

Sri AdichunchanagiriShikshana Trust (R)

SJB Institute of Technology

(Affiliated to Visvesvaraya Technological University, Belagavi& Approved by AICTE, New Delhi.)

Department of Mechanical Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

2017 - 2021 Batch

2017- Scheme

Semester-I/II

Subject: 1	ELEMI	ENT O	F MEC	CHAN	ICAL I	ENGIN	IEERII	NG		Subj	ect Co	de: 17E	ME15	/25	
						Cour	rse Ou	tcome	S						
CO1	Recog	gnize d	ifferen	t sourc	es of e	nergy a	and the	ir conv	ersatio	n proce	ess and	differe	ent type	es of bo	oilers.
CO2	Demo	onstrate	the va	irious t	urbine	s and I	C engi	nes.							
CO3	Discu	cuss Metal removal process using Lathe, drilling, Milling Robotics and Automation. r understanding of application and usage of various engineering materials.													
CO4	Fair u	r understanding of application and usage of various engineering materials.													
CO5	Expla	ir understanding of application and usage of various engineering materials. plain the refrigeration and air-conditioning systems													
					(CO-PO)-PSO	Mapp	ing						
Cos						P	Os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	2	2													
CO3	3	3													
CO4	3	2													
CO5	2	3													
Average	2.6	2.4	_												

Subject:	COMP	UTER	AIDE	D ENC	SINEE	RING	DRAW	/ING		Subj	ect Co	de: 17C	ED14	/24	
						Cou	rse Ou	tcome	S						
CO1			_								-	m, Refe & line		planes	s, BIS
CO2	Unde	rstand	the Or	thograp	ohic pr	ojectio	ns of P	oints i	n all th	e four	quadra	nts and	llines	in first	angle
CO3				_					surfac	es in d	lifferen	t posit	ions b	y chan	ge of
CO4		position method using first angle projections. Understand the Orthographic projections of prisms, pyramids, regular tetrahedron, Hexahedron, cylinders and cones in different positions using first angle projections. Identify the Development of lateral surfaces of prisms, pyramids, cylinders and cones.													
CO5		•			of late of Poly		faces o	of prisn	ns, pyr	amids,	cylind	ers and	cones	S.	
					(CO-PC)-PSO	Mapp	ing						
Con						P	Os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	_													
CO2		3													
CO3			3		3							1			

CO4				3				1		
CO5				3				1		
Average	3	3	3	3				1		

Semester-III

Subject: 1	Engine	ering N	Mathen	natics-I	II					Subj	ect Co	de: 17N	IAT31		
						Cou	rse Ou	tcome	S						
CO1	Knov	the us	se of pe	riodic	signals	s and Fo	ourier s	series to	o analy	ze circ	uits and	d syster	ns con	nmunic	ation.
CO2	_		_	l linear ransfor	•		•	contino	ous - tir	ne sign	als and	d digita	l signa	al proce	essing
CO3	Empl	oy app	ropriat	e nume	erical r	nethod	s to so	lve alg	ebraic	and tra	nscede	ntal equ	uation	s.	
CO4		,		orem, l gnetic	_	-						arious : s.	applic	ations	in the
CO5	Utiliz	the the	concep		functio	onal ar	nd thei	r varia	tions	in the	applic	for calc ations			
				•	(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject: 1	MATE	RIALS	SCIE	NCE						Subj	ect Co	de: 17N	/IE32		
						Cou	rse Ou	tcome	S						
CO1	Descr	ribe cry	stal stru	ictures,	mecha	nical pr	opertie	s of me	tals, the	ir alloy	s and v	arious n	nodes o	f failur	e.
CO2	Discu	ss mecl	hanism	of solic	lificatio	n of en	gineeri	ng mate	rials.						
CO3	Asses	s the str	ructural	and phy	ysical p	ropertie	es of eng	gineerir	ng mater	rials thr	ough va	arious h	eat treat	tment p	rocess
CO4	Propo	ropose alternate materials which are sustainable, economic and enable new product generation													
CO5		opose alternate materials which are sustainable, economic and enable new product generation receive various properties of composites, its application and to provide an alternate to conventional uctural materials													
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject:	BASIC THERMODYNAMICS	Subject Code:17ME33
	Course Outcomes	
CO1	Explain the fundamental of thermodynamics and evaluate thermodynamics system	energy interactions the boundary of
CO2	apply the knowledge of temperature scale and work and he process	eat interaction in thermodynamics

CO3												m and o		te the		
CO4	interp	ret the	behav	ior of p	oure su	bstance	es and	applica	ation in	praction	cal pro	blems.				
CO5									and ev	valuate	therm	odynan	nic pro	perties	of	
		al and real gas mixture using various relations CO-PO-PSO Mapping														
COs		CO-PO-PSO Mapping POs PSOs														
COS	1															
CO1	3												2			
CO2	3	2											2			
CO3	3	2											2			
CO4	3	2											2			
CO5	3	2											2			
Average	3	2											2			

Subject: 1	MECH	ANICS	S OF M	IATE	RIALS					Subj	ect Co	de:17N	/IE34		
						Cou	rse Ou	tcome	S						
CO1	Apply	y an en	gineeri	ing kno	owledg	ge to de	emonst	rate the	behav	iour of	materi	als			
CO2	_				k cylino conditio		d draw	a stres	s distril	oution	curve, a	also to	create ?	Mohrs	circle
CO3	Deter	ermine the various forces and moments in beams luate the dimensions of mechanical elements for various applications.													
CO4	Evalu	uate the dimensions of mechanical elements for various applications.													
CO5	Comp	npare different strain energy methods and theories of failures in design of machineries													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1												2	
CO2	1	2											2	2	
CO3	1	3											2	2	
CO4	2	3											2	2	
CO5	3	2												2	
Average	2.2	2.2											2	2	

