

Sri AdichunchanagiriShikshana Trust (R)

SJB Institute of Technology

(Affiliated to Visvesvaraya Technological University, Belagavi& Approved by AICTE, New Delhi.)

Department of Mechanical Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

2020 - 2024 Batch

2018 Scheme

Semester-I/II

Subject:	ELEM	ENT O	F MEC	CHAN	ICAL I	ENGIN	VEERI	NG		Subj	ect Co	de: 18E	ME15	/25	
						Cou	rse Ou	tcome	5						
CO1	Reco	gnize d	ifferen	t sourc	es of e	nergy a	and the	ir conv	ersatio	n proce	ess and	differe	ent type	es of bo	oilers.
CO2	Demo	onstrate	e the va	arious t	urbine	s and I	C engi	nes.							
CO3	Discu	iss Met	al rem	oval pr	ocess	using I	Lathe, c	lrilling	, Millii	ng Rob	otics a	nd Auto	omatic	on.	
CO4	Fair u	inderst	anding	of app	licatio	n and u	isage o	of vario	us eng	ineerin	g mate	rials.			
CO5	Expla	in the	refrige	ration a	and air	-condi	tioning	systen	ns						
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	2	2													
CO3	3	3													
CO4	3	2													
CO5	2	3													
Average	2.6	2.4													

Subject:	ENGIN	JEERI	NG GF	RAPHI	CS					Subj	ect Co	de: 18E	GDL1	5/25	
						Cou	rse Ou	tcome	S						
CO1	Analy	yze ort	hogona	ıl proje	ction t	heory,	dimens	sions a	nd ann	otation	s in en	gineeri	ng drav	wing	
CO2	Deve	lop eng	gineeri	ng drav	vings a	ıs per I	BIS cod	les and	conve	ntions					
CO3	Com	ose m	anual a	and cor	nputeri	ized dr	awings	using	2D and	d 3D m	odelin	g softw	are pa	ckages	
CO4	Build	geom	etric oł	ojects u	sing Is	ometri	ic and c	levelop	oment o	concep	ts				
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	3												
CO2	3				3										
CO3	3				3										
CO4	3				3										
Average	3				3										

Semester-III

Subject:	Engineering Mathematics-III	Subject Code:15MAT31
	Course Outco	mes
CO1	Know the use of periodic signals and Fourier series	es to analyze circuits and systems communication.

CO2	-		genera ourier ti		•		•	contino	us - tir	ne sign	als and	d digita	l signa	l proce	essing
CO3	Empl	oy app	ropriat	e nume	erical r	nethod	s to sol	lve alge	ebraic	and tra	nscede	ntal eq	uations		
CO4	field	of elec	tro-ma	gnetic	and gra	avitatio	onal fie	lds and	l fluid	flow pr	oblem				
C05	Utiliz	the the		ots of	functio	onal ar	nd thei	r varia	tions	in the	applica	for calc ations			
						CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject: 1	MECH	ANICS	S OF M	IATE	RIALS					Subj	ect Co	de: 181	ME32		
						Cou	rse Ou	tcome	S						
CO1	Apply	y an en	gineeri	ing kno	owledg	e to de	emonstr	ate the	behav	iour of	materi	ials			
CO2	-			ind thic plane s	•			aw a s	tress d	istribut	ion cu	rve, als	so to c	reate N	/lohrs
CO3	Deter	mine t	he vari	ous for	ces an	d mom	nents in	beams	5						
CO4	Evalu	ate the	dimer	nsions o	of mec	hanica	l eleme	ents for	variou	ıs appli	cations	s.			
CO5	Comp	oare dif	fferent	strain o	energy	metho	ds and	theori	es of fa	ilures i	n desig	gn of m	nachine	eries	
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1												2	
CO2	1	2											2	2	
CO3	1	3											2	2	
CO4	2	3											2	2	
CO5	3	2												2	
Average	2.2	2.2											2	2	

Subject:	BASIC	THER	RMOD	YNAM	1ICS					Subj	ect Co	de:18N	1E33		
						Cou	rse Ou	tcome	S						
CO1	-		dament mic sys		thermo	dynam	ics and	ł evalu	ate ene	rgy int	eractio	ns acro	oss the	bounda	ary of
CO2			w of the design		•		closed	and op	en syst	ems ar	nd dete	rmine	quanti	ty of e	nergy
CO3	Apply	y the ki	nowled	lge of e	entropy	and 2	nd law	of the	modyn	amics	to solv	ve num	erical	problei	ns.
CO4	-		behav by to so	1				its appl	ication	in prac	ctical p	roblem	is, reve	ersibilit	y and
CO5	Evalu	ate the	rmody	namic	proper	ties of	ideal a	nd real	l gas m	ixtures	using	various	s relati	ons.	
					(CO-PO	-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2											2		
CO3	3	2											2		
CO4	3	2	1										2		
CO5	3		1										2		

