

SJB Institute of Technology

(Affiliated to Visvesvaraya Technological University, Belagavi& Approved by AICTE, New Delhi.)

Department of Mechanical Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

2016 - 2020 Batch

2015 Scheme

Semester-I/II

Subject: 1	ELEM	ENTS	OF ME	ECHAN	NICAL	ENGI	NEER	ING		Subje	ect Co	de: 15E	ME14	/24	
						Cou	rse Ou	tcome	S						
CO1	Reco	gnize d	lifferen	t sourc	es of e	nergy a	and the	ir conv	ersatio	n proce	ess and	differe	ent type	es of bo	oilers.
CO2	Demo	onstrate	e the va	arious t	urbine	s and I	C engi	nes.							
CO3	Discu	iss Met	tal rem	oval pr	ocess	using I	Lathe, o	drilling	, Millii	ng Rob	otics a	nd Aut	omatic	n.	
CO4	Fair u	ınderst	anding	of app	licatio	n and t	isage c	of vario	us eng	ineerin	g mate	rials.			_
CO5	Expla	in the	refrige	ration a	and air	-condi	tioning	systen	ns						
					(CO-PC)-PSO	Mapp	ing						
Cos						P	Os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	2	2													
CO3	3	3													
CO4	3	2													
CO5	2	3													
Average	2.6	2.4													

Subject:	COMP	UTER	AIDE	D ENG	GINEE	RING	DRAW	/ING		Subj	ect Co	de: 15C	ED14	/24	
						Cou	rse Ou	tcome	S						
CO1		_	_								•	m, Refes		planes	, BIS
CO2	Unde	rstand	the Or	thogra	phic pr	ojectio	ns of P	oints i	n all th	e four	quadra	ants and	lines	in first	angle
CO3				_	aphic p			-	surfac	es in c	lifferer	nt posit	ions b	y chan	ge of
CO4					phic pr							tetrahe	dron ,	Hexahe	dron,
CO5		•			t of late of Poly		faces o	of prisr	ns, pyr	amids,	cylind	ers and	cones	•	
					(CO-PC)-PSO	Mapp	ing						
Coa						P	Os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3														
CO2		3													
CO3			3		3							1			
CO4					3							1			
~~-		1			3							1			
CO5					3							1			

Semester-III

Subject: 1	Engine	ering N	Mathem	atics-I	II					Subj	ect Co	de: 15N	1AT3 1		
						Cou	rse Ou	tcome	S						
CO1	Know	the us	se of pe	riodic s	signals	and Fo	ourier s	series to	analy	ze circı	ıits and	d syster	ns con	nmunic	ation.
CO2			genera urier tı		•		•	contino	us - tir	ne sign	als and	d digita	l signa	al proce	essing
CO3	Empl	oy app	ropriat	e nume	erical n	nethod	s to so	lve alge	ebraic a	and tra	nscede	ntal eq	uations	S.	
CO4					_					theorei flow pr			applic	ations i	in the
CO5	Utiliz	e the	concep	ots of	function synthe	onal ar sis and	d thei l optim	r varia ization	tions i	-	applic			of varia nmunic	
					(CO-PC	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject: 1	MATER	IALS S	CIENCE	Ξ						Subj	ect Co	de: 15N	1E32		
						Cou	rse Ou	tcome	S						
CO1	Desci	ribe the	mech	anical j	proper	ties of	metals,	their a	ılloys a	ınd var	ious m	odes of	failur	e.	
CO2	Unde	rstand	the mid	crostru	ctures	of ferr	ous and	l non-f	errous	materia	als to n	nechan	ical pro	opertie	S
CO3	Expla	in the	proces	ses of l	heat tre	atmen	t of var	ious al	loys.						
CO4		rstand dures.	the pro	opertie	s and p	otenti	alities (of vario	ous ma	terials	availa	ble and	mater	ial sele	ection
CO5		rstand dures.	the pro	opertie	s and p	otenti	alities (of vario	ous ma	terials	availal	ble and	mater	ial sele	ection
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											2		
CO2	3	3											2		
CO3	3												2		
CO4	3												2		
CO5	3												2		
Average	3	3											2		

Subject:	BASIC THERMODYNAMICS	Subject Code:15ME33
	Course Outcomes	
CO1	Understand the thermodynamic systems, properties, Zeroth law of the	ermodynamics, temperature scales and energy
COI	interactions.	
CO2	Analyze heat, work, internal energy, enthalpy for flow & non flow process usin	g First and Second Law of Thermodynamics
CO3	Identify the behavior of pure substances and its applications to practical problem	ms.
CO4	Analyze and apply the basic thermodynamic concept to calculate the change in	internal energy, change in enthalpy and change in
CO4	entropy using TD relations for ideal gases	
CO5	Analyze and apply the knowledge of Thermodynamics properties of real gases	at all ranges of pressure, temperatures using

		ed equatio	n of state	includin	g Vande	r Waals e	equation,	Redlich V	Wong equ	ation and	d Beattie	-Bridgen	nan equat	ion Recal	1
						CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	3											2		
CO3	3	2											2		
CO4	3	2											2		
CO5	3	3											2		
Average	3	2.5											2		

Subject: 1	MECHA	NICS C	F MAT	ERIAL	S					Subje	ect Co	de:15N	1E34		
-						Cou	rse Ou	tcome	S						
CO1	Apply	an eng	ineerin	g know	ledge t	o demo	nstrate	the beh	avior of	f materi	als				
CO2	_	ze thin ane stre		-	nders aı	nd draw	a stres	s distril	oution c	curve, al	so to cr	eate Mo	ohrs cir	cle diag	ŗam
CO3	Deter	mine th	e vario	us force	es and r	noment	s in bea	ıms							
CO4	Evalu	ate the	dimens	ions of	mechai	nical ele	ements	for vari	ous app	olication	ıs.				
CO5	Comp	are diff	erent st	train en	ergy m	ethods	and the	ories of	failure	s in desi	ign of n	nachine	ries		
					(CO-PO)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3														
CO2	1	2											2		
CO3	1	3											2		
CO4	3	2											2		
CO5	3	2											2		
Average	2.2	2.25											2		

