

SJB Institute of Technology

(Affiliated to Visvesvaraya Technological University, Belagavi& Approved by AICTE, New Delhi.)

Department of Mechanical Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

2019 - 2023 Batch

2018 Scheme

Semester-I/II

Subject: 1	ELEMI	ENT O	F ME	CHAN	ICAL I	ENGIN	VEERI	NG		Subj	ect Co	de: 18E	ME15	/25	
						Cou	rse Ou	tcome	S						
CO1	Reco	gnize d	ifferen	t sourc	es of e	nergy a	and the	ir conv	ersatio	n proce	ess and	differe	ent type	es of bo	oilers.
CO2	Demo	onstrate	e the va	arious t	urbine	s and I	C engi	nes.							
CO3	Discu	iss Met	al rem	oval pr	ocess	using L	Lathe, o	drilling	, Millii	ng Rob	otics a	nd Aut	omatic	n.	
CO4	Fair u	understanding of application and usage of various engineering materials.													
CO5	Expla	plain the refrigeration and air-conditioning systems													
	Explain the refrigeration and air-conditioning systems CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	2	2													
CO3	3	3													
CO4	3	2													
CO5	2	3													
Average	2.6	2.4													

Subject: 1	ENGIN	IEERI	NG GR	APHI	CS					Subj	ect Co	de: 18E	GDL1	5/25	
						Cou	rse Ou	tcomes	3						
CO1	Analy	ze ort	hogona	ıl proje	ction tl	heory,	dimens	sions aı	nd ann	otation	s in en	gineeri	ng drav	wing	
CO2	Deve	lop eng	gineeri	ng drav	vings a	ıs per E	BIS cod	les and	conve	ntions					
CO3	Comp	ompose manual and computerized drawings using 2D and 3D modeling software packages uild geometric objects using Isometric and development concepts													
CO4	Build	uild geometric objects using Isometric and development concepts CO-PO-PSO Mapping													
					(CO-PO)-PSO	Mappi	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	3												
CO2	3				3										
CO3	3				3										
CO4	3				3										
Average	3				3										

Semester-III

Subject:	Engineering Mathematics-III	Subject Code:15MAT31								
	Course Outcomes									
CO1	Know the use of periodic signals and Fourier series to	analyze circuits and systems communication.								

CO2			genera ourier ti					contino	us - tir	ne sign	als and	d digita	l signa	l proce	ssing	
CO3	Empl	oy app	ropriat	e nume	erical r	nethod	s to sol	ve alge	ebraic	and tra	nscede	ntal eq	uations	J.		
CO4					_	•						arious : s.	applica	itions i	n the	
CO5	Utiliz	Determine the extermals of functional and solve the simple problems for calculus of variations. Utilize the concepts of functional and their variations in the applications of communication systems, decision theory, synthesis and optimization of digital circuits. CO-PO-PSO Mapping														
		systems, decision theory, synthesis and optimization of digital circuits.														
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2														
CO2	3	2														
CO3	3	2														
CO4	3	2														
CO5	3	2														
Average	3	2														

Subject: 1	MECH	ANIC	S OF N	ЛАТЕ	RIALS					Subj	ect Co	de: 181	ME32			
						Cou	rse Ou	tcome	S							
CO1	Apply	y an en	gineer	ing kno	owledg	ge to de	emonstr	ate the	e behav	iour of	mater	ials				
CO2				and thic			and dra	aw a s	tress d	istribut	ion cu	rve, als	so to c	reate N	I ohrs	
CO3	Deter	mine t	11													
CO4	Evalu	ate the	te the dimensions of mechanical elements for various applications.													
CO5	Comp	pare different strain energy methods and theories of failures in design of machineries CO-PO-PSO Mapping														
						CO-PC)-PSO	Mapp	ing							
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	1												2		
CO2	1	2											2	2		
CO3	1	3											2	2		
CO4	2	3											2	2		
CO5	3	2												2		
Average	2.2	2.2											2	2		

Subject:	BASIC	THER	RMOD	YNAN	1ICS					Subj	ect Co	de:18N	1E33		
						Cou	rse Ou	tcome	S						
CO1	_		dament mic sys		thermo	dynam	nics and	d evalu	ate ene	rgy int	eractio	ns acro	ss the	bounda	ary of
CO2	11.				dynami ropertie		closed	and op	en syst	tems ar	nd dete	rmine	quantit	ty of en	nergy
CO3	Apply	y the ki	nowled	lge of e	entropy	and 2	nd law	of the	modyr	namics	to solv	ve num	erical	probler	ns.
CO4		Apply the knowledge of entropy and 2nd law of thermodynamics to solve numerical problems. Interpret the behavior of pure substances and its application in practical problems, reversibility and preversibility to solve numerical problems. Evaluate thermodynamic properties of ideal and real gas mixtures using various relations.													
CO5	Evalu	ate the	rmody	namic	proper	ties of	ideal a	nd real	gas m	ixtures	using	various	relatio	ons.	
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2											2		
CO3	3	2											2		_
CO4	3	2	1										2		
CO5	3		1										2		

Subject: 1	MATE	RIAL	SCIEN	ICE						Subj	ect Co	de: 18N	1E34		
						Cou	rse Ou	tcome	S						
CO1		rstand ations	the fun	dament	als of s	tructure	and be	havior	of engi	neering	materia	als for v	arious	mechan	ical
CO2	Analy	se the	various	modes	of failu	ire of ei	ngineeri	ing mat	erial						
CO3	Asses		ructura	and ph	ysical _j	properti	es of er	ngineer	ing mat	erials th	rough	various	heat tre	atment	
CO4		ive vari ural ma	•	operties	of con	nposites	, its app	olicatio	n and to	provid	e an alt	ernate t	o conve	entional	-
CO5	Propo	ose alte	rnate m	aterials	which	are sust	tainable	e, econo	mic an	d enable	new p	roduct g	generat	ion	
						CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2		2											2		
													2		
CO3	3					+	 	1	1	1	-	t	1		
CO3 CO4	3	2											2		
	3	2											2 2		

Subject: 1	META	L CUT	TING	AND :	FORM	ING				Subj	ect Co	de: 181	ME35 <i>A</i>	A	
						Cou	rse Ou	tcome	S						
CO1	Apply	y the ki	nowled	lge of r	netal c	utting	using b	asic m	achine	tools f	ro the p	product	ion of	compo	nents
CO2		se the i	_	_	nateria	l and f	luids a	nd also	evalua	ate cutt	ing too	ol parar	neters	for dif	ierent
CO3						f wear	and we	ear rate	and al	so disc	uss the	econo	mics o	f mach	ining
CO4	Apply	ocess of various cutting tool oply the knowledge of sheet metal forming for production of components origin different sheet metal dies for simple sheet metal components													
CO5	Desig	Design different sheet metal dies for simple sheet metal components													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1										2		
CO2	3	2											2		
CO3	3	2	1										2		
CO4	3	2											2		
CO5	3	2											2		
Average	3	2	1										2		

