

|| Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R)

SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi. Affiliated to Visvesvaraya Technological University, Belagavi. 2(f) and 12(B) recognized by UGC, New Delhi. Accredited by NAAC. Accredited by NBA. Certified by ISO 9001-2015.

Department of Electrical & Electronics Engineering

Course Outcomes and CO-PO-PSO articulation Matrix

Batch: 2019-23

Semester-I/II

Subject:	Basic E	Electric	al Eng	ineerin	g					Subj	ect Co	de: 18E	ELE13/	23	
						Cou	rse Ou	tcomes	S						
CO1	Unde	rstand t	he basi	c conce	pts of I	OC and	AC circ	cuits an	d Solve	the pro	blems (on circu	iits		
CO2	Analy	sis of S	Single F	hase ar	nd three	phase 2	AC Cir	cuits							
CO3			sic kno Machin	_	to obta	in the d	lesired _l	parame	ters/per	forman	ce chara	acteristi	cs of T	ransfo	rmer
CO4	Discuss types of domestic wiring with electrical safety Rules & standards CO DO DO DO Monning														
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3					2		2							
Average	3	2				2		2							

Subject: 1	Basic E	Electric	al Eng	ineerin	g Lab					Subj	ect Co	de: 18E	ELEL1	7/27	
						Cou	rse Ou	tcomes	S						
CO1		•				compor oratory		nd mea	suring	instrur	nents u	ised for	r condu	acting	
CO2	Comp	pare po	wer fa	ctor of	lamps										
CO3	Determine impedance of an electrical circuit and power consumed in a 3-phase load. Determine earth resistance and understand two way and three-way control of lamps														
CO4	Determine earth resistance and understand two way and three-way control of lamps														
	CO-PO-PSO Mapping														
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1			1	1					
CO2	3	2				1			1	1					
CO3	3	2				1			1	1					
CO4	3	2				1			1	1					
Average	3	2				1			1	1					

Semester-III

Subject: 1	Electric	c Circu	it Anal	lysis						Subj	ect Co	de: 18E	EE32		
						Cou	rse Ou	tcomes	S						
CO1	Unde	erstand	and ap	ply the	basic	concep	ts and	laws to	analy	ze DC	and A(C netwo	orks		
CO2	Apply	y netwo	ork the	orems	to solv	e comp	olex ele	ectric c	ircuits						
CO3	Analy	yze the	resona	int circ	uits an	d discu	ıss tran	sient a	nalysis	with I	nitial c	onditio	ons		
CO4	Synth	nesize v	vavefo	rms usi	ing La	place t	ransfor	mation	1						
CO5	Analy	yze unb	alance	d three	phase	syster	ns and	also ev	aluate	the per	forma	nce of t	wo po	rt netw	orks
	CO-PO-PSO Mapping														
COs	POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3													3
CO2	3	3													3
CO3	3	3													3
CO4	3	1													2
CO5	3	2													2
Average	3	2.4													2.6

Subject:	Transfo	rmers	and Go	enerato	ors					Subj	ect Co	de: 18E	EE33		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	ing the	constr	uction	and op	eration	of trai	nsform	ers and	autotr	ansfori	ner		
CO2	Analy	ze the	perforn	nance o	f transfo	ormer b	y vario	us tests	, phase	convers	sion and	l paralle	el opera	tion.	
CO3	Analy	ze and	explair	the op	eration	of the s	synchro	nous m	achine (connect	ed to in	finite n	nachine	•	
CO4	Analyze the performance of Synchronous machines by various tests, parallel operation and performance of Synchronous machines on infinite bus CO-PO-PSO Mapping														
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1	1						3	2	
CO2	2	2				1	1						3	2	
CO3	3	2				1	1						3	2	
CO4	2	2				1	1						3	2	
Average	2.2	2				1	1						3	2	

Subject:	Analog	Electr	onic C	ircuits						Subj	ect Co	de: 18E	EE34		
						Cou	rse Ou	tcome	S						
CO1	Illust	rate the	consti	ruction	and w	orking	of dio	des, BJ	T and	FET					
CO2	_	gn and a	•		lifferer	ıt ampl	ifiers, o	oscillat	ors and	l signal	condi	tioning	circuit	ts using	g
CO3	1														
	CO-PO-PSO Mapping														
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1									1			3
CO2	2	2	2			1						1			3
CO3	2	2	2									1			3
Average	2	1.66	1.66			1						1			3

Subject: 1	Digital	Systen	n Desig	gn						Subj	ect Co	de: 18E	EE35		
						Cou	rse Ou	tcome	S						
CO1	Build diagr	a sim _] ams	plified	equati	on usii	ng diff	erent r	eductio	on tech	niques,	mealy	/Moore	mode	els and	state
CO2	Desig	gn diffe	erent se	quenti	al and	combir	national	l circui	ts						
CO3															
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													2
CO2	2	3													2
CO3	2	2	2												2
Average	2	2.7	2												2