Subject:	META	L CAS	TING	AND	WELD	ING				Subj	ect Co	de: 17N	1E35A		
						Cou	rse Ou	tcome	S						
CO1	Apply	y the ki	nowled	lge of v	various	metal	casting	g proce	sses th	at are u	ıseful i	n desig	ning s	ystem	
CO2	under	stand t	he con	cept of	variou	ıs meta	ıl casti	ng met	hods.						
CO3	Identi														
CO4	Discu														
CO5		escribe the Metallurgical aspects in Welding and inspection methods for the quality assurance of imponents made of casting and joining process													
					(CO-PC	-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		
CO2	2	2											2		
CO3	2	2	_										2		_
CO4	2	2	_										2		
CO5	2	2											2		

Subject: (COMP	UTER	AIDEI	D MA	CHINE	DRA	WING			Subj	ect Co	de:17N	1E36A		
						Cou	rse Ou	tcome	S						
CO1	To rea	ıd and ı	ındersta	and the	orthogr	aphic a	and sect	ional vi	ews of	various	machin	e comp	onents		
CO2	To de	velop 3	D mode	els usin	g mode	ling so	ftware's	8							
CO3	To pro	oduce 2	D draw	ings by	manua	ıl drafti	ng and	by usin	g drafti	ng pack	ages				
CO4	То сог	nstruct	assemb	ly draw	ings, p	art drav	vings a	nd Bill o	of mate	rials as j	per BIS	Conve	ntions		
CO5	To app	ply limi	its fits a	nd tole	rance to	all ass	semblie	s and pa	art draw	ings					
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2	2				2								2	2	
CO3	2				2								2	2	
CO4	2		2		2								2	2	
CO5	2											2	2		

Average

Subject: 1	MATER	IALS T	ESTINO	G LAB						Subj	ect Co	de: 17N	IEL37	A	
						Cou	rse Ou	tcomes	5						
CO1	Acqu	ire exp	erimer	ntation	skills i	n the fi	ield of	materia	al testii	ng					
CO2		lop th		al und	erstanc	ling of	f the r	nechar	nical p	roperti	es of	materia	als by	perfor	ming
CO3	Appl	y the k	nowled	lge to a	nalyze	a mate	erial fa	ilure aı	nd dete	rmine	the fail	ure ind	lucing	agents	
CO4	Appl	pply the knowledge of testing methods in related areas													
CO5	Unde	Inderstand how to improve structure/behavior of materials for various industrial applications.													
					(CO-PO	-PSO	Mappi	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1													
CO2	2	1	2									1	1		
CO3	1	2			2								1		
CO4	3												1		
CO5	2	1										1	1		
Average	2.4	1	2		2							1	1		

Subject: 1	FOUNI	DRY A	AND F	ORGIN	NG LA	В				Subj	ect Co	de:17N	1EL38	A	
						Cou	rse Ou	tcome	S						
CO1		fy the eability		ties of	mould	ing san	nd (Ten	ision, c	ompre	ssion, s	hear &	amp;			
CO2	Build	sand r	noulds	using	hand to	ools ,pa	atterns	and co	res						
CO3	Estim	d sand moulds using hand tools ,patterns and cores mate the raw material required for change of cross section and dimensions. nonostrate the forging operations													
CO4	Demo	onostra	ite the	forging	opera	tions									
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		2										3		
CO2	3		2										3		
CO3	3		2										3		
CO4	3		2										3		
Average	3		2										3		

Semester-IV

Subject:	ENGIN	IEERII	NG M	ATHEN	MATIC	CS-IV				Subj	ect Co	de:15N	1AT 41			
						Cou	rse Ou	tcome	S							
CO1					•		ntial ed	quation	s arisir	g in fl	ow pro	blems ı	ising s	single s	tep	
		nultiste														
CO2		-		•			-					ing to c	•			
					_		•			_		ar coor		•		
									-		-	potenti			•	
CO3			_		•					r trans	format	ion aris	ing in	aerofo	il	
						nd ima										
~~.		-		-	•			_	_	_	-	cessing,		•		
CO4	-	probability distributions and stochastic matrix connected with multivariate correlation problems														
		for feasible random events														
		Draw the validity of the hypothesis proposed for the given sampling distribution in accepting or rejecting the hypothesis, Definetransition probability matrix of a Markov chain and solve														
CO5										of a N	1arkov	chain a	and so	lve		
	probl	ems re	lated to	discre		meter										
	1					CO-PC		Mapp	ing					= ~ ~		
COs		1 -		1 -		1 -	Os		T _					PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2														
CO2	3	2														
CO3	3	2														
CO4	3	2														
CO5	3	2														
Average	3	2														

Subject: 1	KINEM	ATICS (OF MA	CHINER	Υ					Subj	ect Co	de: 17N	ME42		
•						Cou	rse Ou	tcome	s						
CO1	Ident	ify the	kinem	atic lin	k, kine	matic	pairs, c	hains,	mecha	nisms,	mobili	ty, and	inve	rsions.	
CO2	Deter		he velo	ocities a	and acc	celerati	ions of	linkag	es and	joints (of mec	hanism	s grapl	hical	
CO3		•		nstein's crank m	-						d acce	leratio	ns by a	nalytic	al
CO4		nalyse different cams and sketch the cam profiles for various motions of the follower, motion paracteristics.													
CO5	Evalu														
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												1		
CO2	2												2		
CO3	2	3											2		
CO4	2	2											2		
CO5	2	2											2		
Average	2.2	2.3											1.8		