Subject:	COMPUTER AIDED MACHINE DRAWING Course Outcomes To read and understand the orthographic and sectional views of various machine components To develop 3D models using modeling software's To produce 2D drawings by manual drafting and by using drafting packages To construct assembly drawings, part drawings and Bill of materials as per BIS Conventions To apply limits fits and tolerance to all assemblies and part drawings CO-PO-PSO Mapping POS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 2 2 2 3														
						Cou	rse Ou	tcome	s						
CO1	To re	ad and	unders	stand th	e orth	ograph	ic and	section	al view	s of va	rious 1	nachin	e comp	onents	3
CO2	To de	velop	3D mo	dels us	ing mo	deling	softwa	are's							
CO3	To pr	oduce	2D dra	wings	by mar	nual dr	afting a	and by	using c	lrafting	g packa	ges			
CO4	To co	construct assembly drawings, part drawings and Bill of materials as per BIS Conventions													
CO5	To ap	7 7 7													
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2	2				2								2	2	
CO3	2				2								2	2	

CO5	2											2	2			
Average	2		2		2							2	2	2		
Subject:	MATE	RIAL	TESTI	NG LA	AΒ					Subj	ect Co	de: 181	ME37 <i>A</i>	4		
						Cou	rse Ou	tcomes	S							
CO1	Acqu	ire exp	erimen	tation	skills i	n the f	ield of	materi	al testii	ng						
CO2		evelop theoretical understanding of the mechanical properties of materials by performing periments														
CO3	Apply	oply the knowledge to analyze a material failure and determine the failure inducing agents														
CO4	Apply	y the k	nowled	ge of t	esting	method	ds in re	lated a	reas							
CO5	Unde	rstand	how to	impro	ve stru	cture/b	ehavio	or of m	aterials	for va	rious ii	ndustri	al appl	ication	s.	
					(CO-PC)-PSO	Mapp	ing							
CO-						P	Os		_					PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	1														
CO2	2	1	2									1	1			

CO3

CO4

CO5

Average

2.4

Subject:	WOR	KSHO	P AND) MAC	HINE	SHOP	PRAC	TICE		Subj	ect Co	de: 181	ME38/	A	
						Cou	rse Ou	tcome	S						
CO1		rstand nments	_	al parts	s of la	the, sh	aping	and m	illing	machin	es and	variou	is acce	essorie	s and
CO2	Selec opera		ng para	meters	like cı	itting s	peed, 1	feed, d	epth of	cut, ar	nd tooli	ing for	variou	s mach	ining
CO3												ning, st stimate			hread
CO4			chining tting a					shapin	g, incli	ned sha	aping,	keyway	y cuttir	ng, Ind	exing
CO5	_	ire fitti drills e	_	lels acc	cording	to dra	wings 1	using h	and too	ols- V-l	olock, 1	marking	g gaug	e, files,	hack
					(CO-PO)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	3	2											2		
CO5	3	2											2		
Average	3	2											2		

Subject:	CONSTI	TUTION (OF INDIA	, PROFES	SSIONAL	ETHICS	AND CY	BER LAW	7	Subj	ect Co	de: 181	ME39		
						Cou	rse Ou	tcome	S						
CO1	Have	constit	tutiona	l know	ledge a	and leg	al liter	acy.							
CO2	Unde	rstand	Engine	ering a	and Pro	ofessio	nal eth	ics and	respon	sibiliti	es of E	nginee	rs.		
CO3	Unde	lerstand Engineering and Professional ethics and responsibilities of Engineers. lerstand the cybercrimes and cyber laws for cyber safety measures. CO-PO-PSO Mapping													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3										3	2		
CO2	3	3										3	2		

CO3	3	3					3	2	
Average	3	3					3	2	

Semester-IV

Subject: I	Engine	ering N	Mathen	natics-l	[V					Subj	ect Co	de: 18N	1AT41		
						Cou	rse Ou	tcome	S						
CO1															
CO2															
CO3															
CO4															
CO5															
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
Average															

Subject:	APPLI	ED TH	IERMO	DDYN	AMIC	S				Subj	ect Co	de:18N	1E42		
						Cou	rse Ou	tcome	S						
CO1	Appl	y thern	nodyna	mic co	ncepts	to ana	lyze th	e perfo	rmance	e of gas	spowe	r cycles	S.		
CO2	Appl	y thern	nodyna	mic co	ncepts	to ana	lyze th	e perfo	rmance	e of vap	our po	wer cy	cles.		
CO3	Unde	erstand	combu	stion o	f fuels	and pe	erforma	ance of	I C en	gines.					
CO4		•	modyna g systei		oncept	s to det	termine	e perfo	rmance	param	eters o	f refrig	eratio	n and a	ir-
CO5	Understand the working principle of Air compressors and Steam nozzles, applications, relevance of air and identify methods for performance improvement CO-PO-PSO Mapping														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2	2												2		
CO3	2	2											2		
CO4	2	2	1										2		
CO5	2	2	1										2		
Average	2	2	1										2		

Subject: FI	UID MECHANICS	Subject Code:18ME43
	Course Outcom	nes
CO1	Identify and calculate the key fluid properties	used in the analysis of fluid behavior. Explain
COI	the principles of pressure, buoyancy and float	ation
CO2	Apply the knowledge of fluid statics, kinema	ics and dynamics while addressing problems
CO2	mechanical and chemical engineering.	
CO3	Describe the principles of fluid kinematics ar	d dynamics.
CO4	Explain the concept of boundary layer in flui-	l flow and apply dimensional analysis to for
C04	dimensionless numbers in terms of input outp	out variables.
CO5	Illustrate and explain the basic concept of con	npressible flow and CFD

					(CO-PC)-PSO	Mapp	ing						
COs							POs							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3										3		
CO2	3	3	3										3		
CO3	3	3	3										3		
CO4	3	3	3										3		
CO5	3	3	3										3		
Average	3	3	3										3		

Subject:	KINEN	MATIC	S OF N	ИАСН	INES					Subj	ect Co	de:18N	ЛЕ44			
						Cou	rse Ou	tcome	S							
CO1	Ident	ify the	kinema	atic linl	k, kine	matic p	pairs, c	hains,	mechai	nisms,	mobili	ty, and	inver	sions.		
CO2	Deter meth		he velo	cities a	and acc	celerati	ons of	linkag	es and j	joints o	of mech	nanism	s graph	nical		
CO3		-	Freuder slider c							ities an	d accel	leratio	ns by a	nalytic	al	
CO4		Analyse different cams and sketch the cam profiles for various motions of the follower, motion characteristics. Evaluate the velocity ratio and torque in various types of gear trains.														
CO5	Evalı	Evaluate the velocity ratio and torque in various types of gear trains.														
					(CO-PO	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												1			
CO2	2												2			
CO3	2	3											2			
CO4	2	2											2			
CO5	2	2											2			
Average	2.2	2.3											1.8			