Subject: 1	Electric	cal and	Electr	onic M	leasure	ments				Subj	ect Co	de: 18E	EE36		
						Cou	rse Ou	tcome	8						
CO1		in the w uremer									rical pa	ramete	ers and	compo	nents
CO2	Analy	ze and e	xhibit	process	of adju	ustmer	its and e	errors ir	ı electr	ical and	electro	nics ins	strumer	nts	
CO3	Formulate the techniques to extend range of electical and electronics instruments														
CO-PO-PSO Mapping															
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2										3		1
CO2	2	3	3										3		1
CO3	2	1	1										2		1
Average	2	2.33	2										2.66		1

Subject:	Electric	cal Mad	chines	Lab 1						Subj	ect Co	de: 18E	EEL37		
						Cou	rse Ou	tcomes	5						
CO1		uct dif -phase				forme	rs to ev	aluate	the per	forman	ce cha	racteris	stics of	the 1-	phase
CO2	Conn	ect sing	gle pha	se tran	sforme	ers for	three p	hase o	peration	n and p	hase c	onversi	on.		
CO3	Connect single phase transformers for three phase operation and phase conversion. Compute the voltage regulation of synchronous generator using the test data obtained in the laboratory and also evaluate the performance of synchronous generators from the test data. CO-PO-PSO Mapping														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1							1	1			2	3	
CO2	3	1							1	1			2	3	
CO3	3	1							1	1			2	3	
Average	3	1							1	1			2	3	

Subject: 1	Electro	nics La	aborato	ory						Subj	ect Co	de: 18E	EEL38		
						Cou	rse Ou	tcomes	5						
CO1	_	gn and ators.	test rec	tifier c	ircuit,	BJT/FI	ET amp	olifier,	oscilla	tor circ	cuit, co	unters	and sec	quence	
CO2	Deter techn		ı-paran	neter m	odels (of trans	sistor f	or all n	nodels	and rea	lize th	e code	conver	rsion	
CO3	Demonstrate and realize Boolean expression, adders and subtractors using gates.														
	CO-PO-PSO Mapping														
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2			2				1	1		1			2
CO2	2	2			2				1	1		1			2
CO3	2	2			2				1	1		1			2
Average	2	2			2				1	1		1			2

Semester-IV

Subject: 1	Power	Genera	tion ar	nd Eco	nomics	ı				Subj	ect Co	de: 18E	EE42			
						Cou	rse Ou	tcomes	S							
CO1	-	oret the omic as		_	•		ower j	plant a	nd anal	yse the	differ	ent tur	bine us	es and		
CO2		rstand mic as		plain tl	ne opei	ration c	of diffe	rent th	ermal p	olants a	nd con	npare t	hem w	.r.t to		
CO3		Illustrate and infer the operation and importance of nuclear power plants and its benefits to economy. Understand and classify various substations, explaining the importance of grounding and power														
CO4	Understand and classify various substations, explaining the importance of grounding and power factor improvement. CO-PO-PSO Mapping															
					(CO-PO	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2					2	2						3	2		
CO2	2					2	2						3	2		
CO3	2	2				2	2						2	2		
CO4	2	2				2	2						2	2		
Average	2	2				2	2						2.5	2		

Subject:	Transm	ission	and Di	stribut	ion					Subj	ect Co	de: 18E	EE43		
						Cou	rse Ou	tcome	S						
CO1	_	Explain transmission and distribution scheme, identify the importance of different transmission systems and type of insulators Analyse and compute the parameters of the transmission line for different configurations													
CO2	Analy	Analyse and compute the parameters of the transmission line for different configurations.													
CO3	Asses	Assess the performance of overhead lines													
CO4	Inter	oret coi	rona, e	kplain	the use	of uno	dergrou	ınd cab	les						
CO5	Class	ify dif	ferent t	ypes of	f distri	bution	system	ıs; exai	nine it	s qualit	y & re	liability	7		
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

CO1	2	2			2				3	
CO2	3	3	2	1	2				3	
CO3	3	3	2	1	2				3	
CO4	3	3			2				3	
CO5	3	3	2	1	2				3	
Average	2.8	2.8	2	1	2				3	

Subject:	Electric	Moto	rs							Subj	ect Co	de: 18E	EE44		
						Cou	rse Ou	tcome	S						
CO1	Expla	in the	constru	ictiona	l featu	res, cla	ssificat	tions a	nd ope	ration o	of DC,	AC &	special	Motor	S.
CO2	_			the pe	erforma	ince ch	aracte	ristics	and spe	ed con	trol of	DC mo	otors b	У	
CO3				uctiona	ıl featu	res of	Three	Phase	and Sir	ngle ph	ase ind	luction	Moto	rs and a	ssess
CO4	Expla motor	eir performance. cplain the operation, speed control & starting methods of Synchronous motor and Induction otors. CO-PO-PSO Mapping													
					(CO-PO	-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2							2	2	
CO2	3	2				2							2	3	
CO3	3	2				2							2	3	
CO4	3	2				2							2	3	
Average	2.75	2				2							2	2.75	