Subject:	METAL	CAST	ING AN	ID WEL	DING					Sub	ject Co	de:15	ME35 <i>A</i>	Α	
						Cou	ırse O	utcom	es						
CO1	Apply	the kn	owledg	ge of va	rious m	netal ca	sting p	rocesse	s that a	ire usefi	ıl in des	signing	system		
CO2	Unde	rstand	the cor	ncept of	f variou	ıs meta	l castin	g meth	ods.						
CO3	Ident	ify the	Solidifi	cation p	orocess	in Cast	ing of I	Non-Fer	rous M	etals.					
CO4	Discu	ss the v	/arious	princip	le of or	peration	ns in w	elding to	echniqu	ıes					
CO5				-	•	s in We joining	_	•	ection r	method	s for the	quality	y assura	ance of	•
	1					CO-P	O-PS() Map	ping						
COs	POs							•					PSO	S	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											3		
CO2	3	2											3		
CO3	3	2											3		
CO4	3	2											3		
CO5	3	2											3		
Average	3	2											3		

Subject:	COMP	UTER	AIDI	ED MA	CHIN	E DRA	WING	r		Subj	ect Co	de: 151	ME36A	1	
						Cou	rse Ou	itcome	es						
CO1	To rea	ad and	unders	tand the	e orthog	raphic a	and sect	ional v	iews of	various	machi	ne com	ponents		
CO2	To de	velop 3	3D mo	dels usi	ng mode	eling so	ftware'	S							
CO3	To pr	oduce 2	2D dra	wings b	y manu	al drafti	ing and	by usin	ng drafti	ng pacl	kages				
CO4	То со	nstruct	assem	bly dra	wings, p	art drav	wings a	nd Bill	of mate	rials as	per BIS	S Conve	entions		
CO5	To ap	ply lin	nits fits	and tol	erance t	o all as	semblie	s and p	art draw	ings					
						CO-P(D-PSO	Mapp	ing						
COs	POs												PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2	2				2								2	2	
CO3	2				2								2	2	
CO4	2	2			2								2	2	
CO5	2											2	2		
Average	2	2			2							2	2	2	

Subject:	MATEF	RIALS T	ESTING	G LAB						Subj	ect Co	de:15N	MEL37	'A	
-						Cou	rse Ou	tcome	S						
CO1	Acqu	iire exp	erimer	ntation	skills i	in the f	ield of	materi	al testi	ng.					
CO2		lop th	eoretic	al und	lerstand	ding o	f the 1	mechai	nical p	roperti	es of	materi	als by	perfo	ming
CO3	Appl	y the k	nowled	lge of	testing	metho	ds in re	elated a	reas.						
CO4	Appl	y the k	nowled	dge of	testing	metho	ds in re	elated a	reas.						
CO5	Knov	v how	to impi	ove st	ructure	/behav	ior of r	nateria	ls for v	arious	indust	rial ap	plicatio	ns.	
	•		-			CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1													
CO2	2	1	2									1	1		
CO3	1	2			2								1		
CO4	3												1		
CO5	2	1										1	1		
Average	2.4	1	2		2							1	1		

Subject:	FOUND	RY AN	D FORC	SING LA	AΒ					Subje	ect Co	de:15N	IEL38A	·
						Cou	rse Ou	tcomes	5					
CO1		fy the pability)	•	es of mo	oulding	sand (Гension	, compr	ession,	shear &	zamp;			
CO2	Build	sand m	oulds u	sing ha	nd tool	s ,patter	ns and	cores						
CO3	Estim	ate the	raw ma	terial re	quired	for cha	nge of c	ross se	ction ar	nd dime	nsions.			
CO4	Demo	nstrate	the for	ging ope	erations	S								
	1				(CO-PC)-PSO	Mappi	ing					
						-	^							
COa						P	Os						I	PSOs
COs	1	2	3	4	5	6 P	Os 7	8	9	10	11	12	1 1	PSOs 2
COs	1 3	2	3 2	4	5	I -	1	8	9	10	11	12	1 3	
	1 3 3	2	_	4	5	I -	1	8	9	10	11	12	1	
CO1		2	2	4	5	I -	1	8	9	10	11	12	1 3	
CO1 CO2	3	2	2 2	4	5	I -	1	8	9	10	11	12	1 3 3	

Semester-IV

Subject:	ENGIN	IEERI	NG MA	ATHE	MATIC	CS-IV				Subj	ect Co	de: 15N	//AT41		
						Cou	rse Ou	tcome	S						
CO1							ntial ed	quation	s arisir	ng in flo	ow pro	blems ı	using s	single s	tep
CO1				erical r											
CO2												ing to c			
CO2		•					•					ar coor		•	
									-		-	potenti			•
CO ₃			_		•					ır trans	format	ion aris	sing in	aerofo	il
				isualiz											
		-		-	•			_	_	_	-	cessing		•	
CO4						chastic	matrix	k conne	ected w	ith mu	ltivaria	te corre	elation	proble	ems
	for fe	asible	randon	n event	S										
			•		• 1	-	-		_	-	_	ributio			g or
CO5		_	• 1				-			of a N	1 arkov	chain a	and so	lve	
	probl	ems re	lated to	discre	ete para	ameter	randor	n proce	ess.						
					(CO-PC)-PSO	Mapp	ing						
COs		,				P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3													
CO2	3	3													
CO3	3	3													
CO4	3	3													
CO5	3	3													
Average	3	3													

Subject: 1	KINEM	ATICS (OF MAC	CHINER	Ϋ́					Subj	ect Co	de:15N	1E42		
							rse Ou								
CO1	Identif	y the ki	nematic	link, kin	ematic j	pairs, ch	ains, me	echanisn	ns, mobi	lity, and	invers	ions.			
CO ₂	Determ	nine the	velocitie	es and a	ccelerati	ions of l	inkages	and join	ts of me	chanism	s graphi	cal meth	nod.		
CO3	crank	nechani	sm and	other ap	plication	ıs.	ne the v			eleratio	ns by an	alytical	method	for slide	r
CO4	Evalua	te the ve	elocity r	atio and	torque i	in variou	is types	of gear t	rains.						
CO5	Analys	se differ	ent cams	s and ske	etch the	cam pro	files for	various	motions	s of the f	follower	, motion	charact	eristics	
		CO-PO-PSO Mapping POs PSOs													
COa		POs PSOs													
COs	1	POs 1 2 3 4 5 6 7 8 9 10 11												2	3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	3	2											2		
CO5	3	2				_							3		
Average	3	2											2.6		_