Subject: 1	META:	L CAS	TING	AND V	WELD	ING				Subj	ect Co	de:18N	1E45B		
						Cou	rse Ou	tcome	S						
CO1	Descr	ibe the	castin	g proc	ess and	d prepa	re diffe	erent ty	pes of	cast pr	oducts	•			
CO2	Comp	are the	e Gas f	ired pit	t, Resi	stance,	Corele	ss, Ele	ctrical	and Cu	ıpola N	Ietal F	urnace	s.	
CO3	Unde	rstand	the Sol	lidifica	tion pr	ocess a	and Cas	sting o	f Non-	Ferrous	Metal	.S			
CO4	Describe the Metal Arc, TIG, MIG, Submerged and Atomic Hydrogen Welding processes etc. used in manufacturing Describe methods for the quality assurance of components made of casting and joining process CO. PO. PSO Manning														
CO5															
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3												2		
CO3	3	2											2		
CO4	3												2		
CO5	3	2											2		
Average	3	2											2		

Subject: 1	MECHANICAL MEASUREMENTS AND METROLOGY	Subject Code:18ME46B
	Course Outcomes	
CO1	Understand the objectives of metrology, methods of measur	rement, standards of measurement &
COI	various measurement parameters	

CO2	Unde	rstand l	limits,	fits and	d tolera	ance ar	nd the v	vorkin	g of co	mparat	ors					
CO3		ribe me ds and a		nent of	major	& min	or diar	neter, j	oitch, a	ngle ar	nd effe	ctive di	amete	r of scr	ew	
CO4	Expla devic	ain mea es	surem	ent sys	tems, t	ransdu	cers, ir	nterme	diate m	odifyir	ig devi	ces and	l termi	nating		
CO5	Unde	rstand 1	the me	asurem	nent of	force,	Torque	and P	ressure)						
	Understand the measurement of force, Torque and Pressure CO-PO-PSO Mapping POs PSOs															
COs		POs PSOs														
COS	1	POS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	3	2											2			
CO2	3	2	1										2			
CO3	3	1											2			
CO4	3												2			
CO5	3												2			
Average	3	1.67	1					_					2			

Subject: 1	MECHA	ANICAI	L MEAS	SUREM	ENTS.	AND M	IETROI	LOGY I	LAB	Subj	ect Co	de: 18N	1EL47	В	
						Cou	rse Ou	tcome	S						
CO1	Unde	erstand	the C	alibrat	tion of	pressi	ure ga	uge, th	ermoc	ouple,	LVD	Τ, load	cell,	microi	meter
CO2		y cond ment u							Sine	Centre	e/ Sine	e Bar/	Bevel	Protra	actor,
CO3		onstrat nechai				sing (Optical	Proje	ctor/T	ool ma	ıker m	icrosc	ope, C	Optical	flats
CO4		Determine the screw thread parameters using gear tooth profile using gear tooth Vernier/Gear tooth micrometer													
CO5	Anal	Analyse tool forces using Lathe/Drill tool dynamometer													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	3	2											2		
CO5	3	1											2		
Average	3	1.8											2		

Subject: 1	FOUN	DRY, I	FORG	ING A	ND W	ELDIN	NG LA	В		Subj	ect Co	de:18N	MEL48	В	
						Cou	rse Ou	tcome	S						
CO1	Identi	ify the	proper	ties of	mould	ing sar	nd (Ter	sion,c	ompres	sion,sh	ear&p	ermeal	oility)		
CO2	Build	sand r	noulds	using	hand t	ools ,p	atterns	and co	res						
CO3	Estim	ate the	e raw n	naterial	l requii	red for	change	e of cro	ss s ec	tion an	d dime	nsions			
CO4	Demo	emonostrate the forging operations													
CO5															
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		2										3		
CO2	3		2										3		
CO3	3		2										3		
CO4	3		2										3		
Average	3		2										3		

Semester-V

Subject:	MAN	AGEM	ENT A	ND EC	CONO	MICS				Subj	ect Co	de: 18N	1E51		
						Cou	rse Ou	tcomes	S						
CO1			levelopn												
CO2	organ	ization	the prod												
CO3			he neces organiza	•	good le	eadersh	ip, com	munica	tion an	d coord	ination	for esta	blishing	g effect	ive
CO4	Understand engineering economics demand supply and its importance in economic decision making and problem solving														
CO5	Calcu	č													
					(Os	Марр	ing					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2	2												2		
CO3	3											1	2		
CO4	3	2											2		
CO5	2	2									1		2		
Average	2.4	2									1	1	2		

Subject: 1	DESIG	N OF	MACH	IINE E	LEME	NTS I				Subje	ect Co	de:18N	/IE52			
						Cou	rse Ou	tcome	S							
CO1	Apply	the co	ncepts o	of select	tion of	materia	ls for gi	iven me	chanic	al comp	onents					
CO2	List th	ne funct	ions an	d uses o	of mach	ine ele	ments u	sed in 1	nechan	ical syst	tems.					
CO3			and star r's catal		n the d	esign o	f machi	ne elen	nents an	id select	an elei	nent ba	sed on	the		
CO4			oerform ng using						al comp	onents	subjecto	ed to co	mbined	l loadin	g and	
CO5			the app wer scr							esign of	machi	ne com	ponents	like sh	afts,	
CO6	Under	rstand t	he art o	f worki	ng in a	team										
					(CO-PC	-PSO	Mapp	ing							
Cos		CO-PO-PSO Mapping POs PSOs														
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3											2			
CO2	3	3											2			
CO3	3	2	3										2			
CO4	3	3											2			
CO5	2	2	2										2			
CO6	2	2	2										2			
Average	2.7	2.5	2.3										2			

Subject:	DYNAMICS OF MACHINES	Subject Code:18ME53
	Course Out	comes
CO1	Estimate the forces and couples for four bars and si equilibrium	lider crank mechanisms to keep the system in
CO2	Analyze and estimate balancing of rotating & recip	procating masses in same and different planes

CO3	Apply	ing pri	nciples	of gove	ernors a	nd gyro	scope a	and its a	applicati	ions						
CO4	Analy	ze diff	erent m	odes of	vibratio	on for d	amped	vibratio	on with	single c	legree o	of freed	om syst	ems		
CO5	Comp	are mo	des of v	ibratio	n for fo	rced an	d damp	ed vibra	ation wi	ith sing	le degre	e of fre	edom s	ystems		
		CO-PO-PSO Mapping														
COs		POs PSOs														
COS	1 2 3 4 5 6 7 8 9 10 11 12 1 2													2	3	
CO1													2			
CO2	2	2											2			
CO3	3	3											2			
CO4	2	2											2			
CO5	2	2	2										2			
Average	2	2	2										2			