Subject:	APPLI	ED TH	IERMO	DDYN	AMIC	S				Subj	ect Co	de: 17N	1E43			
						Cou	rse Ou	tcome	S							
CO1	Aı	oply th	ermod	ynamio	conce	epts to	analyz	e the p	erforn	nance c	of gas p	ower c	ycles i	ncludir	ng	
CO1							propul	sion sy	/stems	•						
CO2	Evalua	te the p	perform	ance o	f steam	turbin	e, IC en	gines a	nd effe	ct of po	llution	on envir	onmer	nt.		
CO2	Detern	nine pe	rforma	nce par	ameter	s, princ	iples ar	nd appl	ications	of refr	igeratio	n systei	ms refr	igeratio	n and	
CO3	air-cor	ditioni	ng syste	ems.												
CO4	Analyz	alyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating ds in an air conditioning system.														
CO4	loads i	ads in an air conditioning system.														
CO5	Under	nderstand the working, applications, relevance of air and identify methods for performance														
COS	improv	provement.														
					(CO-PC)-PSO	Mapp	ing							
COs		1	1		1	P	Os			1		_		PSOs	1	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												2			
CO2	3	2											2			
CO3	3	2					1						2			
CO4	3	2				1	1						2			
CO5	3	2											2			
Average	3	2				1	1						2			

Subject: 1	FLUID	MECI	HANIC	CS						Subj	ect Co	de:17N	1E44		
						Cou	rse Ou	tcome	S						
CO1	Know	v about	variou	ıs basic	fluid	proper	ties an	d about	the be	havior	of flui	d when	it is a	t rest.	
CO2				ncepts ces act			ow a fl	uid be	haves	when i	t is in	motion	with	and wi	thout
CO3	Defin fluid		arious	types	of flov	v, and	can de	escribe	the en	ergy lo	sses th	at occi	ırs in j	pipes d	uring
CO4	Expla foil.	Explain the development of boundary layer and about the basic concepts of lift and drag of an aero-													
CO5															
	1				(Mapp	ing					700	
COs			I _				Os			1	1	1	_	PSOs	1
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3										3		
CO2	3	3	3										3		
CO3	3	3	3										3		
CO4	3	3	3										3		
CO5	3	3	3										3		
Average	3	3	3										3		

Subject:	MACHINE TOOLS AND OPERATIONS	Subject Code:17ME45B
	Course Outcomes	
CO1	Demonstrate the construction & specification of machin	e tools
CO2	Demonstrate the various machining processes pertaining piece	to relative motions between tool and work

CO3	Choo	se the	right c	utting	tool m	aterials	s and c	utting	fluids,	also to	evalua	ate cutt	ing too	ol parai	neter	
003	for di	fferent	machi	ning o _l	peratio	ns										
CO4					_	-				_	me &	to estir	nate ca	alculato	or the	
CO4	vario	us forc	es & p	ower re	equirer	nent in	metal	cutting	g opera	tion						
CO5	Analy	ze too	l wear	mecha	nism a	nd equ	ations	to enha	ance to	ol life a	and mi	nimize	machi	ning co	st	
					(CO-PC)-PSO	Mapp	ing							
COs		POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3															
CO2	3															
CO3	3	2														
CO4	3	2	1													
CO5	3	2	1													
Average	3	2	1													

Subject: 1	MECH.	ANICA	L MEA	SURE	MENT	SAND	METR	OLOG'	Y	Subj	ect Co	de:17N	1E46B		
						Cou	rse Ou	tcome	8						
CO1		erstand t us meas					y, meth	ods of	measu	rement	, stand	ards of	measu	remen	t &
CO2		erstand					nd the v	vorkin	g of co	mparat	ors				
CO3		ribe me ds and a		nent of	major	& min	or diar	neter, j	oitch, a	ngle ar	nd effe	ctive di	ametei	of scr	ew
CO4		Explain measurement systems, transducers, intermediate modifying devices and terminating evices Understand the measurement of force, Torque and Pressure													
CO5	Unde	Inderstand the measurement of force, Torque and Pressure													
					(CO-PC	-PSO	Mapp	ing						
Coa						P	os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2	1										2		
CO3	3	1											2		
CO4	3			_									2		
CO5	3												2		
Average	3	1.67	1										2		

Subject: 1	MECHA	NICAI	L MEAS	SUREM	IENTS A	AND M	IETROI	LOGY I	LAB	Subj	ect Co	de:17N	1EL47	В	
						Cou	rse Ou	tcome	S						
CO1		erstan omete		librati	ion o	f pre	ssure	gaug	ge, th	ermoc	couple	, LV	DT,	load	cell,
CO2		•			Measu using			_		g Sine r set	e Cen	tre/ S	ine I	Bar/ B	Bevel
CO3		Demonstrate measurements using Optical Projector/Tool maker microscope, Optical flats and mechanical comparator Analyze Screw thread parameters using 2-Wire or 3-Wire method, gear tooth profile													
CO4		Analyze Screw thread parameters using 2-Wire or 3-Wire method, gear tooth profile using gear tooth Vernier/Gear tooth micrometer													
CO5	Anal	yse to	ol for	ces us	sing L	athe/I	Orill to	ool dy	namo	meter					
	•	•			(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		

CO4	3	2						2	
CO5	3	1						2	
Average	3	1.8						2	

Subject:	MACH	IINE S	HOP							Subj	ect Co	de:17N	1EL48	В	
					C	Course	Outco	mes							
CO1		rstandi sories	_					and m	nilling 1	machin	es and	variou	S		
								Food de	anth of	out on	d to alim	o for t	, ani a 11 a		
CO2		ining o				_	-		epui oi	cut and	1 100111	ig for v	arious		
									turnin	g, tapei	turnin	g, step	turnin	g,	
CO3	thread	d cuttir	ıg, faci							entric 1					
		cutting time To work on shaping machine, to do the different shaping operations like plain shaping.													
		To work on shaping machine, to do the different shaping operations like plain shaping,													
CO4	_	eyway cutting, indexing and gear cutting and to demonstrate in power hacksaw machine													
	for sp	ecime	n prepa	ration	in mac	hine sl	nop								
					CO	-PO-P	SO Ma	apping							
COa						P	Os						PS	Os	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	3	2											2		
Average	3	2											2		