Subject:	Electro	magne	tic Fiel	ld The	ory					Subj	ect Co	de: 18E	E45		
						Cou	rse Ou	tcome	S						
CO1		onstrate etic fie		ector c	alculus	and f	undam	ental l	aws of	physic	s to ur	ndersta	nd the	electri	c and
CO2					•			nagneti	c fields	s in the	region	surrou	ınded l	oy diff	erent
CO3	static and moving charge configuration. Asses time varying fields and propagation of waves in different media also behaviour of electric and magnetic field across a boundary. CO-PO-PSO Mapping														
	1					CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		1
CO2	2	2			2								2		1
CO3	2	2			2								2		2
Average	2	2			2								2		1.33

Subject:	Operational Amplifiers and LIC	Subject Code:18EE46
	Course Outcomes	
CO1	Describe ideal and practical opamps and design amplifier c	ircuits using opamps
CO2	Design and analyze Opamp Filters, oscillators, Signal proce	essing and non linear circuits like
CO2	Schmitt triggers, comparators and converters	
CO3	Analyse and employ voltage regulator circuits and Ics	
CO4	Understand and explain PLL, VCO and timer circuits	

					(CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	1		2								
CO2	3	3	3	1			2								
CO3	3	3	3	1								1			2
CO4	2	1	1									1			2
Average	2.5	2	2	1								1	1		2

Subject:	Electric	cal Mad	chines	Lab 2						Subj	ect Co	de: 18E	EEL47		
						Cou	rse Ou	tcome	S						
CO1		onstrate iments		unde	rstandi	ng the	e perfo	ormano	ce of	DC n	notors	by co	onducti	ng su	itable
CO2		iate th	•	formar	nce of	indu	ction	and s	ynchro	nous 1	motor	by co	onducti	ing su	itable
CO3	Comp		id ana	lyze th	e spee	ed cont	rol tec	hnique	es for s	ingle p	hase a	nd thro	ee-phas	se indu	iction
					(CO-PC	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1			1	1			2	3	
CO2	3	2				1			1	1			2	3	
CO3	3	2				1			1	1			2	3	
Average	3	2				1			1	1			3	3	

Subject:	Op-am	ps and	Linear	ICs La	ab					Subj	ect Co	de: 18E	EEL48		
						Cou	rse Ou	tcome	S						
CO1	l l		the chassing,			_	mp and	d utiliz	ze it as	linear	circui	t like	amplifi	ier, rec	tifier,
CO2		_	and tes		np as	non lir	near cii	cuit lil	ke diff	erentia	tor & i	integra	tor, ZO	CD, Sc	hmitt
CO3	Desig	Design and study of linera Ics as multivibrator, power supplies, voltage regulator													
CO4															
					(CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			1				1	1		1			2
CO2	3	2			1				1	1		1			2
CO3	3	2			1				1	1		1			2
CO4															
Average	3	2			1				1	1		1			2

Semester-V

Subject: 1	Manage	ement (& Entr	eprene	urship					Subj	ect Co	de: 18E	EE51		
						Cou	rse Ou	tcomes	5						
CO1		in the reneur		e, cha	racteris	stic, ne	eeds a	nd pro	ocess o	f man	ageme	nt, ent	repren	eurship	and
CO2		•		_			-	_	ting the		_			private	and
CO3	Utiliz	e the s	chemes	s and f	acilities	s provi	ded by	gover	nment,	social	respon	sibility			
CO4	Mana														
		nage the human, material resources and capital in enterprise, ssi CO-PO-PSO Mapping													
COs															
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1								2	3	2					
CO2								3	2	2	2				
CO3						1		3	2	2					
CO4						1		2	2	2	2	1			
Average						1		2.5	2.25	2	2	1			

Subject:	Microco	ontroll	ers							Subj	ect Co	de: 18E	EE52		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	and di	scuss tl	he arch	itectur	al deta	ils of N	/licroco	ntrolle	r and I	nstruct	ion set		
CO2		-		•		•			ge prog	grams t	o facil	itate th	e data	move	ment,
CO3	arithmetic, logical, branching and other operations Design and apply the knowledge of On-chip peripherals and also to interface external hardware to microcontroller.														
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														1
CO2	3	2													3
CO3	2	2	2	1	2							1			3
Average	2.33	2	2	1	2							1			2.33