Subject:	ΓURΒ	O MAC	CHINE	S						Subj	ect Co	de:18N	/IE54		
						Cou	rse Ou	tcome	s	•					
CO1	Mode	l studie	s and th	ermody	ynamics	s analys	sis of tu	rbo ma	chines.						
CO2	Analy	ze the e	energy t	ransfer	in Turt	o mac	hine wit	th degre	ee of rea	action a	nd utiliz	zation f	actor.		
CO3	Classi	fy, anal	lyze and	d under	stand va	arious t	ype of s	steam t	ırbine.						
CO4	Classi	fy, anal	lyze and	d under	stand va	arious t	ype of l	nydraul	ic turbi	ne.					
CO5	Under operat		he conc	ept of r	adial po	ower at	sorbing	g machi	ne and	the prob	olems in	volved	during	its	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3										3		
CO2	3	3	3										3		
CO3	3	3	3										3		
CO4	3	3	3										3		
CO5	3	3	3										3		
Average	3	3	3										3		

Subject:	FLUID	POW	ER EN	GINE	ERINC	j				Subj	ect Co	de: 18N	ЛЕ55		
						Cou	rse Ou	tcome	S						
CO1			he basio lication		pts (pri	nciples)	of wor	king an	d main	tenance	of fluic	l power	system	with it	S
CO2			construcic pump					d outpu	ıt eleme	ents of f	luid po	wer sys	tems vi	z. hydra	aulic
CO3	Demonstrate the functioning of control valves for obtaining desired output from fluid power systems.														
CO4	Formulate (construct) the hydraulic and pneumatic circuits for various outputs Integrate fluid power system with electrical and logic elements, controls to maintain the sequence of														
CO5	Integr operat		d power	r systen	n with 6	electrica	al and lo	ogic ele	ments,	controls	to mai	ntain th	e seque	nce of	
					(CO-PC)-PSO	Марр	ing						
CO.						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	2	2											2		
CO3	2												1		
cos			_		2								2	2	
CO4	1		2										_	_	
	1 2		3		2							1	2	2	

Subject: OPERATIONS MANAGEMENT	Subject Code:18ME56
Course Outcomes	

Average	3	3										1	3	2	
CO5	3	3										1	3	2	
CO4	3	3										1	3		
CO3	3	3										1	3		
CO2	3	3	2									1	3	2	
CO1	3	3										1	3		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
							0s	мтарр	ıng					PSOs	
CO5					g and S	upply (ustry, vo Chain M D-PSO	Ianager	nent (S		using	Materia	ı Kequı	rement	
CO4	mathe	matical	technic	ques as	applied	l to pro	duct an	d proce	ss indus	stries.		narting t			
CO3	manag	gement	enviro	nment.			•				•	ng techn	•	•	
CO2	decisi	on mak	ing and	forecas	sting te	chnique	es.					nent sys			
CO1	organ	izationa	al opera	tions								d effect			
				amenta											ring

Subject: 1	FLUID	MEC:	HANIC	CS/MA	CHIN	ES LA	В			Subj	ect Co	de:18N	IEL57			
						Cou	rse Ou	tcome	S							
CO1	Perfo	rm expe	eriments	s to dete	ermine	the coe	fficient	of disc	harge of	f flow n	neasurir	ng devic	ces.			
CO2	Cond	uct expe	eriment	s on hy	draulic	turbine	s and p	umps to	draw c	haracte	ristics.					
CO3	Deter	Determine the frictional losses for flow through pipe. Apply the momentum equation for determination of coefficient of impact of iet on vanes.														
CO4	Apply the momentum equation for determination of coefficient of impact of jet on vanes.															
CO5	Test the performance of reciprocating air compressor and air blower. CO-PO-PSO Mapping															
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	1											2			
CO2	3	2							1				2			
CO3	3	1											2			
CO4	3	1											2			
CO5	3	2							1				2			
Average	3	1.4							1				2			

Average	3	1.4							1				2			
Subject:	ENER	GY CC	NVEF	RSION	LAB					Subje	ect Co	de:18N	1EL58			
						Cou	rse Ou	tcomes	S							
CO1	Perfo	rm exp	erimen	its to d	etermii	ne the	propert	ies of l	Fuels a	nd Oils	S.					
CO2	Cond	uct exp	perime	nts on l	Interna	l Com	bustion	engine	es to de	etermin	e perfo	rmanc	e parai	neters.		
CO3	Ident	ify Exh	aust E	missio	n and f	actors	affection	ng then	n.							
CO4	Exhib	oit his c	compet	ency to	owards	prevei	ntive m	ainten	ance of	Intern	al Com	bustio	n engii	nes.		
CO5																
					(CO-PC)-PSO	Mapp	ing							
COs		CO-PO-PSO Mapping POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												2			
CO2	3	2											2			
CO3	3					1	1	1					2			
CO4	3											1	2			
CO5																
Average	3	2				1	1	1				1	2			

Subject:	ENVIF	RONM	ENTA	L STU	DIES					Subj	ect Co	de: 18C	IV59		
						Cou	rse Ou	tcome	S						
CO1			the pri	-	of eco	ology a	nd env	ironme	ental iss	sues tha	at apply	y to air	, land,	and wa	iter
CO2			tical thated to				ation s	skills, a	ınd app	oly then	n to the	e analy	sis of a	ı proble	em or
CO3		onstrate onents		gy kno	wledge	e of a c	omple	x relati	onship	betwee	en biot	ic and	abiotic	;	
CO4		•	_		•	ge to ill h comp		_	raph a	probler	n and o	describ	e the r	ealities	that
					(CO-PO	-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1						2									
CO2						2									
CO3						2									
CO4						2									
Average						2									

Semester-VI

Subject: FINITE ELEMENT METHODS	Subject Code:18ME61
Course Outcomes	

CO1		•	applicat		charac	teristics	of FE	A eleme	ents suc	h as bar	s, beam	ıs, plane	and is	0-	
			lements												
CO2	Deve	lop elei	ment cha	aracteris	stic equ	iation ai	nd gene	ration o	of globa	l equati	on.				
CO3	Form	ulate aı	nd solve	Axi-sy	mmetri	c and h	eat tran	sfer pro	blems						
CO4			ole boun d flow,							, trusse	s, beam	s, circu	lar shaf	ts, heat	
CO5	Solve	for fie	ld varia	bles in l	neat tra	nsfer , f	luid flo	w prob	lems, az	ki-symn	netric a	nd dyna	mic pro	oblems	
	<u> </u>				(CO-PC		Mapp	ing					DSO g	
COs	POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											2		
CO2	3	3											2		
CO3	3	2	3										2		
CO4	3	3											2		
CO5	2	2	2										2		
Average	2.8	2.6	2.5										2		