Semester-V

Subject: 1	MANA	AGEME	ENT AI	ND EN	IGINE	ERIN	G ECO	NOMI	CS	Subj	ect Co	de:17N	ME51		
						Cou	rse Ou	tcome	s						
CO1	Expla	in the d	evelopn	nent of	manag	ement a	and the	role it p	olays at	differe	nt level	s in an o	organiz	ation	
CO2		orehend ization	the prod	cess an	d role o	of effect	tive plai	nning, o	organizi	ng and	staffing	g for the	develo	pment	of an
CO3	contr	rstand tl ol in an	organiz	ation			•								
CO4		rstand e em solv		ing eco	nomics	deman	nd suppl	y and i	ts impo	rtance i	n econo	omic de	cision 1	naking	and
CO5	Calcu	ılate pre	sent wo	rth, anı	nual wo	orth and	IRR fo	r differ	ent alte	rnative	s in eco	nomic d	decision	n makin	g
COs							Os	Mapp	ing					PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														
CO ₂	2														
CO3	3											1			
CO4	3	2													
CO5	2	2			_						1				
Average	_										1				

						Cou	rse Ou	tcome	s						
CO1		y the conobiles	_	s of sta	tic and	dynan	nic bala	ancing	of reci	procati	ng and	l rotatii	ng mas	sses on	
CO2				•						er cran oratory				•	
CO3		yze the		ty of go	overno	rs , gyı	oscopi	c effec	ets on s	hips, p	lane di	sc, aero	plane	es,	
CO4	Disti	nguish	differe	nt type	s of vi	bratory	syster	ns							
CO5	Form	ulate n	nathem	atical e	equatio	ons for	dampe	d and ı	ındamı	ped vib	ratory	system			
	•				(CO-PC	-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2		1	3										2		
CO3		2	2										2		
CO4	2	1	2										2		
CO5		2	3									2	2		
Average	2	1.5	1.5									2	2		

Subject:	TURBO	O MAC	CHINE	S						Subj	ect Co	de:17N	1E53		
						Cou	rse Ou	tcome	S						
CO1	`			-			hine a			nless v	ariable	s for a	ı giver	n dyna	mical
CO2	Comp	rehend	the sign	nificanc	e of sta	tic and	stagnat	ion pro	perties	for turb	ines an	d compi	ressors.		
CO3	Sumr	narize	the Eul	ler's eq	uation	to ana	lyze en	ergy tr	ansfer	in turb	omachi	ines.			
CO4		y the rmance		-	ngles f	or ste	am tur	bines	and h	ydrauli	c turb	ines to	estin	nate va	arious
CO5	Perfor	m the p	relimin	ary des	ign of	centrifu	gal pun	nps and	centrif	ugal co	mpresso	ors.			
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3										3		
CO2	3	3	3										3		
CO3	3	3	3										3		
CO4	3	3	3										3		
CO5	3	3	3										3		
Average	3	3	3										3		

Subject:	DESIG	N OF	MACH	IINE E	LEME	ENTS -	I			Subj	ect Co	de: 17N	1E54		
						Cou	rse Ou	tcome	S						
CO1	Apply	the co	ncept	s of str	esses f	or 1-d,	2-D ar	nd 3-D	elemer	nts					
CO2		ılate; aı ious loa	•	stresses	and st	rains in	machir	ne elem	ients, p	ermane	nt and	tempor	ary joii	nts subj	ected
CO3	Analyz	ze and o	design 1	for stati	ic, fatig	ue and	impact	strengt	h, pern	nanent	and ten	nporary	joints		
CO4	Evalua	te the	stresse	s in the	eleme	nts such	า as Gea	ars, cot	ter and	knuckle	e joint,	keys an	d coup	lings	
CO5	Design	n and d	evelopi	ment of	the sy	stems r	elated t	to the f	acilitatio	on of th	e existi	ng syste	em des	igns	
						CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

CO1	3	3								
CO2	3	3								
CO3	3	2	3		1					
CO4	3	3								
CO5	2	2	2		1					
Average	2.8	2.6	2.5		1					

Subject:	NON T	RADI	TIONA	AL MA	CHIN	ING				Subj	ect Co	de:171	ME554		
						Cou	rse Ou	tcome	S						
CO1	unders	stand tl	ne diffe	erence	betwee	n tradi	tional a	and no	n-tradi	tional r	nachin	ing pro	cess,	its need	d and
COI	their a	pplicat	tions												
CO2	Identif princip	•	ariables	involve	ed in w	ater jet	machin	ing and	abrasiv	ve jet m	achinin	g, and	also its	working	2
CO3	Recogn	nize the	differe	nt elem	ents th	at affec	t the wo	orking o	of chem	ical and	electro	o-chem	ical ma	chining.	
CO4	Identif	y the pa	aramete	rs that i	influenc	ce the w	orking	of elec	trical di	scharge	machi	ning.			
CO5	Analys	se the m	nechani	sm and	workin	g princ	iple of p	olasma	arc and	laser be	eam ma	chining	3 .		
					(CO-PC)-PSO	Mapp	ing						
COs			_	_	_	P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2	2	
CO2	2	2												2	
CO3		2											2		
CO4	2								_						
CO5		2													
Average	2	2											2	2	

Subject:	AUTO	MATIO	ON AN	ID RO	BOTIC	CS				Subj	ect Co	de:17N	1E563		
						Cou	rse Ou	tcome	S						
CO1	To id	entify j	potenti	al area	s for au	ıtomat	ion and	d justify	y need	for au	tomatio	on			
CO2	To se	lect su	itable r	najor c	ontrol	compo	onents 1	require	d to au	tomate	a prod	cess or	an acti	vity	
CO3		To select suitable major control components required to automate a process or an activity To design various types of robots based on application & determine the various kinematics and nverse kinematics for different robots													
CO4	To an	alyse	the ope	erators	of tran	slation	ıs, rota	tions aı	nd tran	sforma	tions fo	or the r	obots		
CO5	To p	ropose	solutio	n to p	roblem	s pecu	liar to l	Robot 1	Prograi	mming	Langu	iages			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2			1												