Subject:	Power	Electro	nics							Subj	ect Co	de: 18E	EE53		
						Cou	rse Ou	tcomes	3						
CO1	Illusti	rate typ	es of po	ower ele	ectronic	s circui	its with	applica	tions, d	esign aı	nd analy	yze pow	ver dioc	le circu	its
CO2	To ex	plain st	eady st	ate, swi	itching a	and gat	e chara	cteristic	s of po	wer tran	sistors	and Th	yristors	S	
CO3	To de	sign an	d analy	ze the p	erform	ance pa	aramete	rs of va	rious C	onverte	rs				
CO4															
					(CO-PO	-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1									1		2	

CO2	3	3	1					1	2	
CO3	3	3	1					1	2	
CO4	3	3	1		1			1	2	
Average	3	3	1		1			1	2	

Subject:	Signals	and S	ystems							Subj	ect Co	de: 18E	EE54		
						Cou	rse Ou	tcome	S						
CO1	Expla	in basi	ic signa	als, its	classif	ication	and pr	opertie	s of va	rious s	ystem.				
CO2	-	ysis of form ar	U				d discr	ete LT	I syste	m usin	g frequ	uency 1	respons	se, diff	erent
CO3	Solve	differ	ence ar	nd diff	erentia	l equat	ion and	l block	diagra	m repr	esentat	ion of	the LT	I systei	m.
						CO-PC)-PSO	Mapp	ing						
COs	CO-PO-PSO Mapping POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2									1			3
CO2	2	2	2									1			3
CO3	2	2	2									1			3
Average	2	2	2									1			3

Subject: 1	Electric	al Mac	chines	Design	1					Subj	ect Co	de: 18E	EE55		
						Cou	rse Ou	tcome	S						
CO1	_	are ele ine des		l engir	neering	mater	ials an	d its	propert	ies, fu	ndame	ntal as	pects	of elec	trical
CO2	Desig	n the n	nain di	imensio	on, shu	nt and	series	field w	indings	of DC	machi	ine			
CO3		_			s, main	dimer	nsion,	estimat	the the	numbei	of co	ooling	tubes a	and lea	akage
CO4	Desig														
	Design output equation, stator and rotor circuits of induction machine and synchronous machine CO-PO-PSO Mapping														
COa	CO-PO-PSO Mapping POs PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														
CO2	3	3	2	2		2	2							3	
CO3	3	3	2	2		2	2							3	
CO4	3	3	2	2		2	2						3	3	
Average	2.75	3	2	2		2	2						3	3	

Subject:	High Voltage Engineering	Subject Code:18EE56
	Course Outcomes	
CO1	Apply their knowledge to distinguish breakdown phenom	enon in dielectrics and specifications of
COI	Equipment conforming to standards.	
CO2	Explain different types of generation of high AC & DCvol	tages and currents.
CO3	Understand the practical measurement techniques for high	voltages and currents
CO4	Summarize overvoltage phenomenon and insulation coord	ination in electric power systems
CO5	Acquire the knowledge of testing various materials and ele	ctric apparatus in power systems.

					(CO-PO	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3	2	
CO2	3	2			2	2									
CO3	3	2				2	2						2	2	
CO4	2	1				1	1						3	2	
CO5	3	2				2	2						3	2	
Average	2.6	1.8				1.8	1.8						2.6	2	

Subject: 1	Microc	ontroll	er Lab	oratory	7					Subj	ect Co	de: 18E	EEL57		
						Cou	rse Ou	tcomes	S						
CO1	Form	ulate p	rogram	is to ha	ındle d	ata mo	vemen	t, arith	metic a	nd logi	ical ins	tructio	ns		
CO2	Deve	lop coc	les to h	andle	differe	nt data	types								
CO3	Inter	face and	d contr	ol the	externa	ıl perip	herals	using r	nicroco	ontrolle	r				
					(CO-PC)-PSO	Mapp	ing						
CO						P	Os		_					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2		3				2	2					3
CO2	2	3	2		3				2	2					3
CO3	2	3	2	2	3				2	2		2			3
Average	2	3	2	2	3				2	2		2			3

Subject: 1	Power	Electro	nics L	ab						Subj	ect Co	de: 18E	EEL58		
						Cou	rse Ou	tcome	S						
CO1	To Stu	ıdy the	Static	charact	eristics	and pe	rformar	nce of so	emicono	luctor d	evices.				
CO2	Comp	are dif	ferent n	nethods	of trig	gering S	SCR								
CO3		•	•	mance	of sing	le phas	e contro	lled Fu	ll wave	rectifie	r and A	C volta	ge cont	roller V	Vith R
CO4	and RL Loads. To analyze the speed Control of different motors and to discuss the performance of single phase full bridge inverter connected to resistive load														
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1						2	2		1		3	
CO2	3	2	1						2	2		1		3	
CO3	3	2	1						2	2		1		2	
CO4	3	2	1						2	2		1		2	
Average	3	2	1						2	2		1		2.5	