Subject: 1	DESIG	N OF	MACE	IINE E	ELEME	ENTS I	Ι			Subj	ect Co	de: 18N	1E62			
						Cou	rse Ou	tcome	S							
CO1	Apply ropes	design	princip	oles for	the des	ign of 1	mechan	ical sys	tem inv	olving	springs,	, belts, p	ulleys	and wir	e	
CO2	Desig	n differ	ent type	es of ge	ars and	simple	gear bo	oxes for	releva	nt appli	cations					
CO3	Under	stand t	he desig	gn princ	ciples o	f brake:	s and cl	utches								
CO4	~ ~ ~	Understand the design principles of brakes and clutches Apply design concepts of hydrodynamics bearings for different applications and select anti friction bearings for different applications using the manufacturers, catalogue Apply the engineering design tools to product design														
CO5	Apply	the en	gineerir	ng desig	gn tools	to prod	duct des	ign								
						CO-PC)-PSO	Mapp	ing							
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2													
CO2	2	3	2													
CO3	3	3	2													
CO4	3	3														
CO5	3	3														
Average	3	3	2													

Subject:	Heat tra	ansfer								Subje	ect Co	de:18N	1E63		
-						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	the mo	des of	heat tr	ansfer	and ap	ply the	basic	laws to	formu	late en	gineeri	ng syst	tems.
CO2		rstand ady sta					f heat t	ransfer	to exte	ended s	surface	, comp	osite m	aterial	and
CO3		ze hea radiati			_		erical r	nethod	s and a	pply th	e fund	amenta	l princ	iple to	
CO4	Analy	ze hea	t trans	fer due	to free	e and fo	orced c	onvect	ive hea	at trans	fer.				
CO5				_		ormanc Boiling		sis of l	neat ex	change	rs and	their p	ractica	1	
					(CO-PC	-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3										3		_
CO2	3	3	3										3		
CO3	3	3	3										3		

CO4	3	3	3					3	
CO5	3	3	3					3	
Average	3	3	3					3	

Subject: 1	NON-T	RADI	TION	AL MA	CHIN	ING				Subj	ect Co	de: 18N	1E641		
						Cou	rse Ou	tcome	S						
CO1							on-tradi	tional n	nachinii	ng proce	ess and	recogni	ze the	need for	•
CO1				hining											
CO2				truction ations o					ameters	, proces	s chara	cteristic	s, appli	ications	,
CO3												rith the o			
CO4				truction ages and					process	parame	ters, pr	ocess ch	naractei	ristics,	
CO5				I equiproplication								quipme	nt and 1	mechan	ism
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		
CO2	2	2											2		
CO3	2	2											2		
CO4	2	2											2		
CO5	2	2											2		
Average	2	2											2		

Subject:	ENTRI	EPREN	NEURS	SHIP D	EVEL	OPME	ENT			Subj	ect Co	de: 18N	ЛЕ646		
						Cou	rse Ou	tcome	S						
CO1	Under	stand t	he selec	tion, pr	ioritiza	tion and	d initiat	tion of i	ndividu	al proje	ects				
CO2		stand t zation.		egic rol	e of pro	oject ma	nagem	ent and	work b	reakdov	vn stru	cture by	integra	ating it	with
CO3		stand the stand the stand the standard the s		duling a	and unc	ertainty	in pro	jects; aı	nalyze r	isk man	agemei	nt plann	ning usi	ng proje	ect
CO4	Understand the activities like purchasing, acquisition, contracting, partnering and collaborations related to programming projects. Determine project progress and results scorecard, draw the network diagram to calculate duration of the														
CO5															
						CO-PO)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1					2		1	3	2	3	2	2		
CO2	1					2		1	3	2	3	2	2		
CO3	1					2		1	3	2	3	2	2		
CO4	1					2		1	3	2	3	2	2		
CO5	1	_				2		1	3	2	3	2	2		
Average	1					2		1	3	2	3	2	2		

Subject:	NON-CONVENTIONAL ENERGY SOURCES	Subject Code:18ME651
	Course Outcomes	
CO1	To introduce the concepts of solar energy, its radiation, coll	ection, storage and application.
CO2	To introduce the concepts and applications of Wind energy,	Biomass energy, Geothermal energy
CO2	and Ocean energy as alternative energy sources.	
CO3	To explore society's present needs and future energy deman	nds
CO4	To examine energy sources and conversion of energy include	ling non-renewable ,renewable energy
CO4	sources into useful energy .	

CO5	To ge	t expo	sed to	energy	conser	vation	metho	ds							
					(CO-PC	-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	11	12	1	2	3						
CO1	2	1										1	1		
CO2	2	1										1	1		
CO3	2	1										1	1		
CO4	2	1										1	1		
CO5	2	1										1	1		
Average	2	1										1	1		

Subject:	SUPPI	LY CH	AIN M	IANAC	GEME:	NT				Subj	ect Co	de: 18N	/IE653		
						Cou	rse Ou	tcome	S						
CO1	Under	rstand tl	he fram	ework a	and sco	pe of su	ipply cl	nain ma	nageme	ent					
CO2		and m			etitive	supply	y chain	using	strateg	ies, mo	dels, t	echniqı	ues and		
CO3	Anal	yze the	materi	al hand	dling to	ranspor	tation a	and tra	ffic ma	nagem	ent				
CO4	Plan	the den	nand, i	nvento	ry and	supply	and o	otimize	suppl	y chain	netwo	ork.			
CO5	Under	rstand tl	he emer	ging tre	ends an	d impa	ct of IT	on Sup	ply cha	in.					
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2											2			
CO2	2	2													
CO3	2														
CO4	2														
CO5	2	2										2			
Average	2	2										2			

Subject:	COMPI	UTER A	AIDED	MODE	ELLINC	3 AND	ANAL`	YSIS L	AB	Subj	ect Co	de:18N	IEL66		
•						Cou	rse Ou	tcomes	5						
CO1	Analy	ze the	structu	ıral me	mbers	like ba	ırs, trus	sses, an	ıd bear	ns for c	lifferen	t loads			
CO2	Deter	mine t	he stre	sses in	plates	under	plane s	tress co	onditio	ns.					
CO3			mperat neat tra		tributio	on in 1	D and 2	2D mei	nbers	under c	onduct	ion and	d		
CO4	Analy	yze bar	s and b	eams f	or dyn	amic r	espons	e							
					(CO-PC	-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3		3							3	3	3	
CO2	3	3	3		3							3	3	3	
CO3	3	3	3		3							3	3	3	
CO4	3	3	3		3							3	3	3	
Average	3	3	3		3							3	3	3	

Subject: 1	HEAT TRANSFER LAB	Subject Code:18MEL67
	Cours	e Outcomes
CO1		
CO2		
CO3		
CO4		

CO5															
					(CO-PC)-PSO	Mapp	ing						
COs							Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
Average															