CO3		2	2						
CO4		2							
CO5		2						2	
Average	2	2	1.5					2	

Subject:	FLUID	MEC	HANIC	CS & N	1ACH	INERY	LAB			Subje	ect Co	de:17N	1EL57		
						Cou	rse Ou	tcome	S						
CO1	Perfo	rm exp	erimer	nts to d	etermi	ne the	coeffic	ient of	discha	rge of f	low m	easurin	ıg devi	ces.	
CO2	Cond	uct exp	perime	nts on l	nydrau	lic turb	oines ar	nd pum	ps to d	raw ch	aracter	istics.			
CO3		lest basic performance parameters of hydraulic turbines and pumps and execute the nowledge in real life situations. Determine the energy flow pattern through the hydraulic turbines and pumps													
CO4	Deter	etermine the energy flow pattern through the hydraulic turbines and pumps													
CO5	Exhib	xhibit his competency towards preventive maintenance of hydraulic machines													
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3							3				3		
CO2	3	3							3				3		
CO3	3	3							3				3		
CO4	3	3							3				3		
CO5	3	3							3				3		
Average	3	3							3				3		

Subject:	ENER	GY LA	В							Subj	ect Co	de:17N	1EL58		
						Cou	rse Ou	tcomes	5						
CO1	Perfo	rm exp	erime	nts to d	etermi	ne the	propert	ies of l	Fuels a	nd Oils	s.				
CO2	Draw engin		aractei	ristic di	iagram	of Va	lve Tim	ning an	d Port	openin	g in Int	ernal (Combu	stion	
CO3				nts on l engines		l Com	bustion	engine	es to de	etermin	e perfo	rmanc	e parai	neters	of
CO4	Evalu	ate the	perfo	rmance	of a N	Aulti cy	ylinder	Interna	ıl comb	oustion	engine) .			
CO5															
					(CO-PC)-PSO	Mappi	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2											2		
CO3	3	2							2				2		
CO4	3	2							2				2		
CO5													2		
Average	3	2							2				2		

Semester-VI

Subject:	FINITE ELEMENT ANALYSIS	Subject Code:17ME61
	Course Outcomes	
CO1	Demonstrate the basic concepts of Finite Element methods with its po	otential applications.
CO2	Interpret the use of the basic finite elements for structural application	s using truss, beam, frame, and plane elements.
CO3	Derive element matrix equation by different methods by applying bas	ic laws in mechanics.

CO4		use of panics and			l finite e	lement s	oftware	to solve	engine	ering pro	blems i	n Solid 1	mechani	cs, fluid	
CO5		ment fin calculation				simple p	roblems	s such as	beam a	nalysis a	and 1-D	heat cor	nduction	either b	У
					(CO-PO	-PSO	Mappi	ing						
COs							Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	2												2		
CO3	1	3											2		
CO4	3	2											2		
CO5		2	3		2								2		
Average	2.25	2.333	3		2								2		

Subject: (COMP	UTER	INTE	GRATI	ED MA	ANUFA	ACTUI	RING		Subj	ect Co	de:17N	1E62		
						Cou	rse Ou	tcome	S						
CO1	Expla	in the	CAD,	CAM,	CNC,	CIM a	nd Flex	kible M	Ianufac	cturing	Systen	1.			
CO2	Unde	rstand	the Ro	botic a	pplicat	ion in	proces	sing, as	ssembl	y and i	nspecti	on.			
CO3	Desci	ribe the	Addit	ive ma	nufact	uring a	nd IO7	Γ.							
CO4	Apply	y the C	NC pro	ogramr	ning, C	CAPP a	and Lin	e bala	ncing f	or man	ufactui	ring.			
CO5	Analy	pply the CNC programming, CAPP and Line balancing for manufacturing. nalyze the production rate, capacity utilization and material flow in automatedManufacturing.													
					(CO-PC)-PSO	Mapp	ing						
Cos						P	os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												3		
CO2	3												3		
CO3	3												3		
CO4	3	2											3		
CO5	3												3		
Average	3	2											3		

Subject:	HEAT TRANSFER	Subject Code:17ME63
	Course Outcomes	
CO1	Comprehend the modes of heat transfer and apply basic law solve steady state heat transfer problems	vs of heat transfer to formulate and

CO2	_						insula finita a		•		able th	ermal o	conduc	tivity o	of	
CO3							transfe n probl		oredict	the ten	nperatu	ıre dist	ributio	n using	5	
CO4	Interp	Interpret and compute forced, free convection heat transfer.														
CO5	_	design heat exchangers using LMTD and NTU methods and explain the concept of condensation and boiling of liquids.														
		CO-PO-PSO Mapping														
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3										3			
CO2	3	3	3										3			
CO3	3	3	3										3			
CO4	3	3	3										3			
CO5	3	3	3										3			
Average	3	3	3										3			

Subject: 1	DESIG	N OF	MACH	IINE E	LEME	NTS -	II			Subj	ect Co	de:17N	/IE64			
						Cou	rse Ou	tcomes	S							
CO1								ms, cyli								
CO2				-	•			equired	•							
CO3										nic load	s and a	pply in	real life	applica	ition	
CO4							_	ic loads								
CO5	Carry	out the	design	of jour						t and cl	noice o	f ball ar	id rollei	bearin	gs	
		CO-PO-PSO Mapping POs PSOs														
COs	1	2	12	1		3										
	1	2 3 4 5 6 7 8 9 10 11 12 1 2														
CO1	3	3	2		2											
CO2	2	2 3 2														
CO3	3	3	2										2			
CO4	3	3											2			
CO5	3	3											2			
Average	3	3	2										2			

Subject:	AUTOMOBILE ENGINEERING	Subject Code:17ME655										
	Course Outcomes											
CO1	Apply the knowledge of engineering fundamenta complex engineering problems	I related to automobile engines to solve the										