Semester-VI

Subject:	Contro	l Syste	ms							Subj	ect Co	de: 18E	EE61		
						Cou	rse Ou	tcome	S						
CO1	Analy	ze and	d mode	el elect	trical a	and me	echanic	cal sys	stem us	ing an	alogou	S			
CO2	Apply block diagram reduction techniques and signal flow graph methods to obtain transfer function of systems Design and Analyze the stability of control system, ability to determine transient and steady														
CO3	Design and Analyze the stability of control system, ability to determine transient and steady state time response														
CO4	Exam	ine th	e perfo	rmance	e of sy	stem s	tability	using	g Root	locus	, Bode	e plots	ad Ny	quist	plots
					(CO-PC	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		
CO2	1	1											1	2	
CO3	2	2											2	2	
CO4	2	2											1	2	
Average	1.75	1.75	·	•									1.5	2	

Subject: 1	Power	System	Analy	sis-1						Subj	ect Co	de: 18E	E62			
						Cou	rse Ou	tcomes	3							
CO1	Unde syste	erstand m.	one-lir	ne diag	ram, pe	er unit	system	& con	struct p	per unit	imped	ance d	iagram	of pov	ver	
CO2	•	yze thre cer ratin	•	se sym	metrica	l faults	s on po	wer sys	stem aı	nd unde	erstand	selecti	on of c	circuit		
CO3	Asses	ss unba	lanced	phaso	rs in te	rms of	sequen	ice com	ponen	ts and t	o deve	lop seq	uence	netwo	rks.	
CO4	Anal	yze var	ious ur	nsymm	etrical	faults	on pow	er syst	em.							
CO5	Inspe	analyze various unsymmetrical faults on power system. Inspect dynamics of synchronous machine and determine the power system stability.														
					(CO-PC)-PSO	Mappi	ing							
COs						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3											3	3		
CO2	3	3				2	2						3	2		
CO3	3	3				2	2						3	2		
CO4	3	3				2	2						3	2		
Average	3	2.8				2	2						3	2.2		

Subject: 1	Digital	Signal	Proces	ssing						Subj	ect Co	de: 18E	EE63			
						Cou	rse Ou	tcome	S							
CO1	•	_		sing the periodi					orm (D .ods.	PFT). A	and so	olve pro	blems	on cii	cular	
CO2	Solve	proble							using D	IT and	DIF-	FFT ar	nd con	nposite	DFT	
CO3	-	algorithms. Implement digital systems (FIR and IIR systems) in a variety of forms (direct form I and II, parallel, cascade, ladder structure and linear phase realization). Apply design (IIT and BLT) techniques for IIR type (Butterworth and Chebyshev) digital filters.														
CO4	Apply	Apply design (IIT and BLT) techniques for IIR type (Butterworth and Chebyshev) digital filters.														
CO5	Desig	Apply design (IIT and BLT) techniques for IIR type (Butterworth and Chebyshev) digital filters. Design FIR type digital filters using "windowing method" and "frequency sampling method.														
					(CO-PC	-PSO	Mapp	ing							
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2													3	
CO2	3	2													3	
CO3	2	2													3	
CO4	3	3	2												3	
CO5	3	3	2												3	
Average	2.6	2.4	2												3	

Subject: 1	Electri	c vehic	ele tech	nnolog	ies					Subj	ect Co	de:18F	EE646		
						Cou	rse Out	tcomes	S						
CO1		erstand haracte	• 1			tilize th	ne conc	epts o	f kineti	ics, dy	namics	, perfo	rmance	e paran	neters
CO2				_	ystems	s for I	EV and	d HE	V, cha	rging	method	ds and	powe	er elect	tronic
CO3	converter for batteries Explain and adopt different drive trains and propulsion systems for EV and HEV														
CO4	Design and analyse electric and hybrid electric vehicles.														
					(CO-PO	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1			1	1							1	
CO2	2	2	2	2		2	2						1	3	
CO3	2	2	2	1		2	2						1	3	
CO4	2	2				2	2						1	3	
Average	2	1.75	1.67	1.5		1.75	1.75						1	2.5	

Subject:	Embed	ded Sy	stems							Subj	ect Co	de: 18E	E644		
						Cou	rse Ou	tcome	5						
CO1	Unde	rstand	about t	he con	nponen	ts and	interfa	ces of	embed	ded sys	tems				
CO2	Enum	nerate a	about ti	rade of	fs and	challen	iges of	embed	lded sy	stems					
CO3	Apply	y softw	vare asp	ects a	nd prog	grammi	ing to	design	embed	ded sys	stems				
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1													1
CO2	2	1	1									1			1
CO3	2	1	1		1										1
Average	2	1	1		1							1			1