Subject: 1	MINI-F	PROJE	CT							Subje	ect Co	de:18N	1EMP	58	
						Cou	rse Ou	tcome	S						
CO1	Practi	ce acq	uired k	nowle	dge wi	thin th	e chose	en area	of tech	nology	for pr	oject d	evelop	ment.	
CO2		•	cuss ar	3	fy the	technic	cal asp	ects of	the ch	osen pr	oject v	vith a c	compre	hensiv	e and
CO3	Reproduce, improve and refine technical aspects for engineering projects by applying the knowledge of design/solve complex engineering problems by the usage of modern tools. Work as an individual or in a team in development of technical projects.														
CO4	Work as an individual or in a team in development of technical projects.														
CO5	Communicate and report effectively project related activities and findings.														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	2			2									2		
CO3	2		2		3								2		
CO4	2								2				2		
CO5	2									2	2		2		
Average	2.8		2	2	3				2	2	2		2		

Subject:										Subj	ect Co	de:			
						Cou	rse Ou	tcome	S						
CO1															
CO2															
CO3															
CO4															
CO5															
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
Average															

Subject:	CONT	ROL E	ENGIN	EERIN	G					Subje	ect Co	de: 18N	ME71		
						Cou	rse Ou	tcome	S	•					
CO1	Ident	ify the	control s	system a	and its	types,	control	actions							
CO2		truct the	e system	n govern	ning eq	uations	for phy	sical m	odels(E	Electrica	l, Ther	mal, Mo	echanic	al, Elec	tro
CO3	Analy	ze the	gain of	the syst	em usii	ng blocl	k diagra	am and	signal f	low gra	ph				
CO4	Evalu	ate the	stability	y of Coi	ntrol sy	stem in	comple	ex doma	ain and	frequen	cy don	nain			
CO5	Empl	oy state	equation	ons to st	tudy the	e Bode'	s plot								
	•					CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2											1	1		
CO2	2	2	1										1		
CO3	2	2											1		
CO4	2	2	1									1	1		
CO5	1	2	1									1	1		
Average	1.8	1.6	0.6									1	1		

Subject: (COMPU	JTER A	AIDED	DESIG	N ANI) MAN	UFAC	ΓURIN	G	Subj	ect Co	de: 18N	/IE72		
						Cou	rse Ou	tcome	s						
CO1							-				en these	e conce	epts. So	olve sir	nple
COI				ormatic											
CO2				of auto				_	stries t	hrough	mathe	matica	l mode	els and	
				pes of											
CO3				ated flo											
CO4	_					1	1 1			facturii	ng and	able to	prepa	re part	
	1 0			e jobs o											
CO5				eciate t								e man	ufactui	ring	
	indus	try 4.0	and ap	plicati						ıfacturi	ng.				
					()-PSO	Mapp	ing				1		
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											1		
CO2	3	2											1		
CO3	3	2											1		
CO4	3	2			_								1		
CO5	3	2											1		
Average	3	2											1		

Subject:	TOTA	L QUA	LITY	MAN	AGEM	ENT				Subj	ect Co	de:18N	1E734		
						Cou	rse Ou	tcome	S						
CO1	Expla	in the	various	appro	aches	of TQN	M								
CO2	Infer	the cus	stomer	percep	tion of	quality	y								
CO3	Analy	yze cus	tomer	needs a	and per	ception	n to de	sign fe	ed bacl	k systei	ms				
CO4	Appl	y statis	tical to	ols for	contin	uous ir	nprove	ement o	of syste	ems					
CO5	Appl	y the to	ols and	l techn	ology	for effe	ective i	mprov	ement	of TQN	Л				
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2											1	1		

CO2	2	2					1	1	1		
CO3	2	2						1	1		
CO4	2						1	1	1	1	
CO5	2	2					1	1	1		
Average	2	2					1	1	1	1	

Subject: (OPER.	ATION	NS RES	EARC	H					Subje	ect Co	de:18N	/IE735		
						Cou	rse Ou	tcome	S						
CO1			gnifican verbal d						n makii	ng and i	dentify	and de	velop	mathen	natica
CO2	Obtai	n the so	olution o	of formu	ılated r	eal life	probler	n with	its inher	ent resc	ources a	and cons	straints	•	
CO3		gnize a	nd form	ulate a	transpo	ortation	and as	signme	nt mode	el and o	btain o	ptimal	solutio	n with	all th
CO4	Cons	truct n	etwork ashing o												work
CO5	Solve Deter	problemine n	ems on ninimun d 2 jobs	game the gam	heory f	for pure	e and r	nixed s	trategy of n job	under	compet	itive er	vironn	nent an	
					(CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2	2										2		
CO3	3	2	2										2		
CO4	3	2	2										2		
CO4	-							_					_		
CO5	3	2	2										2		
CO5		2	2 2										2		
CO5 Average	3	2	2			Cour	rse Ou	itcome	s	Subje	ect Co	de:18N	2		
CO5 Average	3 3 MECH	2 IATRO	2	ompone	ents of					Subje	ect Co	de:18N	2		
CO5 Average Subject: 1	3 MECH	IATRO	2 ONICS			Mech	atronic	s syste		Subje	ect Co	de:18N	2		
CO5 Average Subject: 1	3 MECH Illust Asse Design	IATRO rate va ss vari- gn and	2 ONICS arious c ous cor conduc	trol sys	stems i	Mechanist Mechanisms M	atronic autom aluate t	s systenation the per	ms. forman	ce of a	mecha	tronics	Z ME744		
CO5 Average Subject: 1 CO1 CO2	3 3 MECH Illust Asse Desig	rate vass varign and	2 ONICS arious cous corr	trol system of the system of t	stems in siments speci	Mechanist Mechanist Mechanism Mechan	atronic autom aluate t ns, as v	es systemation the perwell as	ms. formanto anal	ce of a	mecha	tronics	Z ME744		
CO5 Average Subject: 1 CO1 CO2 CO3	3 3 MECH Illust Asse Desig	rate vass varign and ponent y the p	DNICS arious cous conduction with re	ntrol system of experience to the system of the system of M	stems uriments o specifications	Mechanised in sto eva fication conics of	atronic autom aluate t ns, as v lesign	es systemation the periode well as	ms. formane to anal uct des	ce of a yse and	mecha	tronics	Z ME744		
CO5 Average Subject: 1 CO1 CO2 CO3 CO4	3 3 MECH Illust Asse Desig	rate vass varign and ponent y the p	DNICS arious concustor conduction with responsible concustors.	ntrol system of experience to the system of the system of M	stems uriments o speci lechatr embers	Mechanised in sto eva fication conics of	atronic autom aluate t ns, as v lesign	es systemation the per- well as to prod iplinar	ms. formand to anal luct des	ce of a yse and	mecha	tronics	Z ME744		
CO5 Average Subject: 1 CO1 CO2 CO3 CO4 CO5	3 3 MECH Illust Asse Desig	rate vass varign and ponent y the p	DNICS arious concustor conduction with responsible concustors.	ntrol system of experience to the system of the system of M	stems uriments o speci lechatr embers	Mechanist Mechan	atronic autom aluate t ns, as v lesign	es systemation the per- well as to prod iplinar	ms. formand to anal luct des	ce of a yse and	mecha	tronics	Z ME744		
CO5 Average Subject: 1 CO1 CO2 CO3 CO4	3 3 MECH Illust Asse Desig	rate vass varign and ponent y the p	DNICS arious concustor conduction with responsible concustors.	ntrol system of experience to the system of the system of M	stems uriments o speci lechatr embers	Mechanist Mechan	atronic autom aluate t ns, as v lesign altidisc	es systemation the per- well as to prod iplinar	ms. formand to anal luct des	ce of a yse and	mecha	tronics	Z ME744	m or	
CO5 Average Subject: 1 CO1 CO2 CO3 CO4 CO5	3 3 MECH Illust Asse Desig	rate vass varign and ponent y the ption ef	DNICS arious concustor conduction with responding fectives	et exper spect to es of M y as mo	riments o speci echatr embers	Mechanist Mechanist In Mechanis	atronic autom aluate t ns, as v lesign altidisc D-PSO Os	es systemation the perswell as to prodiplinar	ms. formane to anal luct des y teams	ce of a yse and ign.	mecha l interp	tronics	Z ME744 s systema.	m or	
CO5 Average Subject: 1 CO1 CO2 CO3 CO4 CO5	3 3 MECH Illust Asse Desig comp Appl Func	rate vass varign and ponent y the ption of	DNICS arious concustor conduction with responding fectives	et exper spect to es of M y as mo	riments o speci echatr embers	Mechanist Mechanist In Mechanis	atronic autom aluate t ns, as v lesign altidisc D-PSO Os	es systemation the perswell as to prodiplinar	ms. formane to anal luct des y teams	ce of a yse and ign.	mecha l interp	tronics	2 //E744 s systema.	m or	
CO5 Average Subject: 1 CO1 CO2 CO3 CO4 CO5	3 3 MECH Illust Asse Desig comp Appl Func	rate vass varign and ponent y the ption ef	DNICS arious concustor conduction with responding fectives	et exper spect to es of M y as mo	riments o speci echatr embers	Mechanist Mechanist In Mechanis	atronic autom aluate t ns, as v lesign altidisc D-PSO Os	es systemation the perswell as to prodiplinar	ms. formane to anal luct des y teams	ce of a yse and ign.	mecha l interp	tronics	2 //E744 s systema.	m or	
CO5 Average Subject: 1 CO1 CO2 CO3 CO4 CO5 COs CO1 CO2	3 3 MECH Illust Asse Desig comp Appl Func	rate vass varign and ponent y the ption of	DNICS arious concustor conduction with responding fectives	et exper spect to es of M y as mo	riments o speci echatr embers	Mechanist Mechanist In Mechanis	atronic autom aluate t ns, as v lesign altidisc D-PSO Os	es systemation the perswell as to prodiplinar	ms. formane to anal luct des y teams	ce of a yse and ign.	mecha l interp	tronics	2 //E744 s systema.	m or	
CO5 Average Subject: 1 CO1 CO2 CO3 CO4 CO5 COs CO1 CO2 CO3	3 3 MECH Illust Asse Desig comp Appl Func	rate vass varign and ponent y the ption of	DNICS arious concustor conduction with responding fectives	et exper spect to es of M y as mo	riments o speci echatr embers	Mechanist Mechanist In Mechanis	atronic autom aluate t ns, as v lesign altidisc D-PSO Os	es systemation the perswell as to prodiplinar	ms. formane to anal luct des y teams	ce of a yse and ign.	mecha l interp	tronics	2 //E744 s systema.	m or	3