Average	3	2	1										2		
Subject:	MATE	RIAL	SCIEN	ICE						Subi	ect Co	de: 18N	1E34		
Subjecti			JUILI			Cou	rse Ou	itcome	s	Subj		uc: 101			
CO1		rstand	the fun	dament	als of s					neering	materia	als for v	arious	mechan	ical
CO2			various	modes	of failu	ure of en	ngineer	ing mat	terial						
CO3	Asses proces		ructural	l and ph	nysical	properti	ies of er	ngineer	ing mat	erials th	rough	various	heat tre	eatment	
CO4		e ive var ural ma	-	operties	of con	nposites	s, its ap	plicatio	n and to	o provid	e an alt	ernate t	o conve	entional	
CO5	Prop	ose alte	rnate m	aterials	which	are sus	tainable	e, econo	omic an	d enable	e new p	roduct g	generati	ion	
						CO-PC)-PSO	Mapp	oing						
COa						Ρ	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2		2											2		
CO3	3												2		
CO4		2											2		
CO5	3												2		
Average	3	2											2		

Subject: I	META	L CUT	TING	AND	FORM	ING				Subj	ect Co	de: 181	ME35A	A	
						Cou	rse Ou	tcome	5						
CO1	Apply	y the k	nowled	lge of r	netal c	utting	using b	asic m	achine	tools fi	ro the p	product	ion of	compo	nents
CO2			U	U	nateria	l and f	luids a	nd also	evalua	ate cutt	ing too	ol parar	neters	for diff	erent
		0	peration												
CO3						fwear	and we	ear rate	and al	so disc	uss the	econo	mics o	f mach	ining
	-		arious	- U	/										
CO4	Apply	y the k	nowled	lge of s	sheet m	netal fo	orming	for pro	duction	n of co	mpone	nts			
CO5	Desig	n diffe	erent sh	leet me	etal die	s for si	mple s	heet m	etal con	mponer	nts				
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1										2		
CO2	3	2											2		
CO3	3	2	1										2		
CO4	3	2											2		
CO5	3	2											2		
Average	3	2	1										2		

Subject:	COMP	UTER	AIDE	D MAG	CHINE	DRA	WING			Subj	ect Co	de: 181	ME36A	A	
						Cou	rse Ou	tcome	5						
CO1	To rea	ad and	unders	stand th	ne orth	ograph	ic and	section	al viev	vs of va	arious 1	nachin	e comp	ponents	3
CO2	To de	velop	3D mo	dels us	ing mo	odeling	softwa	are's							
CO3	To pr	oduce	2D dra	wings	by mai	nual dr	afting	and by	using	drafting	g packa	iges			
CO4	To co	nstruc	t assem	bly dra	awings	, part c	lrawing	gs and	Bill of	materia	als as p	er BIS	Conve	entions	
CO5	To ap	ply lin	nits fits	and to	oleranc	e to all	assem	blies a	nd part	drawir	ngs				
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2	2				2								2	2	
CO3	2				2								2	2	