Subject: (Contro	l syster	n lab							Subj	ect Co	de: 18E	EEL67		
						Cou	rse Ou	tcomes	5						
CO1	Asses	ssing tl	he tim	e and	freque	ency d	omain	repose	s of a	given	secon	d orde	r syste	m by	using
CO1	softw	are pac	ckage a	and dis	crete co	ompon	ents								
CO2	Desig	gn, anal	yze an	d simu	late Le	ead, La	g and I	Lag – I	Lead co	mpens	ators f	or give	n spec	ification	ns
CO3		mine t zer pair	-				stics of	AC a	and DC	servo	motors	s and s	ynchro	-transr	nitter
CO4								•		•		ect of	P, PI, 1	PD and	PID
C05		Simulate the DC position and feedback control system to study the effect of P, PI, PD and PID controller and Lead compensator on the step response of the system Write a script file to plot root locus, bode plot, Nyquist plots to study and compare the stability aspects of the system using a software package													
	I				(CO-PO	-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1			2				2	2				2	2
CO2	3	1			2				2	2				2	2
CO3	3								2	2				2	1
CO4	3	2			2				2	2				1	2
C05	3	2			2				2	2					3
Average	3	1.5			2				2	2				1.75	2

Subject: 1	Digital	Signal	Proces	ssing L	Lab					Subj	ect Co	de: 18E	EL68		
						Cou	rse Ou	tcome	S						
CO1	Comp theore		ne freq	luency	Respo	onse a	and tim	e Res	ponse	of the	gven	system	n using	g sam	pling
CO2		-	lse resp ftware				onse of sults.	a give	n diffe	rence e	quatio	n theor	etically	& by	using
CO3	_		-point ide and			-	int FFT	(Both	DIT a	ind DI	F) of a	given	sequer	nce and	l also
CO4	Perfo	rm Coi	nvoluti	on of	(Linear	and c	circular)	twos	equenc	es usin	g DFT	and ID	FT.		
CO5	Desig softw		impler	nent II	R and	FIR	digital	filter t	o meet	the gi	ven sp	ecifica	tion us	sing sui	itable
					(CO-PO	D-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2	3				2	2					3
CO2	3	2		2	3				2	2					3
CO3	3	2		2	3				2	2					3
CO4	3	2		2	3				2	2					3
CO5	3	2		2	3				2	2					3
Average	3	2		2	3				2	2					3

Semester-VII

Subject:	Power	System	Analy	/sis-2						Subj	ect Co	de: 18E	EE71			
						Cou	rse Ou	tcome	S							
CO1	Form	ulate n	etwork	matric	ces and	l mode	ls for s	olving	load fl	ow pro	blems					
CO2	Perfo	rm pov	ver flo	w anal	ysis of	power	systen	ns using	g nume	rical it	erative	techni	ques			
CO3	Solve	issues	of eco	nomic	load d	lispatch	n and u	nit con	nmitme	nt prob	olems					
CO4	Analy															
CO5	Appl	Analyze short circuit faults in power system networks using bus impedance matrix Apply numerical techniques to solve swing equation for stability analysis CO-PO-PSO Mapping														
	CO-PO-PSO Mapping															
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3											3	3		
CO2	3	3				2	2						3	2		
CO3	3	3				2	2						3	2		
CO4	3	3				2	2						3	2		
CO5	3	2											3	2		
Average	3	2.8				2	2						3	2.2		

Subject: 1	Power	System	n Prote	ction						Subj	ect Co	de: 18E	EE72			
						Cou	rse Ou	tcome	S							
CO1	Discu	iss com	ponents	s of pro	tection	scheme	, perfor	rmance	of prote	ective re	elays an	d overc	current p	protectio	n.	
CO2	Discu	•	ection o	of Gene	rators, l	Motors,	Transf	ormer,	Bus Zo	ne Prote	ection, p	oilot pro	otection	and dist	tance	
CO3	Unde	Understand the construction and operation of different types of circuit breakers. Explain the features of fuse, causes of over voltages and its protection, also modern trends in Power														
CO4	•	· · · · · · · · · · · · · · · · · · ·														
	•				(CO-PC	-PSO	Mapp	ing							
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2				2	2						3	1		
CO2	3	2				2	2						3	2		
CO3	3	2				2	2						3	2		
CO4	3	2				2	2						3	2		
Average	3	2				2	2						3	1.75		

Subject:	IDG									Subj	ect Co	de: 18E	EE733		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	and Ex	xplain t	he con	cepts c	of Distr	ibuted	Genera	ation by	y vario	us Sou	rces of	Energy	у.
CO2	Analy	nalyse the Power System Performance, Overloading and Losses impacts on Distributed													
CO2	Gene	eneration terpret Voltage Magnitude Variations impacts on Distributed Generation													
CO3	Interp	oret Vo	ltage N	I agnitu	ıde Va	riation	s impa	cts on	Distrib	uted G	enerati	on			
CO4	Study	and S	olve P	ower Q	uality	Disturl	bances	impact	ts on D	istribut	ed Gei	neratio	n		
					(CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