Subject: APPLIED THERMODYNAMICS	Subject Code:15ME43
Course Outcomes	

CO1	Recal	l therm	nodyna	ımic co	ncepts	and c		various cycles.		of gas	power	cycles	and va	pour p	ower
CO2	Under	stand th	ne work	ing pri	nciple o	f Rocke	et and J	et Prop	ulsion.						
CO3	-	e comb on effe				mbusti	on prod	esses ii	n I C en	gines in	cluding	alterna	ite fuel	s and	
CO4		stand the ration a					s of refr	igeratio	on syste	ems and	perfor	mance	parame	eters of	
CO5	Discus	Discuss the operation of reciprocating compressor and functioning of steam nozzles.													
	CO-PO-PSO Mapping														
COs		•				P	Os					•		PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	3											2		
CO3	3	2					1						2		
CO4	3	2				1	1						2		
CO5	3	3											2		
Average	3	2.5				1	1						2		

Subject: 1	FLUID	MECI	HANIC	CS						Subj	ect Co	de:15N	1E44			
						Cou	rse Ou	tcome	S							
CO1							and abo									
CO2		stand tl		_	ated to	how a	fluid be	haves v	hen it i	is in mo	tion wi	th and v	without	conside	ering	
CO3	Define	e the va	rious ty	pes of	flow, a	nd can	describe	the en	ergy los	sses tha	t occurs	in pipe	s durin	g fluid	flow.	
CO4	Expla	Explain the development of boundary layer and about the basic concepts of lift and drag of an aero-foil. Identify the need of dimensional analysis and will also know about the basic concepts of compressible														
CO5	Identify the need of dimensional analysis and will also know about the basic concepts of compressible flow and Computational Fluid Dynamics.															
	CO-PO-PSO Mapping															
COs	POs PSOs															
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3										3			
CO2	3	3	3										3			
CO3	3	3	3										3			
CO4	3	3	3										3			
CO5	3	3	3						_				3			
Average	3	3	3										3			

Subject:	MACH	IINE T	OOLS	AND	OPER.	ATION	1S			Subj	ect Co	de:15N	1E45B		
						Cou	rse Ou	tcome	S						
CO1	Demo	onstrate	e the co	onstruc	tion ar	nd spec	ificatio	on of m	achine	tools					
CO2	Demo		e the v	arious	machi	ining p	rocess	es pert	aining	to rela	itive m	notions	betwe	en too	l and
CO3		Choose the right cutting tool materials and cutting fluids, also to evaluate cutting tool parameter for different machining operations Apply mechanics of machining process to evaluate machining time and to estimate/calculate the													
CO4		€ 1													
CO5	Analy	yse too	l wear	mecha	nism a	nd equ	ations	to enha	ince to	ol life a	and min	nimize	machi	ning co	st
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3														
CO2	3														
CO3	3	2													

CO4	3	2	1						
CO5	3	2	1						
Average	3	2	1						

Subject: 1	MECHA	ANICA	L MEA	SURE	MENTS	S AND	METR	OLOG`	Y	Subj	ect Co	de:15N	1E46B		
						Cou	rse Ou	tcome	S						
CO1	Apply	the me	ethods a	nd prod	cesses o	of meas	urement	ts and s	tandard	s.					
CO2	Illustr	ate the	use of i	nstrum	ents for	measu	rement	and the	ir calib	ration.					
CO3	Carry	ry out linear and angular measurements using gauges. ermine the pressure, force, and torque measurements using sensors and dynamometers.													
CO4	Deter														
CO5	Deter	mine sti	rain, ten	nperatu	re, and	surface	roughr	ness.							
					(CO-PC)-PSO	Mapp	ing						
Con						P	os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		
CO2	2	2											2		
CO3	2	2											2		
CO4	2	2											2		
CO5	2	2											2		
Average	2	2											2		

Subject:	MECH	ANICAI	L MEAS	SUREM	ENTS	AND M	ETROI	LOGY I	LAB	Subj	ect Co	de: 15N	MEL47	В	
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	Calibra	ation of	fpress	ure gau	ige, the	ermoco	uple, L	VDT,	load ce	ell, mic	cromete	er	
CO2		y conce ment u						ng Sine	Centro	e/ Sine	Bar/ B	Bevel P	rotract	or,	
CO3		onstrate anical			ıts usir	ng Opti	cal Pro	jector/	Tool m	naker m	nicrosc	ope, O	ptical 1	lats an	d
CO4	mechanical comparator Analyze Screw thread parameters using 2-Wire or 3-Wire method, gear tooth profile using gear tooth Vernier/Gear tooth micrometer Analyse tool forces using Lathe/Drill tool dynamometer														
CO5	tooth Vernier/Gear tooth micrometer Analyse tool forces using Lathe/Drill tool dynamometer														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	3	2											2		
CO5	3	1											2		
Average	3	1.8											2		

Subject:	MACHINE SHOP LAB	Subject Code:15MEL48B
	Course Outo	omes
CO1	Understanding integral parts of lathe, shaping a attachments used thereof	nd milling machines and various accessories and
CO2	Select cutting parameters like cutting speed, fee operations like lathe, shaping, milling.	ed, depth of cut and tooling for various machining
CO3	Perform cylindrical turning operations such as partitions, facing, knurling, internal thread cutting	

CO4	cuttin	ıg, inde	-	nd gear	r cuttir									, keyway pecimen
						CO-PC)-PSO	Mapp	ing					
COs						P	Os							PSOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											2	
CO2	3	2											2	
CO3	3	2											2	
CO4	3	2											2	
Average	3	2											2	