Course Outcomes CO1 Understand the selection, prioritization and initiation of individual projects Understand the strategic role of project management.work breakdown structure by integrating	Subject:	PROJECT MANAGEMENT	Subject Code:18ME745
Understand the strategic role of project management work breakdown structure by integrating		Course Outcomes	
Understand the strategic role of project management.work breakdown structure by integrating	CO1	Understand the selection, prioritization and initiation of ind	lividual projects
with organization.	CO2		breakdown structure by integrating it

CO3			the sch		g and u	ıncerta	inty in	projec	ts. anal	yse ris	k mana	igemen	ıt planı	ning us	ing	
CO4		Understand the activities like purchasing, acquisitions, contracting, partnering and collaborations related to performing projects. Determine project progress and results through a balanced scorecard approach. draw the network diagram to calculate the duration of the project and reduce it using crashing.														
CO5		-					_						using c	crashin	g.	
					(CO-PO	-PSO	Mappi	ing							
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1					2		2	2	2	3	1	2			
CO2	1					2		2	2	2	3	1	2			
CO3	1					2		2	2	2	3	1	2			
CO4	1					2		2	2	2	3	1	2			
CO5	1					2		2	2	2	3	1	2			
Average	1					2		2	2	2	3	1	2			

Subject:	ENER(GY AN	ID EN	VIRO	NMEN	T				Subje	ect Co	de:18N	1E751			
						Cou	rse Ou	tcome	S							
CO1									energy	use, en	ergy e	fficienc	y, and	resulti	ng	
CO1		onment						11								
CO2									tion an							
CO3	To un	Γο understand the causes and remedies related to social issues like global warming, ozone layer depletion, climate change etc														
C03																
CO4						-		n and c	control	of poll	ution o	of water	r and a	ir, fore	st	
CO4	protec	o introduce various acts related to prevention and control of pollution of water and air, forest rotection act, wild life protection act etc.														
					(CO-PC	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	1										1	1			
CO2	2	1										1	1			
CO3	2	1										1	1			
CO4	2	1										1	1			
Average	2	1										1	1			

Subject: (COMPUTER INTEGRATED MANUFACTURING LAB	Subject Code:18MEL76
	Course Outcomes	
CO1	Generate CNC Lathe part programs for different turning operation	ns.
CO2	Generate CNC Mill Part programs for point to point motions & li	ne motions

CO3	Make	use of	Canned	Cycles	for Dr	illing, I	Peck dri	lling, B	oring, 7	Гарріпд	g, Turnii	ng, Fac	ing,Tap	er turni	ng
COS	Threa	ıd cuttii	ng etc.												
CO4	Simu	late To	ol Path f	for diffe	erent ma	achinin	g opera	tions us	sing CN	C TRA	IN soft	ware.			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											3		
CO2			3										2		
CO3						2	2								
CO4									2	2					
Average	3	2	3			2	2		2	2			2.5		

Subject:	DESIC	N LA	В							Subj	ect Co	de:181	MEL77		
						Cou	rse Ou	tcome	S						
CO1	Analy	ze prin	cipal st	resses, s	strains i	in mem	bers su	bjected	to vario	us load	ing usi	ng Strai	n Gaug	e Roset	tes
CO2		ate the ent mod	1	ters for	single	DOF of	f vibrati	ional sy	stems a	nd iden	tify crit	tical spe	ed of sl	naft for	
CO3		nate the	•	ters of j	journal	bearing	g, gover	nor and	apply t	he knov	wledge	of dyna	amics to	balanc	e the
CO4	Apply	y the co	ncept o	f photo	elastici	ty for s	tress ar	alysis a	nd to ca	alibrate	photo	elastic r	nodels		
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2										2	1		
CO3	3	2	2										1		
CO4	3	2											2		
Average	3	2	2									2	1.8		