CO2										systen aramete				sion on	the
CO3				_				_		y syster eering p			suppor	t systei	ns
CO4	To incorporate the contextual knowledge of standards and norms to address the safety and legal issues related to automobiles in ones professional engineering practice														
CO5	demonstrate the knowledge of standards and norms towards automobile pollution and respective control system to address environment and sustainability issues														
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												1		
CO2	1	2											1		
CO3	3												1		
CO4						2									
CO5						1	2								
Average	2.33	2				1.5	2						1		

Subject:	META:	L FOR	MING	r						Subj	ect Co	de: 17M	IE653			
						Cou	rse Ou	tcomes	S							
CO1	Under	rstand	the me	chanisı	m invo	lved in	deform	nation	for dif	ferent i	netal f	orming	process			
CO2	Interp condi		ferent	variable	es affe	cting th	ne meta	ıl form	ing pro	ocess ui	nder di	fferent	working			
CO3		Analyze forging, rolling, drawing, & extrusion metal forming process based on parameters of pressure, load and friction Apply the knowledge of sheet metal forming for production of components														
CO4	Apply	Apply the knowledge of sheet metal forming for production of components														
CO5		Understand the methods involved in HERF & powder metallurgy process with their application of usage														
					(CO-PO	-PSO	Mappi	ing							
COa						P	Os						PS	SOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3												2			
CO2	2												2			
CO3	2	2											2			
CO4	2	2											2			
CO5	2												2			
Average	2.2	2											2			

Subject:	INDUS	TRIA	L SAF	ETY						Subj	ect Co	de:17N	/IE662		
						Cou	rse Ou	tcome	S						
CO1	Apply work		nowled	lge of	safety]	parame	ters, fi	re figh	ting de	vices to	be im	plemei	nted in	the	
CO2	Analy	Analyze the cause and types of fire accidents and formulate remedial actions													
CO3		Analyze probable accident prone activities and implement proper PPE while working on machines and chemical plant													
CO4		ify the ential a				nd forn	nulate 1	remedi	al meas	sures w	ith safe	ety pre	cautior	ıs at bo	th
CO5					_	standar e in ris			_	issues t	oward	s safety	in on	es	
						CO-PC)-PSO	Mapp	ing						
COs						P	Os		•					PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

CO1			2					
CO2	3							
CO3	3							
CO4	3							
CO5			2			1		
Average	3		2			1		

Subject:	HEAT	TRAN	SFER	LAB						Subj	ect Co	de:17N	1EL67			
						Cou	rse Ou	tcome	S							
CO1	Perfor	m expe	riments	s to dete	ermine	the the	rmal co	nductiv	ity of a	metal r	od and	emissiv	ity of a	test pla	ate	
CO2	Estim	ate the	effectiv	e therm	al resis	stance i	n comp	osite sla	abs and	efficier	cy in p	in-fin				
CO3		•	eriment n theore			conve	ctive he	at trans	fer coe	fficient	for free	and fo	rced co	nvectio	n and	
CO4	Deteri	Determine Boiling of Liquid and Condensation of Vapour and Estimate the performance of a refrigerator														
CO5	Calculate temperature distribution of study and transient heat conduction through a plane wall, cylinder and fin															
	CO-PO-PSO Mapping															
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3										3			
CO2	3	3	3										3			
CO3	3	3	3										3			
CO4	3	3	3										3			
CO5	3	3	3										3			
Average	3	3	3										3			

Subject:	MODE	LING	AND A	ANAL`	YSIS I	LAB(F	EA)			Subj	ect Co	de:17N	1EL68			
						Cou	rse Ou	tcome	S							
CO1	Analy	ze the	structu	ıral me	mbers	like ba	ars, trus	sses, ar	nd bear	ns for o	lifferer	nt loads	S.			
CO2	Deter	Determine the stresses in plates under plane stress conditions. Solve for temperature distribution in 1D and 2D members under conduction and														
СОЗ	Solve for temperature distribution in 1D and 2D members under conduction and convection heat transfer. Analyze bars and beams for dynamic response															
CO4	Analyze bars and beams for dynamic response															
	Triaryze bars and beams for dynamic response															
	_				(CO-PC)-PSO	Mapp	ing							
C						P	Os							PSOs		
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3		3							3	3	3		
CO2	3	3	3		3							3	3	3		
CO3	3	3	3		3							3	3	3		
CO4	3	3	3		3							3	3	3		
CO5																
Average	3	3	3		3							3	3	3		

Semester-VII

Subject: ENERGY ENGINEERING		Subject Code:17ME71
	Course Outcomes	

CO1	Summa	arize th	e basic	concep	ts of th	ermal e	energy s	ystems	;							
CO2	Identif	y renev	vable e	nergy s	ources	and the	eir utiliza	ation								
CO3	Unders	stand th	ne basio	conce	ots of so	olar rac	liation a	nd ana	lyze the	e workir	ng of so	lar PV a	and the	rmal sy	stems.	
CO4		Understand principles of energy conversion from alternate sources including wind, geothermal, ocean, piomass, and biogas. Understand the concepts and applications of fuel cells, thermoelectric convertor and MHD														
CO5		Understand the concepts and applications of fuel cells, thermoelectric convertor and MHD generator. Identify methods of energy storage for specific applications.														
					(CO-PC)-PSO	Mapp	ing							
Cos						P	Os							PSOs		
Cos	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	3												2			
CO2	3						2						2			
CO3	3						2						2			
CO4	3						1						2			
CO5	3						2						2			
Average	3						1.75						2			

Subject: 1	FLUID	POW	ER SY	STEM	S					Subj	ect Co	de:17N	1E72		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	the bas	ic con	cepts (princip	les) of	workii	ng and	mainte	nance	of fluid			
COI	power	r syste	m with	its pot	ential	applica	tions.								
CO2			constr									uid pov	ver		
CO2	syster	ns viz.	hydrai	ulic and	d pneu	matic p	oumps,	motor	s and c	ylinder	S.				
CO3	Demo	emonstrate the functioning of control valves for obtaining desired output from fluid													
	_	ower systems.													
CO4		ormulate (construct) the hydraulic and pneumatic circuits for various outputs													
CO5	_		id pow	•		th elect	rical a	nd logi	c elem	ents, co	ontrols	to mai	ntain		
CO3	the se	quenc	e of ope	eration											
					(CO-PO		Mapp	ing						
COs			•			P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	2	2											2		
CO3	2												2		
CO4	1		2		2								2		2
CO5	2	_	3	_	2							1	2		2
Average	2	2	2.5		2							1	2		2