Semester-V

Subject:	MANA	GEMI	ENT A	ND EN	IGINE	ERIN	G ECO	NOMI	CS	Subj	ect Co	de:15N	/IE51			
						Cou	rse Ou	tcome	8							
CO1	Explai	in the c	levelop	ment o	of man	agemei	nt and	the role	e it pla	ys at di	ifferent	levels	in an c	rganiz	ation	
CO2	Comprorganization		the proc	ess and	l role of	feffecti	ve plan	ning,or	ganizir	ng and s	taffing f	for the o	develop	ment o	f an	
CO3			e necess organiza		good le	adershi	p,comn	nunicati	on and	l co-ord	ination f	or esta	blishing	effecti	ive	
CO4		Understand engineering economics demand supply and its importance in economic decision making and problem solving														
CO5	Calcula															
	CO-PO-PSO Mapping POs PSOs															
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1										1						
CO2										1	1					
CO3	3															
CO4	3												1			
CO5	3												1			
COS													_			

Subject:	DYNA	MICS	OF M	ACHI	NERY					Subj	ect Co	de:15N	/IE52		
						Cou	rse Ou	tcome	S						
CO1		y the c nobiles	•	s of sta	tic and	l dynan	nic bala	ancing	of reci	procati	ng and	d rotati	ng mas	sses on	
CO2				•						er cran oratory			-	-	
CO3	•	yze the		ty of g	overno	ors , gy	roscop	ic effec	cts on s	hips, p	lane di	sc, aero	o plane	es,	
CO4	Disti	nguish	differe	ent type	es of vi	bratory	y systei	ns							
CO5	Form	ulate r	nathem	atical	equation	ons for	dampe	d and ı	ındamı	ped vib	ratory	system	l		
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

CO1	2								2	
CO2		1	3						2	
CO3		2	2						2	
CO4	2	1	2						2	
CO5		2	3					2	2	
Average	2	1.5	1.5					2	2	

Subject:	ΓURΒ	O MAC	CHINE	S						Subj	ect Co	de:15N	1E53			
						Cou	rse Ou	tcome	S							
CO1	_	gnize t		_						nless v	ariable	s for a	ı giver	n dyna	mical	
CO2	Comp	rehend	the sign	nificanc	e of sta	tic and	stagnat	ion pro	perties	for turb	ines and	d compi	ressors.	,		
CO3	Sumn	narize	the Eul	ler's eq	uation	to anal	lyze en	ergy tr	ansfer	in turb	omachi	ines.				
CO4		Summarize the Euler's equation to analyze energy transfer in turbomachines. Apply the velocity triangles for steam turbines and hydraulic turbines to estimate various performance parameters. Perform the preliminary design of centrifugal pumps and centrifugal compressors.														
CO5	Perform the preliminary design of centrifugal pumps and centrifugal compressors.															
					(CO-PC	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3										3			
CO2	3	3	3										3			
CO3	3	3	3										3			
CO4	3	3	3										3			
CO5	3	3	3										3			
Average	3	3	3										3			

Subject:	DESIG	N OF	MACH	IINE E	LEME	NTS -	I			Subj	ect Co	de:15N	/IE54			
						Cou	rse Ou	tcomes	5							
CO1	Apply	the co	ncepts o	of stres	ses for	1-d, 2-D	and 3-	D elem	ents							
CO2		ulate; a rious loa	•	stresses	and st	rains in	machir	ne elem	ents, pe	ermane	nt and	tempor	ary joir	nts subje	ected	
CO3	Analy	ze and	design f	or stati	c, fatig	ue and	impact	strengt	h, perm	anent	and ten	nporary	joints			
CO4	Evalu	ate the	stresse	s in the	elemei	nts such	n as Gea	ars, cott	er and	knuckle	joint k	eys and	d coupli	ngs		
CO5	CO-PO-PSO Mapping															
COs		POs PSOs														
COS	1	2	3	11	12	1	2	3								
CO1	3	3											2			
CO2	3	3											2			
CO3	3	2	3			1							2			
CO4	3	3											2			
CO5	2	2	2			1							2			
Average													2			

Subject: NON TRADITIONAL MACHINING	Subject Code:15ME554
Course Outcomes	

CO1			the diff		betwe	en tra	ditional	and n	on-trad	litional	machi	ning pr	ocess,	its nee	ed	
CO2		•	variabl nciple .		olved i	n wate	r jet ma	achinin	g and a	abrasiv	e jet m	achinir	ng, and	also it	S	
CO3	Recog mach	_	he diffe	erent e	lement	s that a	affect th	ne wor	king of	chemi	cal and	l electro	o-chem	nical		
CO4	Identi	ify the	parame	eters th	at infl	ience t	he wor	king o	f electr	ical dis	charge	machi	ning			
CO5	Analy	Identify the parameters that influence the working of electrical discharge machining Analyse the mechanism and working principle of plasma arc and laser beam machining CO-PO-PSO Mapping														
	CO-PO-PSO Mapping															
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	1											2			
CO2	2	1											2			
CO3	2	1											2			
CO4	2	1											2			
CO5	2	1											2			
Average	2	1											2			

Subject: A	AUTO	MATIO	ON AN	ID RO	BOTIC	CS				Subj	ect Co	de: 15N	/IE563		
							rse Ou								
CO1	To id	entify 1	potenti	al area	s for a	utomat	ion and	ljustif	y need	for au	tomatic	on			
CO2	To se	lect su	itable 1	najor c	ontrol	compo	onents 1	equire	d to au	tomate	a prod	cess or	an acti	vity	
CO3		_		types o for dif			d on ap	plicati	on & d	letermi	ne the	various	kinem	atics a	nd
CO4	To an	alyse	the ope	erators	of tran	ıslatior	ıs, rotat	tions a	nd tran	sforma	tions fo	or the r	obots		
CO5	To p	ropose	solutio	on to pi	roblem	s pecu	liar to l	Robot 1	Prograi	mming	Langu	uages			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												3		
CO2			2												
CO3		2	2												
CO4		2													
CO5		2											2		
Average	3	2	2										2.5		