CO4	2		2		2								2	2	
CO5	2											2	2		
Average	2		2		2							2	2	2	
Subject:	MATE	RIAL	TEST	ING L	AB					Subj	ect Co	de: 181	ME374	4	
						Cou	rse Ou	tcome	S	-					
CO1	-	-			skills i					-					
CO2		lop th iments		al und	erstand	ling o	f the	mechai	nical p	ropertie	es of 1	materia	als by	perfor	min
CO3	Apply	y the k	nowled	lge to a	analyze	e a mat	erial fa	ilure a	nd dete	rmine t	he fail	ure ind	ucing	agents	
CO4					testing										
CO5	Unde	rstand	how to	o impro	ove stru	cture/l	sehavio	or of m	aterials	s for va	rious ir	ndustria	al appl	ication	s.
					(C O-P ()-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1													
CO2	2	1	2									1	1		
CO3	1	2			2								1		
	3												1		
CO4	5											1	1		
CO4 CO5	2	1													
CO5 Average	2 2.4	1	2 P AND	D MAC	2 CHINE			CTICE	s	Subje	ect Co	1 de: 181	1 ME38/	4	
CO5 Average Subject: CO1	2 2.4 WOR Unde	1 KSHO rstand	P ANE integra	al part	CHINE s of la	Cou the, sh	rse Ou aping	and m	illing	machin	es and	de: 181	ME38A	essories	
CO5 Average Subject:	2 2.4 WOR Unde attach Selec	1 KSHO rstand iments t cuttin	P ANE integra	al part	CHINE s of la	Cou the, sh	rse Ou aping	and m	illing	- V	es and	de: 181	ME38A	essories	
CO5 Average Subject: CO1 CO2	2 2.4 WOR Unde attach Selec opera	1 KSHO rstand ments t cuttin tions	P AND integra used. ng para	al part meters	CHINE s of la	Cou the, sh utting s	rse Ou haping speed, :	and m	illing	machin	es and d tooli	de: 18M variou ng for	ME384 1s acco variou	essories Is mach	inin
CO5 Average Subject: CO1	2 2.4 WOR Unde attach Selec opera Perfo	1 KSHO ments t cuttin tions prm cy	P ANE integra used. ng para	al part meters al turn	CHINE s of la like cu	Cou the, sh utting s eration	rse Ou naping speed, and such	and m feed, d as pla	illing repth of	machin cut, an	es and d tooli per turi	de: 181 varioung for	ME382 Is acco variou tep tur	essories is mach	inin
CO5 Average Subject: CO1 CO2 CO3	2 2.4 WOR Unde attach Selec opera Perfo Cuttin	1 KSHO ments t cuttin tions prm cy ng, fac	P ANE integra used. ng para lindric ing, kn	al part meters al turn urling,	CHINE s of la like cu ing ope interna	Count the, sh utting s eration al threa	rse Ou haping speed, a s such ad cutti	and m feed, d as pla	illing the pth of in turn contric	machin cut, an ing, tap turning	es and d tooli per turn and es	de: 181 variou ng for ning, st	ME382 Is accontraction varioutep turi cuttin	essories as mach ming, th g time	iinin hrea
CO5 Average Subject: CO1 CO2	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo	1 KSHO ments t cuttin tions orm cy ng, fac rm ma	P AND integra used. ng para lindric ing, kn	al part meters al turn urling, g opera	S of la like cu ing ope interna	Cou the, sh utting s eration al threa	rse Ou haping speed, a s such ad cutti s plain	and m feed, d as pla	illing the pth of in turn contric	machin cut, an	es and d tooli per turn and es	de: 181 variou ng for ning, st	ME382 Is accontraction varioutep turi cuttin	essories as mach ming, th g time	iinin hrea
CO5 Average Subject: CO1 CO2 CO3 CO4	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C	1 KSHO ments t cuttin tions orm cy ng, fac rm ma Gear cu	P AND integra used. ng para lindric ing, kn chining atting at	al part meters al turn urling, g opera nd esti	S of la like cu ing ope interna ations s mate cu	Cou the, sh utting s eration al threa such as utting t	rse Ou haping speed, a s such ad cutti plain ime	and m feed, d as pla ing, ecc shapin	illing epth of in turn centric g, incli	machin cut, an ing, tap turning ned sha	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway	ME38A us acco variou tep tur cuttin y cuttin	essories is mach ming, tl g time ng, Inde	iinin hrea exin
CO5 Average Subject: CO1 CO2 CO3	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa	1 KSHO ments t cuttin tions orm cy ng, fac rm ma Gear cu	P AND integra used. ng para lindric ing, kn chining atting an ng mod	al part meters al turn urling, g opera nd esti	S of la like cu ing ope interna ations s mate cu	Cou the, sh utting s eration al threa such as utting t	rse Ou haping speed, a s such ad cutti plain ime	and m feed, d as pla ing, ecc shapin	illing epth of in turn centric g, incli	machin cut, an ing, tap turning	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway	ME38A us acco variou tep tur cuttin y cuttin	essories is mach ming, tl g time ng, Inde	iinin hrea exin