CO1	3	2		1	1			1	1	
CO2	3	2		1	1			1	1	
CO3	3	2		1	1			1	1	
CO4	3	2		1	1			1	1	
Average	3	2		1	1			1	1	

Subject:	Utilizat	ion of	Electri	cal Po	wer					Subje	ect Co	de: 18E	E742		
						Cou	rse Ou	tcomes	5						
CO1					the dif				rical he	eating,	weldin	g and e	electrol	ytic pr	ocess
CO2					he kno rent ap	_		ındame	ental er	ngineer	ing pri	nciples	to des	sign va	rious
CO3		Apply the basic knowledge of engineering to analyze the behavior of electrical traction systems under various conditions of operation. Understand and discuss the importance of electric vehicles and hybrid electric vehicles and its architectures.													
CO4		Inderstand and discuss the importance of electric vehicles and hybrid electric vehicles and its rehitectures.													
	architectures. CO-PO-PSO Mapping														
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2				2	2						3	2	
CO2	2	2				2	2						3	2	
CO3	3	2				2	2						3	2	
CO4	2					2	2						3	2	
Average	2.25	2				2	2						3	2	

Subject:	Smart (Grid								Subj	ect Co	de: 18E	EE744			
						Cou	rse Ou	tcome	S							
CO1	Expla	in the	concep	t of Sn	nart gr	id enab	les the	Electr	ic Net	and ne	ed of si	mart gr	id.			
CO2	Outli	ne the	benefit	s and d	rivers	of DC	Power	delive	ry syste	em						
CO3	Sumn	narize	the Int	elligrid	Archi	tecture	for the	e smart	grid.							
CO4	Expla	Explain the Efficient Electric End-use Technology Alternatives. Discuss Demand side planning and Evaluation														
CO5	Discu	Discuss Demand side planning and Evaluation														
	CO-PO-PSO Mapping															
COs		CO-PO-PSO Mapping POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2											3			
CO2	3	2											3			
CO3	3	2	2										3			
CO4	3	2											3			
CO5	3	2											3			
Average	3	2	2							_			3			

Subject:	Power System Simulation Lab	Subject Code:18EEL76
	Course Outcomes	
CO1	Construct a program in MATLAB package to assess the transmission lines.	ne performance of medium and long
CO2	To obtain the power angle characteristics of Synchronous bus power & line flows by developing a program in MATL	· ·

CO3	Deve	lop a pi	rogram	in MA	ATLAF	3 packa	age to a	assess 1	the tran	sient s	tability	under	three p	hase f	aults	
CO4		ormulat ms by c			,		1			ian ma	trices	of inte	rconne	ected p	ower	
CO5		Power MIPO		1	,	nomic	load d	ispatch	and s	hort ci	rcuit pı	oblem	s on po	ower sy	stem	
	CO-PO-PSO Mapping															
COs		POs PSOs														
COS	1	POS PSOS 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	3	2			3				3	3			3		3	
CO2	3	3			3				3	3			3	2	3	
CO3	3	3			3				3	3			3		2	
CO4	3	3			3				3	3			3		3	
CO5	3	3			3				3	3			3		3	
Average	3	2.8			3				3	3			3	2	2.8	

Subject: 1	Relay a	ınd Hig	gh Volt	age La	ıb					Subj	ect Co	de: 18E	EEL77		
						Cou	rse Ou	tcome	S						
CO1	subje	•	_			•			ning br inguish						
CO2		•	vledge nd asse		-	•			oil sar	mple by	y cond	ucting	experi	ment a	ıs per
CO3	-		e Elect ge relay		hanical	& M	icropro	ocessor	based	type	of ove	r curre	ent, ov	ervolta	ge &
CO4	_		e knov tank ar	_	_			_	field or.	lines f	or co-	axial c	able r	nodel	using
	·				(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2	2		2	2			3	3	
CO2	3	2				2	2		2	2			3	3	
CO3	3	2				2	2		2	2			3	2	
CO4	3	2				2	2		2	2			3	2	
Average	3	2				2	2		2	2			3	2.5	

Subject:	Project Phase I Subj	ect Code:18EEP78
	Course Outcomes	
CO1	Ability to identify gap from literature survey, demonstrate te engineering problem of selected project topic	echnical knowledge on complex
CO2	Identify, Select, Apply a suitable engineering/IT tool in modell Studies, conduct projects leading to a logical solution	ing/data interpretation/analytical
CO3	Design multi-disciplinary engineering solutions to complex pre environmental concerns	oblems addressing societal and
CO4	Communicate effectively to a diverse audience and develop techn	nical reports and publications
CO5	Work as a team member/leader to manage projects and costs in a	diversified environment
	CO-PO-PSO Mapping	
COs	POs	PSOs

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3				1				3	3	3	3
CO2	3	3	3		3			1					3	3	3
CO3	3	3	2			3	3	1					3	3	3
CO4	3							2	2	3			3	3	3
CO5	3							2	3	3	3	3	3	3	3
Average	3	3	2.5	3	3	3	3	1.4	2.5	3	3	3	3	3	3