Subject:	FLUID	MEC	HANI	CS & N	1ACH	INERY	LAB			Subje	ect Co	de:15N	IEL57		
						Cou	rse Ou	tcome	S						
CO1	Perfo	rm exp	erimei	nts to d	etermi	ne the	coeffic	ient of	discha	rge of t	flow m	easurin	g devi	ces.	
CO2	Cond	uct exp	perime	nts on l	hydrau	lic turb	ines a	nd pun	ps to d	raw ch	aracter	istics.			
CO3															
CO4	Deter	Determine the energy flow pattern through the hydraulic turbines and pumps													
CO5	Exhib	Exhibit his competency towards preventive maintenance of hydraulic machines CO-PO-PSO Mapping													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3							3				3		
CO2	3	3							3				3		
CO3	3	3							3				3		
CO4	3	3							3				3		
CO5	3	3							3				3		

Subject:	ENER	GY LA	B							Subje	ect Co	de:15N	1EL58		
						Cou	rse Ou	tcome	S						
CO1	Perfo	rm exp	erimei	nts to d	etermi	ne the j	proper	ties of	Fuels a	nd Oils	S.				
CO2	Draw engir	the ch	aractei	istic di	agram	of Val	ve Tin	ning an	d Port	openin	g in Int	ternal (Combu	stion	
CO3		onduct experiments on Internal Combustion engines to determine performance parameters of etrol and Diesel engines. valuate the performance of a Multi cylinder Internal combustion engine.													
CO4	Evalu	iate the	e perfo	rmance	of a N	Iulti cy	linder	Interna	al comb	oustion	engine	e.			
CO5															
					(CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2											2		
CO3	3	2							2				2		
CO4	3	2							2				2		

Average

CO5

Average

3

2

Semester-VI

Subject:	FINITI	E ELEI	MENT	ANAI	LYSIS					Subj	ect Co	de:15N	ЛЕ61			
							rse Ou									
CO1										ential ap	•					
CO2	Interp	ret the u	se of the	basic fi	inite elei	ments fo	r structu	ral appl	ications	using tru	ıss, bear	n, frame	e, and pl	ane elem	nents.	
CO3	Derive	e elemen	t matrix	equatio	n by dif	ferent m	ethods b	y apply	ing basi	c laws in	mechar	nics.				
CO4			rofessioi l heat tra		l finite e	lement s	software	to solve	e engine	ering pro	blems i	n Solid	mechani	cs, fluid		
CO5						simple p	oroblems	s such as	s beam a	nalysis a	and 1-D	heat co	nduction	either b	у	
CO-PO-PSO Mapping POG PSOG																
COs		POs PSOs														
COs	1	POs PSOs														
CO1	3												2			
CO2	2												2			
CO3	1	3											2			
CO4	3	2											2			
CO5		2	3		2								2			
Average	2.25	2.33	3		2								2			

Subject:	COMPUTER INTEGRATED MANUFACTURING	Subject Code:15ME62
	Course Outcomes	
CO1	Interpret various automation methods and to develop mathe	ematical models in production system.

CO2	Anal	yse the	design	proce	sses us	ing co	mputer	graphi	ics soft	ware a	nd CA	PP.				
CO3		-	algorit ng sys		line ba	alancin	g to im	iprove	the pro	oductiv	ity by a	adoptin	g flexi	ble		
CO4	1	Apply different computer applications in manufacturing and prepare part programs for simple obs on CNC machine tools and robot technology. dentify the modern trends in manufacturing process like additive manufacturing, Industry 4.0 and applications of IOT leading to smart manufacturing														
CO5	1	entify the modern trends in manufacturing process like additive manufacturing, Industry 4.0														
						CO-PC)-PSO	Mapp	ing							
C						P	os							PSOs		
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2												2			
CO2	2	2											2			
	1	_											2			
CO3		2											2			
CO3	2	2											2			
	2	2														

Subject: 1	HEAT	TRAN	SFER							Subj	ect Co	de: 15N	1E63			
						Cou	rse Ou	tcome	S							
CO1	Comp	oreheno	d the m	odes o	f heat	transfe	r and a	pply b	asic lav	ws of h	eat trar	nsfer to	formu	ılate an	d	
COI	solve	steady	state l	neat tra	nsfer p	roblen	ns									
CO2											able th	ermal c	conduc	tivity o	of	
CO2							finita a									
CO3	_	-							predict	the ten	nperatu	ire disti	ributio	n using	5	
CO3	nume	explain the principles of radiation heat transfer and predict the temperature distribution using numerical approach for heat conduction problems enterpret and compute forced, free convection heat transfer.														
CO4	Interp	Interpret and compute forced, free convection heat transfer.														
CO5	_	lesign heat exchangers using LMTD and NTU methods and explain the concept of condensation														
	and b	design heat exchangers using LMTD and NTU methods and explain the concept of condensation and boiling of liquids.														
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3										3			
CO2	3	3	3										3			
CO3	3	3	3										3			
CO4	3	3	3										3			
CO5	3	3	3										3			
Average	3	3	3										3			

Subject:	DESIC	GN OF	MACH	IINE E	ELEMI	ENTS -	II			Subj	ect Co	de:15N	ЛЕ64			
						Cou	rse Ou	tcome	S							
CO1	Unde	erstand	& Analy	ze the s	stresse	s in cur	ed bea	ms, cyl	inders,	and cyli	nder he	eads				
CO2	Decid	Decide flexible drives (belts, ropes, and chains) required for power transmission and springs.														
CO3	Analy	Analyze and design different types of gears for static and dynamic loads and apply in real life application														
CO4	Desig	Design clutches and brakes for static and dynamic loads														
CO5	Carry	Design clutches and brakes for static and dynamic loads Carry out the design of journal bearing by choosing the lubricant and choice of ball and roller bearings														
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2				1							2			

CO2	2	3	2		1				1	2	
CO3	3		3		2				1	2	
CO4	3	3	3		2				1	2	
CO5	3	3	2		2	1			1	2	
Average	2.20	2.75	2.50		1.60	1.00			1.00	2	