Subject: 1	Project	Phase	I							Subje	ect Co	de:18N	ИЕР78		
-						Cou	rse Ou	tcomes	5						
CO1	the su		ble con										oblems athema		
CO2	engin	eering		ms in c	<i></i>								ed comp ll, cultu	L	l
CO3	the so	ciety t		ess the	-		_	_		ology f ssociate			e develo al and	opmen	t in
CO4	under	multi	discipl	inary s	ettings	•				•			conside		
CO5					addres tation t		ne com	plex en	gineer	ing acti	vities	with do	ocumen	tation	
			-	-	(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2															
CO3			3			2	2						3		
CO4									2						
CO5										3					
Average	3	2	3			2	2		2	3			2.5	_	

Subject:	ENER	GY EN	GINE	ERINC	j					Subj	ect Co	de: 18N	1E81		
						Cou	rse Out	tcome	S						
CO1	Summa	arize th	e basic	concep	ts of th	ermal e	energy s	ystems	;						
CO2	Identif	y renev	vable e	nergy s	ources	and the	eir utiliza	ation							
CO3	Unders	stand th	ne basio	conce	pts of s	olar rac	diation a	nd ana	lyze th	e workii	ng of so	lar PV a	nd the	rmal sy	stems.
CO4		•	rinciple biogas.		ergy co	nversio	n from a	alterna	te sour	ces incl	uding w	vind, ged	otherm	al, ocea	in,
CO5				•			of fuel of age for s				onvert	or and N	ИНD		
	-1				(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3						2						2		
CO3	3						2						2		
CO4	3						1						2		
CO5	3						2	•					2		
Average	3						1.75						2		

Subject: 7	TRIBO	LOGY	7							Subj	ect Co	de:18N	1E822		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand	the fun	damen	tals of	tribolo	ogy and	l assoc	iated p	aramet	ers				
CO2	11.	y conce ve mot	1	tribolo	gy for	the per	rformai	nce ana	ılysis a	nd desi	gn of o	compor	nents e	xperier	ncing
CO3	Analy applic		require	ements	and de	esign h	ydrody	namic	journa	l and p	lane sli	ider be	arings	for a gi	iven
CO4	Selec	t prope	r beari	ng mat	terials	and lut	oricants	for a	given t	ribolog	ical ap	plicatio	on		
CO5	Apply	y the pi	rinciple	es of su	ırface e	engine	ering fo	or diffe	rent ap	plication	ons of t	tribolog	gy		
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2											2		
CO3	3	2	3										2		
CO4	3	2											2		
CO5	3	2											2		
Average	3	2	3										2		

Subject:	AUTO	MOBI	LE EN	GINE	ERING					Subje	ect Co	de:18N	1E824		
						Cou	rse Ou	tcome	S						
CO1					and wo	.		-	_	to Pov	ver plai	nt, Trar	nsmiss	ion, Co	ntrol
CO2	Apply	y the ki	nowled	ge of A	Automo	obile sy	ystems	to Cor	ıtribute	to enh	ancem	ent of I	Efficie	ncy.	
CO3	Appro	eciate t	he rece	ent dev	elopme	ents in	engine	and E	missio	n contr	ol syste	ems.			
CO4															
CO5															
					(CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		

CO2	3	2						2	
CO3	3	2		1	1			2	
CO4									
CO5									
Average	3	2						2	

Subject:	PROJE	CT W	ORK P	HASE	- 2					Subj	ect Co	de:18N	MEP83		
_						Cou	rse Ou	tcomes	5						
													oblems		
CO1				clusion	ns or so	olution	s using	the ba	sic prir	nciples	of app	lied ma	athema	tics,sci	ience
		nginee													
	Design proper methodology to derive the solutions for the existing or anticipated complex engineering problems in concern with the issues of public health, safety societal, cultural and														
CO2	engineering problems in concern with the issues of public health, safety societal, cultural and environmental areas.														
CO2	Practice and establish the professional engineering methodology for sustainable development in the society to address the complex engineering problems associated with societal and														
CO3	the society to address the complex engineering problems associated with societal and														
	environmental factors. Form internal & external group to work together as a team in the project under consideration														
CO4	Form internal & external group to work together as a team in the project under consideration under multi-disciplinary settings.														
	under multi disciplinary settings. Communicate effectively addressing the complex engineering activities with documentation														
CO5					tation t		ic com	pick ci	igineer	ing act	i vitios	WILLI GO	ocumen.	itution	
	1 op or		proper	proson)-PSO	Mapp	ing						
GO.							Os	TI	-					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2															
CO3			3			2	2						3		
CO4									2						
CO5										3					
Average	3	2	3			2	2		2	3			2.5		

Subject:	ГЕСН	NICAL	SEM	NAR						Subj	ect Co	de:18N	1ES84		
						Cou	rse Ou	tcome	S						
CO1	Revie	wing o	of adva	nced o	r recer	nt techr	ologie	s in the	e field	of mecl	nanical	engine	ering		
CO2	Inves	tigate a	and stu	dy the	literat	ure of	recent	techno	logies	from va	arious	sources	;		
CO3	Skill	to writ	e detai	led tecl	hnical	report	describ	ing the	e gaine	d know	ledge.				
CO4	Enha	nces th	e effec	tive co	mmun	ication	and pi	esenta	tion sk	ill.					
CO5															
					(CO-PC)-PSO	Mapp	ing						
COa	POs PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3											3		
CO2		3											3		
CO3										3		3	3		
CO4										3			3		
CO5															
Average		3								3		3	3		

Subject:	Internship	Subject Code:18MEI84
	Course Outcomes	
CO1	Apply modern techniques, resources, engineering and IT to engineering problems.	ols while addressing complex

CO2	Demonstrate the contextual knowledge to access societal, health, safety and cultural issues normally encountered in industries.														
CO3	Contribute through engineering solutions for the sustainable development in societal and environmental context and exercise professional ethics, norms, standards and responsibilities in engineering practice.														
CO4	Effectively work as a team member as well as a leader while demonstrating the knowledge of project management, finance handling and other management practices in a multidisciplinary environment.														
CO5	Demonstrate the knowledge of documentation, report writing, effective presentation, receiving and delivering clear instructions in the professional environment and recognize the need & have preparation ability to engage in independent & life- long learning facing the challenges of technological changes.														
	CO-PO-PSO Mapping														
COs		1	1	Г	1	P	Os	1	1	1	1	1		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2				2								2	2	
CO2						2							2		
CO3		_					2	2					-		
CO4									3		3				
CO5										3		3		2	
Average	2				2	2	2	2	3	3	3	3	2	2	

Coordinator

HOI

Head of the Department
Department of Meritanical Engineering
SUS Institute of fechnology
Kengeri, Bengaluru-560 060