Subject: CONTROL ENGINEERING		Subject Code:17ME73
	Course Outcomes	

CO1	Identi	fy con	trol sys	stem &	its typ	es,con	trol act	ions							
CO2	Deter	imine t	he sys	tem go	verning	g equat	tions fo	or phys	ical mo	odes					
CO3	Analy	ze the	gain o	f the sy	stems	using l	block d	liagran	ns & SF	FG					
CO4	Evalu	ate the	stabili	ty of tr	ansfer	function	ons in o	comple	x doma	ain &fr	equenc	y dom	ain		
CO5	Empo	Evaluate the stability of transfer functions in complex domain & frequency domain Empoly state equations to study the controlability & observability													
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2			1								1	1		
CO2	2	2											1		
CO3	2	2											1		
CO4	2	2	1										1		
CO5	1	1	1									1	1		
Average	1.8	1.4	1	1								1	1		

Subject: S	SMAR	Т МА	ΓERIA	LS & N	MEMS)				Subj	ect Co	de: 17N	1E745		
						Cou	rse Ou	tcome	S						
CO1	Disci	uss sn	nart st	ructur	es, pi	ezoele	ectric	prope	rties, a	and sh	ape n	nemor	y allo	ys	
CO2	-	•	-	pertie on rea					electi	o, ma	gneto	rheol	ogical	fluid	S
CO3	Anal	Analyze vibration absorbers and characteristics of Biomimetics Understand intrinsic characteristics and properties of MEMS, piezoelectric sensing,													
CO4				nsic c		teristi	cs and	l prop	erties	of MI	EMS,	piezoe	electri	c sens	ing,
CO5	Sum	mariz	e poly	mers	in MI	EMS a	and its	case	studie	S					
					(CO-PC	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2											2		
CO3	3												2		
CO4	2	2											2		
CO5	3	2											2		
Average	2.8	2			•								2		

Subject:	MECH	ATRO	NICS							Subj	ect Co	de: 17N	1E754		
						Cou	rse Ou	tcome	8						
CO1	Illust	rate va	rious c	ompon	ents of	mecha	atronic	s syste	n						
CO2			ctronic				tic an e	lectrica	l actuat	tion circ	uits usi	ng , sen	sors, tr	ansduc	ers,
CO3	Const	struct hydraulic and pneumatic circuits using Automation studio software													
CO4	Propo	ose a so	olution	for the			ated to		•	ystem					
	1)-PSO	Mapp	ıng				1		
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3												2	2	
CO3	3	2	2										2	2	
CO4	3	2											2		

Subject:	DESIC	GN LA	В							Subje	ect Co	de: 17N	MEL76		
						Cou	rse Ou	tcome	S						
CO1	Anal	yze prin	cipal st	resses, s	strains i	n mem	bers sul	ojected	to vario	us load	ing usi	ng Strai	in Gaug	e Roset	tes
CO2		ate the	parame des	ters for	single	DOF of	vibrati	onal sy	stems a	nd iden	tify crit	tical spe	eed of sl	haft for	
CO3		nate the	parame ses	ters of j	ournal	bearing	g, gover	nor and	apply t	the know	wledge	of dyna	amics to	balanc	e the
CO4	Appl	y the co	ncept of	f photo	elastici	ty for s	tress an	alysis a	nd to ca	alibrate	photo	elastic 1	nodels		
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2										2	1		
CO3	3	2	2										1		
CO4	3	2											2		

Average

Subject: (CIM L	AB								Subj	ect Co	de:17N	1EL77		
						Cou	rse Ou	tcomes	S						
CO1	Gener	ate CN	C Lathe	e part p	rograms	s for dif	fferent t	urning	operatio	ons.					
CO2	Gener	ate CN	C Mill	Part pro	grams	for poi	nt to poi	int moti	ons & 1	ine mo	tions				
CO3		Iake use of Canned Cycles for Drilling, Peck drilling, Boring, Tapping, Turning, Facing, Taper turning hread cutting etc. imulate Toolpath for different machining operations using CNC TRAIN software.													
CO4	Simul	ate Too	lpath fo	or diffe	rent ma	chining	operati	ions usi	ng CNC	CTRAI	N softw	vare.			
					(CO-PC)-PSO	Mappi	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2			2												
CO3						2	2								
CO4									2	2					
Average	3	2	2			2	2		2	2					

Semester-VIII

Subject: (OPER A	ATION	IS RES	EARC	H					Subje	ect Co	de:17N	/IE81		
						Cou	rse Ou	tcome	S						
CO1	Apply	the si	gnifica	nce of	Operat	ions R	esearc	h in de	cision r	naking	and id	entify	and de	velop	
										n probl					
CO2							-			rent re					
CO3	_	nize an		ulate a	transpo	rtation	and as	signme	nt mod	el and c	btain c	ptimal	solutio	n with a	all th
CO4				_				•		or detei /M/1 ar					
CO5	Deter	mine m	inimun	n proce	•	nes for	sequer	ncing of	n jobs-	der con 2 mach	•				
					(CO-PO		Mapp	ing						
COs		ı	1	1	1		Os	ı	ı	1		ı		PSOs	1
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2	2										2		
CO3	3	2	2										2		
CO4	3	2	2										2		
CO5	3	2	2										2		
Average	3	2	2							 			2		