Subject:	AUTO	MOBII	LE EN	GINE	ERING	r				Subj	ect Co	de: 15N	1E655		
						Cou	rse Ou	tcome	S						
CO1				lge of e		ering fu	ındame	ental re	lated to	o auton	nobile	engines	s to so	lve the	
CO2												w the one		sion or	the
CO3	emplo	yed in	autom	obile t	o find	solutio	n to co	mplex	engine	ering p	oroblen				
CO4		-					_			norms ing pra		ess the	safety	and le	gal
CO5				,	enviro		and su	ıstainal	oility is		nobile	pollutio	on and	respec	tive
							0s	Mapp	mg					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												1		
CO2	1	2											1		
CO3	3												1		
CO4						2							_		
CO5						1	2						_		
Average	2.33	2				1.5	2						1		

Subject: 1	NDU	STR	RIAI	SAF	ETY						Subj	ect Co	de:15N	1E662			
_							Cou	rse Ou	tcome	S							
CO1	Ident	tify	the	safety	equipn	nents a	round	work e	nviron	ment aı	nd indu	stries					
CO2	Disti	ngu	ish (differe	nt port	able ex	tingui	shers u	sed for	differe	ent clas	s of fir	es				
CO3	Choo	ose t	the p	erson	al prote	ective e	equipm	ent wh	ile wo	rking ir	the la	borato	ries				
CO4	Appl	ly sa	ıfety	1													
CO5	Ident	tify	various chemicals and describe prevention of chemical hazards CO-PO-PSO Mapping														
COs			CO-PO-PSO Mapping POs PSOs														
COS	1	2	various chemicals and describe prevention of chemical hazards CO-PO-PSO Mapping POs PSOs 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	2		CO-PO-PSO Mapping POs PSOs														
CO2	2						3			1			1	2			
CO3	2						3						1	2			
CO4	2						2						1	2			
CO5	2						2						1	2			
Average	2						1			1			1	2			

Subject:	HEAT	TRAN	SFER	LAB						Subj	ect Co	de:15N	1EL67		
						Cou	rse Ou	tcome	S						
CO1	Perfor	rm expe	riments	s to dete	ermine 1	the ther	mal cor	nductiv	ity of a	metal r	od and	emissiv	ity of a	test pl	ate
CO2	Estim	ate the	effectiv	e therm	al resis	tance in	n compo	osite sla	abs and	efficier	ncy in p	in-fin			
CO3		uct expe ate with				convec	ctive he	at trans	fer coe	fficient	for free	e and fo	rced co	nvectio	n and
CO4	Deter	mine Bo	oiling o	f Liquid	d and C	ondens	ation of	f Vapou	ır and E	Estimate	the per	rforman	ce of a	refrige	ator
CO5	Calcu fin	late tem	nperatui	re distri	bution (of study	and tra	nsient	heat co	nduction	n throug	gh a plai	ne wall	, cylind	er and
	•				(CO-PC)-PSO	Mapp	ing						
COa	CO-PO-PSO Mapping POs PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3			3							3		
CO2	3	3	3			3							3		
CO3	3	3	3			3							3		
CO4	3	3	3			3							3		
CO5	3	3	3			3							3		
Average	3	3	3			3							3		

Subject:	MODE	LING	AND A	ANAL	YSIS L	LAB(F	EA)			Subj	ect Co	de:15N	1EL68		
						Cou	rse Ou	tcome	S						
CO1	Analy	ze the	structu	ıral me	mbers	like ba	ars, trus	sses, ar	nd bear	ns for o	lifferer	nt loads	5.		
CO2	Deter	mine t	he stres	sses in	plates	under	plane s	tress co	onditio	ns.					
CO3		for ter			tributio	on in 1	D and 2	2D mei	mbers	under c	onduct	tion and	d		
CO4	Analy	yze bar	s and b	eams f	or dyn	amic r	espons	e							
					(CO-PC)-PSO	Mapp	ing						
Cos						P	Os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3		3							3	3	3	
CO2	3	3	3		3							3	3	3	
CO3	3	3	3		3							3	3	3	
CO4	3	3	3		3							3	3	3	
								_			_		_		
Average	3	3	3		3							3	3	3	

Semester-VII

Subject: ENERGY ENGINEERING		Subject Code:15ME71
	Course Outcomes	

CO1	Unde	rstand	therma	l energ	gy conv	ersion	systen	n for re	al time	applic	ations					
CO2	Apply	y the ki	nowled	lge of p	orincip	le of er	nergy c	onvers	ion by	diesel	and hy	del ene	rgy			
CO3	analy	ze the	solar ra	diation	n paran	neters,	workin	g of so	lar PV	and th	ermal s	systems	S.			
CO4	Interp	ret pri	nciple	of ener	gy con	versio	n from	wind a	ınd tida	al.						
CO5		Review the applications of biomass energy, fuel cell, thermoelectric conversion and MHD enerators.														
		CO-PO-PSO Mapping														
Coa		CO-PO-PSO Mapping POs PSOs														
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2												2			
CO2	2												2			
CO3	2												2			
CO4	2						1						2			
CO5	2						1						2			
Average																

Subject: 1	FLUID	POW	ER SY	STEM	S					Subj	ect Co	de:15N	1E72	
					C	Course	Outco	mes						
CO1					cepts (_] applica		les) of	workir	ng and	mainte	nance	of fluid	powe	r
CO2						_		at and o and cyl	-	elemen	ts of fl	uid pov	wer sys	stems
CO3		nstrate r syste		ınction	ing of	control	valves	s for ob	otaining	g desire	ed outp	ut from	fluid	
CO4	Form	ulate (d	constru	ct) the	hydrai	ulic and	d pneu	matic c	ircuits	for var	ious o	utputs		
CO5	_		id pow operat	•	tem wi	th elect	rical a	nd logi	c elem	ents, co	ontrols	to mai	ntain tl	ne
					CO	-PO-P	SO Ma	apping						
COa						P	Os						PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2	2	3												
CO3	3													
CO4	2				1									2
CO5	2				1							1		2
Average	2.4	3			1							1		2

