipl	es in d	esign
CO2		•				0		g/IT to cal sol	ol in n ution	nodelli	ng/data	interp	oretatio	n/anal	ytical
CO3		n mul onmen	-	•	engin	eering	soluti	ons to	compl	ex pro	blems	addre	ssing s	societa	l and
CO4	Com	nunica	te effe	ctively	to a di	verse a	audienc	e and o	develop	techni	ical rep	orts ar	nd publ	icatior	ıs.
CO5	Work	as a te	eam me	ember/l	leader t	to man	age pro	ojects a	nd cost	ts in a c	liversi	fied en	vironm	ent.	
					(CO-PC)-PSO	Mappi	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3									3	2	2	2
CO2	3	3			3								3	3	3
CO3	3	3	3	3		3	3						3	3	3
CO4										3		3	3	3	3
CO5						3			3	3	3		2	2	2
Average	3	3	3	3	3	3	3		3	3	3	3	2.6	2.6	2.6

Subject:	Technie	cal Sen	ninar							Subje	ect Co	de: 18E	ES84		
						Cou	rse Ou	tcome	s						
CO1	Identi	fy, und	derstan	d and c	liscuss	currer	nt, real-	-time is	ssues						
CO2	Impro	ove ora	l and v	vritten	comm	unicati	on skil	ls							
CO3		,		-		0			lectrical		lectron	ics eng	ineerir	ng and	other
CO4	Explo	ore an a	appreci	ation o	f the s	elf in r	elation	to its l	arger d	iverse s	social a	and aca	demic	contex	ts.
CO5	Demo	onstrate	e the at	oility to) asses	and re	port								
					(C O-P ()-PSO	Mapp	ing						
COs	POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3							3		3	3	3
CO2										3			3	3	3
CO3				3								3	3	3	3
CO4	3	3									3		3	3	3
CO5		3								3		3	3	3	3
Average	3	3		3						3	3	3	3	3	3

Subject:	Interns	hip								Subje	ect Coo	le: 18E	EI85		
						Cour	rse Ou	tcomes	8						
CO1	Gain	practic	al exp	erience	and k	nowled	ge of t	he indu	istry an	d profe	essiona	ls			
CO2	Deve	lop and	d exper	ience o	commu	nicatio	n, inte	rpersor	al and	other c	ritical	skills i	n techr	ical fie	elds
CO3									nical do						
CO4		lop a g ical fie		under	standin	ig aboi	it care	er opti	ons to	achiev	e caree	er goal	s in th	e inter	ested
CO5	Apply	y know	ledge	and ski	lls lear	ned to	classro	om wo	ork				5.		
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3									3	2	2	2
CO2	3	3			3				5. 0.				3	3	3
CO3	3	3	3	3		3	3			·			3	3	3
CO4			1					1		3		3	3	3	3
CO5						3			3	3	3		2	2	2
Average	3	3	3	3	3	3	3	8	3	3	3	3	2.6	2.6	2.6

Co-ordina or Mr. Kubera U

HOD Dr. Babu N V