Subject:	ADDIT	TIVE M	IANU.	FACTU	JRINC	j				Subj	ect Co	de:17N	1E82		
_						Cou	rse Ou	tcome	S						
CO1	Apply	y the ki	nowled	lge of A	Additiv	e Man	ufactu	ring an	d Rapi	d Proto	typing	techno	logies		
CO2	Choo	se vari	ous na	nomate	rial's p	oroduc	tion tec	chnique	es						
CO3	Deve	lop NC	mach	ine pro	gram										
CO4		mate th us appl	-	•	analyz	ing the	requir	ed type	e of Pn	eumatio	c and h	ydrauli	ics Sys	tems in	1
CO5	Decid techn		ypes o	f Indus	trial co	ontrols	require	ed, Em	ploy va	arious r	nateria	l chara	cteriza	tion	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2		2													
CO3			2												
CO4				2									2		
CO5				2											
Average	3	2	2	2									2		

zazjecu i	PRODI	UCT L	IFE CY	YCLE :	MANA	(GEM)	ENT			Subj	ect Co	de: 17N	1E835		
						Cou	rse Ou	tcome	S						
CO1	Point	out the	e Comp	onents	s, Phas	es, Cha	aracter	istics, a	nd Op	portuni	ties, be	enefits,	Views	5,	
COI	feasit	oility, v	ision a	nd Dri	vers of	PLM.				_					
CO2	l l	se Con and PI	-	lizatio	n, Desi	gn, De	velopn	nent, V	alidati	on, Pro	ductio	n, impl	ementa	ation o	f
CO3		ılate thation ar		-		• •				ign for	r envi	ronmer	nt, virt	ual te	sting
CO4		yze the ing cur				_	ı, optir	nizatio	n of pro	oducts,	Digita	l manu	facturi	ng, vir	tual
	1														
CO5	Evalu	iate th								_	orate	objecti	ves Ir	ıfrastrı	ıctur
CO5	Evalu				f curre	nt syste	ems an	d appli	cations	_	orate	objecti	ives Ir	nfrastru	actur
	Evalu				f curre	nt syste	ems an	d appli	cations	_	oorate	objecti	ves Ir	nfrastru PSOs	
COs	Evalu				f curre	nt syste	ems an	d appli	cations	_	oorate 11	objecti	ives Ir		
	Evalu	sment,	assessi	ment o	f curre	nt syste	ems an D-PSO Os	d appli Mapp	ing	S				PSOs	
COs	Evaluasses:	sment,	assessi	ment o	f curre	CO-PO Po	ems an D-PSO Os	d appli Mapp	ing	S				PSOs	
COs CO1	Evaluassess	sment,	assessi	ment of	f curre	CO-PO Po	ems an D-PSO Os	d appli Mapp	ing	S	11		1 1	PSOs	
COs CO1 CO2	Evaluassess 1 3 3	sment,	assessi	ment of	f current	CO-PO Po	ems an D-PSO Os	d appli Mapp	ing	S	11		1 1 1	PSOs	
COs CO1 CO2 CO3	Evaluassess 1 3 3 3	sment,	assessi	ment of	f current 5	CO-PO Po	ems an D-PSO Os	d appli Mapp	ing	S	11	12	1 1 1	PSOs 2	

Subject: 1	NTER	NSHIE)							Subje	ect Co	de:17N	1E84		
						Cou	rse Ou	tcome	S						
CO1	engin	eering	proble	ms.					nd IT to						
CO2			e the co			_	to acc	ess soc	cietal, ł	nealth,	safety a	and cul	tural is	ssues	
CO3	Contribute through engineering solutions for the sustainable development in societal and environmental context and exercise professional ethics, norms, standards and responsibilities in engineering practice. Effectively work as a team member as well as a leader while demonstrating the knowledge of project														
CO4															
CO5	and d prepa	eliverii ration :	ng clea	r instru to eng	ictions	in the	profes	sional	rt writi enviror long lea	nment a	and rec	ognize	the ne	ed & h	
					(CO-PC	-PSO	Mapp	ing						
Con						P	os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1				2								2	2	
CO2						2							2		
CO3							2	2							
CO4									3		3				
CO5										3		3		2	
Average	1				2	2	2	2	3	3	3	3	2	2	

Subject: PROJECT PHASE II	Subject Code:17ME85
Course Outcomes	

	Revie	Review the research literature, identify and analyze the complex engineering problems, formulate														
CO1	the sustainable conclusions or solutions using the basic principles of applied mathematics, science															
	and e	nginee	ring													
CO2	engin envir	eering onmen	proble tal area	ms in c ıs.	concern	n with	the issu	ues of p	oublic l	existing nealth ,	safety	societa	l, cultu	ral and		
	Practice and establish the professional engineering methodology for sustainable development in															
CO3	the society to address the complex engineering problems associated with societal and environmental factors.															
CO4							k toget	her as	a team	in the p	project	under	consid	eration	l	
	under multi disciplinary settings.															
CO5	Communicate effectively addressing the complex engineering activities with documentation reports and proper presentation tools.															
	report	ts and p	oroper	presen			DOO.	3.7								
	I				()-PSO	Марр	ıng					DGG		
COs	POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2											2			
CO2																
CO3			3			2	2						3			
CO4									2							
CO5										3						
Average	3	2	3			2	2		2	3			2.5			

Subject: SEMINAR									Subject Code:17MES86							
						Cou	rse Ou	tcome	S							
CO1	Reviewing of advanced or recent technologies in the field of mechanical engineering															
CO2	Investigate and study the literature of recent technologies from various sources															
CO3	Skill to write detailed technical report describing the gained knowledge.															
CO4	Enhances the effective communication and presentation skill.															
CO5																
					(CO-PO)-PSO	Mapp	ing							
COs	POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1		3											3			
CO2		3											3			
CO3										3		3	3			
CO4										3			3			
CO5																
Average		3								3		3	3			

Coordinator

HOD

Head of the Department
Department of Meritanical Engineering
SUS Institute of Fechnology
Kengeri, Bengaluru-560 060