Subject: (CONTI	ROL E	NGIN	EERIN	G					Subje	ect Co	de:15N	1E73		
						Cou	rse Ou	tcome	S						
CO1	Identi	fy or	Recogi	nize co	ntrol sy	ystem a	and typ	es,con	trol act	ions					
CO2	Const	truct th	e syste	m gov	erning	eqation	ns for p	hysica	l,mech	anical,	electric	cal mod	lels		
CO3	Analy	ze the	gain o	f the sy	/stem ι	ising b	lock di	agram	and SF	G					
CO4	Evalu	ate the	stabil	ity of tı	ansfer	function	ons in (comple	x doma	ain and	freque	ency d	omain		
CO5	Empl	oy stat	e equa	tions to	study	the co	ntrollal	bilty ar	ıd obse	rvabilt	y				
					(CO-PO)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3													
CO2	2														
CO3	3				1										
CO4	2				1									2	
CO5	2				1							1		2	
Average	2.4	3			1							1		2	

Subject: S	SMAR	T MA	TERIA	LS & I	MEMS	5				Subj	ect Co	de:15N	1E745			
						Cou	rse Ou	tcome	S							
CO1	Disc	uss sr	nart st	ructui	es, pi	ezoel	ectric	prope	erties,	and sh	ape n	nemor	y allo	ys		
002	Inter	pret t	he pro	pertie	s and	chara	cteris	tics of	felecti	ro, ma	gneto	rheol	ogica	l fluid	S	
CO2				on rea												
CO3									ics of	Biom	imetic	S				
~~.													electr	ic sens	ing.	
CO4				stems				r			,	Ι			0,	
CO5						EMS 2	and its	case	studie	22						
	Duili	IIIdi 12	e por	incis)-PSO			<i>,</i> D						
							Os	PP	<u>8</u>					PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												2			
CO2	3	3 2 2 2 2														
CO3	3	2 2 2 2														
CO4	2	2											2			
CO5	3	2											2			
Average	2.8	2											2			
										1						
Subject: A	AUTO:	MOTI	VE EL	ECTR(ONICS					Subj	ect Co	de:15N	<u>1E751</u>			
001	- 1						rse Ou									
CO1									automo							
CO2									n auton		1 _					
CO3	Diagi	iose in	e rauru	s in the			and sys)-PSO			tomobi	ie					
							0s	Mapp	nng					PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2			_			'			10						
CO2	2															
	2															
CO3																

Subject:	MECH	ATRO	NICS							Subj	ect Co	de:15N	1E753		
-						Cou	rse Ou	tcome	S						
CO1	Illust	rate va	rious c	ompon	ents of	f mech	atronic	s syste	ms						
CO2		-	ctronic micro		· •					uation	circuit	susing	sensor	S,	
CO3	Analy	yze the	variou	s hydr	aulic a	nd pne	umatic	s actua	tion ci	rcuits a	nd rect	ify the	errors		
CO4	Cons	truct h	ydrauli	c and p	neuma	atic cir	cuits fo	or a giv	en scei	nario					
CO5	Propo	ose a so	olution	for the	situat	ion rela	ated to	automa	ation s	ystem					
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2													2	
CO2	3														
CO3	2														
CO4					1									2	
CO5					1										
Average	2				1									2	

Subject: 1	DESIC	GN LA	В							Subj	ect Co	de:151	MEL76)	
-						Cou	rse Ou	tcomes	5						
CO1	Anal	yze prir	ncipal st	resses, s	strains i	n mem	bers sub	ojected	to vario	ous load	ing usi	ng Stra	in Gaug	ge Rose	ttes
CO2		ate the ent mo	•	eters for	single	DOF of	vibrati	onal sy	stems a	nd iden	tify cri	tical sp	eed of s	haft for	•
CO3	I	nate the		eters of j	journal	bearing	g, gover	nor and	apply	the kno	wledge	of dyn	amics to	o balano	ce the
CO4	Appl	y the co	oncept o	f photo	elastici	ty for s	tress an	alysis a	nd to c	alibrate	photo	elastic	models		
CO5															
					(CO-PC)-PSO	Mapp	ing						
CO							Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2										2	1		
	3	2	2										1		
CO ₃					+	1	1			1	1	+		+	
CO3	3	2											2		

Subject: (CIM L	AB								Subje	ect Co	de:15N	IEL77			
						Cou	rse Ou	tcomes	8							
CO1	Gener	rate CN	NC Lat	he part	progra	ams for	differ	ent turi	ning op	eration	ıs.					
CO2	Gener	rate CN	NC Mil	l Part p	orogran	ns for j	point to	o point	motion	ıs &am	p; line	motio	ns			
CO3	Make	use of	Canne	ed Cyc	les for	Drillin	g, Pecl	k drillir	ng, Bor	ing, Ta	pping,	Turnii	ng,			
COS		Make use of Canned Cycles for Drilling, Peck drilling, Boring, Tapping, Turning, acing, Taper turning Thread cutting etc imulate Tool Path for different machining operations using CNC TRAIN software.														
CO4	Simu	late To	ol Path	for di	fferent	machi	ning o _l	peratio	ns usin	g CNC	TRAI	N softv	ware.			
					(CO-PO	-PSO	Mappi	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2											3			
CO2			3										2			
CO3						2	2									
CO4									2	2						
Average	3	2	3			2	2		2	2			2.5			

Semester-VIII

Subject:	OPER.	ATION	S RES	EARC	Ή					Subj	ect Co	de: 15N	ME81			
						Cou	rse Ou	tcome	S							
CO1	Apply	the si	gnifica	nce of	Operat	ions R	esearc	h in de	cision	making	and id	lentify	and de	evelop		
COI	math	ematic	al mod	lel fron	n verba	al desc	ription	of rea	l systei	m prob	lems					
CO2	Obtai	n the sc	lution	of form	ulated	real life	proble	m with	its inhe	erent re	sources	and co	onstrair	nts		
CO3	Recog	Recognize and formulate a transportation and assignment model and obtain optimal solution with all the														
	variar	variants of models.														
CO4	Construct network diagram and determine critical path, floats for deterministic and PERT networks															
		including crashing of networks and waiting line problems for M/M/1 and M/M/K queuing theory														
		•	_		•	•			0.	ider con	•					
CO5				•	•		•	•	-	-2 mach	ines, n	jobs-3r	nachine	es,n job	s-m	
	mach	inesand	2 jobs-	n mach	nines us											
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
CO1	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2															