Semester-VIII

Subject:	Power	System	Opera	ation a	and Co	ntrol				Subj	ect Co	de: 181	EE81			
						Cour	se Out	comes								
CO1		ribe vari CADA	ous lev	vels of	contro	ols in po	ower s	ystems	, comp	onents	, archit	ecture	and co	nfigura	ation	
CO2	Deve Syste	lop and m	analyz	e the n	nathem	natical	model	of auto	omatic	genera	tion an	d cont	rol in F	ower		
CO3	Anal	lysis of controlling voltage and reactive power in Power System lain security and State estimation of power System														
CO4	Expla	plain security and State estimation of power System CO-PO-PSO Mapping														
					C	O-PO	-PSO	Mappi	ng							
COs						PO	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3						1						3	2		
CO2	3	2	1	1		1	1		1	1		1	3	2		
CO3	3	2	1	1		1	1		1	1		1	3	2		
CO4	3	2	1	1		1	1					1	3	2		
Average	3	2	1	1		1	1		1	1		1	3	2		

Subject: 1	Electri	cal Es	timatic	on and	Costii	ng				Subj	ect Co	de: 181	EE822			
						Cou	rse Ou	tcomes	5							
CO1	Acqu	ire kno	wledge	on gen	eral prii	nciples	of estin	nation &	& costin	g, IE ru	les, IE	-Act				
CO2	Identi	ifycons	sideratio	ons & ty	ypes of	Reside	ential w	iring, A	Applyin	g Safety	y rules					
CO3	Analy	se desi	gn aspe	ects for	service	connec	ctions, F	Power c	ircuits &	& their l	Earthin	g				
CO4	Estimate the cost of Overhead Transmission & Distribution Lines, Sub-station. CO-PO-PSO Manning															
		CO-PO-PSO Mapping														
COs		POs PSOs														
COS	1	POs PSOs														
CO1	3	2	2			2		2					2	2		
CO2	3	2	2			2		2					2	2		
CO3	3	2	2			2		2					2			
CO4	3	2	2			2		2					2	2		
Average	3	2	2			2		2					2	2		

Subject: 1	Subject: Project Work Phase - 2 Subject Code: 18EEP83															
						Cou	rse Ou	tcomes	S							
CO1		y the f utions				-	mathe	matics	, scienc	e and	engine	ering p	orincipl	es in d	esign	
CO2	studies, conduct experiments leading to a logical solution													ytical		
CO3 Design multidisciplinary engineering solutions to complex problems addressing societal and environmental concerns												l and				
CO4	O4 Communicate effectively to a diverse audience and develop technical reports and publications.													S.		
CO5	Work as a team member/leader to manage projects and costs in a diversified environment.															
					(CO-PO	-PSO	Mapp	ing							
COa	POs													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3									3	2	2	2	
CO2	3	3			3								3	3	3	
CO3	3	3	3	3		3	3						3	3	3	
CO4										3		3	3	3	3	
CO5						3			3	3	3		2	2	2	
Average	3	3	3	3	3	3	3		3	3	3	3	2.6	2.6	2.6	

Ü										Subj	Subject Code: 18EES84							
						Cou	rse Ou	tcome	S									
CO1	Identify, understand, and discuss current, real-time issues Improve oral and written communication skills																	
CO2	Impro	ove ora	l and v	vritten	comm	unicati	on skil	ls										
CO3	Attain, use and develop knowledge in the field of electrical and electronics engineering and other disciplines through independent learning and collaborative study													other				
CO4	Explore an appreciation of the self in relation to its larger diverse social and academic contexts.													xts.				
CO5	Demonstrate the ability to assess and report																	
						CO-PC)-PSO	Mapp	ing									
COs	POs													PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	3	3		3							3		3	3	3			
CO2										3			3	3	3			
CO3	3			3								3	3	3	3			
CO4	3	3							3		3		3	3	3			
CO5	3	3								3		3	3	3	3			
Average	3	3		3					3	3	3	3	3	3	3			

Subject: Internship										Subject Code: 18EEI85							
	Ti and the second		5			Cou	ırse Ou	tcome	es	1 0							
CO1	Demo	Demonstrate the ability to assess and report															
CO2	Assess interests and abilities in their field of study																
CO3	Demonstrate the ability to plan, implement, professional, ethical practice and evalual engineering studies													aluate			
CO4	Develop communication, interpersonal and other critical skills in the job interview process																
							O-PSO						on pr	00055			
COs	POs												PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO ₁	3												3				
CO2	2											3	3	2			
CO3								2			2	3	3	2			
CO4						+			2	3			3	2			
Average	2.5							2	2	3	2	3	3	2			

Co-ordinator Mr. Kubera U

Dr. Babu N V