CO2	3	2	2					2	
CO3	3	2	2					2	
CO4	3	2	2					2	
CO5	3	2	2					2	
Average	3	2	2					2	

Subject:	ADDIT	IVE N	[ANU]	FACT	JRINC	j				Subj	ect Co	de:15N	1E82		
						Cou	rse Ou	tcome	S						
CO1	Apply	the kn	owledg	e of Ad	ditive N	Manufa	cturing	and Raj	pid Pro	totyping	g techno	ologies			
CO2	Choos	e vario	us nanc	materia	al's pro	duction	technic	ques.							
CO3	Devel	op NC	machin	e progr	am										
CO4		nate the ation ar	_	s by an	alyzing	the req	uired ty	pe of F	neuma	tic and	hydraul	ics Syst	ems in	various	}
CO5	Decid	e the ty	pes of I	Industri	al conti	ols req	uired								
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2		2													
CO3			2												
CO4				2											
CO5				2									2		
Average	3	2	2	2									2		

Subject: 1	PRODU	UCT L	IFE CY	YCLE :	MANA	GEM	ENT			Subj	ect Co	de:15N	1E835			
						Cou	rse Ou	tcome	S							
CO1								istics, a	and Op	portuni	ties, be	enefits,	Views	5,		
		•			vers of											
CO2			-	lizatio	n, Desi	gn, De	velopn	nent, V	alidati	on, Pro	duction	n, impl	ementa	ation of	f	
		and PI	-													
CO3	Calculate the Engineering prototype development, design for environment, virtual testing,															
	validation and Creation of animation using CAD software															
CO4	Analyze the parameterization of design, optimization of products, Digital manufacturing, virtual															
	learning curve, production planning.															
CO5		Evaluate the PLM strategy, PLM initiatives to support corporate objectives Infrastructure														
CO3	assess	sment,	assessi	ment o	f curre	nt syste	ems an	d appli	cations	S.						
					(CO-PO	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3					2							1			
CO2	3			3							1		1			
CO3	3	2			1								1			
CO4	3 1											2		1		
CO5	3 2											1	1			
Average	3	2		3	1	2					1	0.6	1	1		

Subject:	INTERNSHIP				Su	bject	Code:1	5ME84	
		Cours	e Outcomes						
CO1	Apply modern techniques, engineering problems.	resources,	engineering	and	IT	tools	while	addressing	complex

CO2			f conte			dge to	access	societ	al, hea	lth, saf	ety and	d cultu	ral issu	ies nor	mally
CO3		xt and	_	_					le deve standar	-					
CO4	Identify to work as a team member as well a leader while demonstrating the knowledge of project management, finance handling and other management practices in multidisciplinary environment. Build the knowledge of documentation, report writing, effective presentation, receiving and														
CO5	Build the knowledge of documentation, report writing, effective presentation, receiving and delivering clear instructions in the professional environment and recognize the need & have preparation ability to engage in independent &life- long learning facing the challenges of technological changes.														
						CO-PC)-PSO	Mapp	ing						
C						P	os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2				2								2	2	
CO2						2							2		
CO3							2								
CO4											2				
CO5										2		2			
Average	2				2	2	2			2	2	2	2	2	2

Subject:	PROJE	CT PH	IASE I	I						Subj	ect Co	de: 15N	/IEP85			
						Cou	rse Ou	tcome	S							
	Revie	w the	researc	h litera	ature,id	lentify	and an	alyze t	he con	iplex e	nginee	ring pr	oblems	, form	ılate	
CO1	the su	ıstainal	ble con	clusion	ns or so	olution	s using	the ba	sic prii	nciples	of app	lied ma	athema	tics,sci	ence	
		nginee														
													ed comp			
CO2	_	_			concerr	n with	the issu	ues of p	oublic l	nealth ,	safety	societa	l, cultu	ral and	ĺ	
			tal area													
							_	_						opmen	t in	
CO3		Practice and establish the professional engineering methodology for sustainable development in the society to address the complex engineering problems associated with societal and														
	environmental factors.															
CO4	Form internal & external group to work together as a team in the project under consideration															
		under multi disciplinary settings. Communicate effectively addressing the complex engineering activities with documentation														
CO5							ne com	plex er	igineer	ing act	ivities	with do	ocumen	itation		
	report	ts and	proper	presen	tation t											
	T				(Mapp	ing							
COs	_		1 -	1 -	I _		Os	T _		T		1		PSOs	-	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2											2			
CO2																
CO3			3			2	2						3			
CO4									2							
CO5										3						
Average	3	2	3			2	2		2	3			2.5			

Subject:	SEMINAR	Subject Code:15MES86
	Course Outcomes	
CO1	Identify, formulate and analyze the complex engineering p study on basic principles of engineering sciences.	roblems through extornius literature
CO2	Evaluate, interpret, synthesize and conclude on the informatudy, physical observations and experimental data.	rmation so obtained through literature

CO3	enviro	onmen	t sustai	nability	y, safet	y, lega	l, cultu	ral etc	by com	sing the piling e throu	the kno	wledg	e so ac		
CO4	Prese	nt and	comr	nunica	te effe	ectively	y with	acqui		al and				tation	skills
CO5		addressing the complex engineering activities Pursue the need to Engage himself in the further learning throughout based on technological and societal changes													
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3		3	3	3	3			3		3	3		
CO2		3		3	3	3	3			3		3	3		
CO3		3		3	3	3	3			3		3	3		
CO4		3		3	3	3	3			3		3	3		
CO5		3		3	3	3	3			3		3	3		
Average		3		3	3	3	3			3		3	3		

Coordinator

HOD

Head of the Department
Department of Merhanica Engineering
SUS Institute of fechnology
Kengeri, Bengaluru-560 060