CO5 Average Subject: CO1 CO2 CO3 CO4	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa	1 KSHO rstand ments t cuttin tions orm cy ng, fac rm ma Gear cu re fitti	P AND integra used. ng para lindric ing, kn chining atting an ng mod	al part meters al turn urling, g opera nd esti	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra	rse Ou haping speed, a s such ad cutti plain time wings	and m feed, d as pla ing, ecc shapin	illing epth of in turn centric g, incli and too	machin cut, an ing, tap turning ned sha	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway	ME38A us acco variou tep tur cuttin y cuttin	essories is mach ming, tl g time ng, Inde	iinin hrea exin
CO5 Average Subject: CO1 CO2 CO3 CO4 CO5	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa	1 KSHO rstand ments t cuttin tions orm cy ng, fac rm ma Gear cu re fitti	P AND integra used. ng para lindric ing, kn chining atting an ng mod	al part meters al turn urling, g opera nd esti	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra	rse Ou haping speed, a s such ad cutti plain time wings	and m feed, d as pla ing, ecc shapin using h	illing epth of in turn centric g, incli and too	machin cut, an ing, tap turning ned sha	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway	ME38A us acco variou tep tur cuttin y cuttin	essories is mach ming, tl g time ng, Inde	iinin hrea exin
CO5 Average Subject: CO1 CO2 CO3 CO4	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa	1 KSHO rstand ments t cuttin tions orm cy ng, fac rm ma Gear cu re fitti	P AND integra used. ng para lindric ing, kn chining atting an ng mod	al part meters al turn urling, g opera nd esti	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra	rse Ou haping speed, a s such ad cutti s plain time wings D-PSO	and m feed, d as pla ing, ecc shapin using h	illing epth of in turn centric g, incli and too	machin cut, an ing, tap turning ned sha	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway	ME38A us acco variou tep tur cuttin y cuttin	essories is mach ming, th g time ng, Indo e, files,	inin hrea exin hac
CO5 Average Subject: CO1 CO2 CO3 CO4 CO5	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa saw, o	1 KSHO rstand ments t cuttin tions orm cy ng, fac rm ma dear cu rre fitti drills e	P ANE integra used. ng para lindric ing, kn chining atting an ng moc	al part meters al turn urling, g opera nd estin dels acc	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra CO-PC P	rse Ou haping speed, a s such ad cutti plain time wings D-PSO Os	and m feed, d as pla ing, ecc shapin using h Mapp	illing i epth of in turn centric g, incli and too ing	machin cut, an ing, tap turning ned sha ols- V-b	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway narking	ME38A Is acco variou tep tur cuttin y cuttin g gaug	essories is mach ming, th g time ng, Indo e, files, PSOs	inin hrea exin hac
CO5 Average Subject: CO1 CO2 CO3 CO4 CO5 COs	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa saw, o	1 KSHO rstand ments t cuttin tions orm cy ng, fac rm ma Gear cu re fitti drills e	P ANE integra used. ng para lindric ing, kn chining atting an ng moc	al part meters al turn urling, g opera nd estin dels acc	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra CO-PC P	rse Ou haping speed, a s such ad cutti plain time wings D-PSO Os	and m feed, d as pla ing, ecc shapin using h Mapp	illing i epth of in turn centric g, incli and too ing	machin cut, an ing, tap turning ned sha ols- V-b	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway narking	ME38A Is acc variou tep tur cuttin g gaug	essories is mach ming, th g time ng, Indo e, files, PSOs	iinin hrea exin
CO5 Average Subject: CO1 CO2 CO3 CO4 CO5 COs CO1	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa saw, o	1 KSHO rstand iments t cuttin tions orm cyng, fac rm ma dear cu re fitti drills e 2 2	P ANE integra used. ng para lindric ing, kn chining atting an ng moc	al part meters al turn urling, g opera nd estin dels acc	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra CO-PC P	rse Ou haping speed, a s such ad cutti plain time wings D-PSO Os	and m feed, d as pla ing, ecc shapin using h Mapp	illing i epth of in turn centric g, incli and too ing	machin cut, an ing, tap turning ned sha ols- V-b	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway narking	ME38A us acco variou tep tur cuttin y cuttin g gaug 1 2	essories is mach ming, th g time ng, Indo e, files, PSOs	inin hrea exin hac
CO5 Average Subject: CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa saw, o 1 3 3	1 KSHO rrstand iments t cuttin tions prm cy ng, fac rm ma dear cut re fitti drills e 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P ANE integra used. ng para lindric ing, kn chining atting an ng moc	al part meters al turn urling, g opera nd estin dels acc	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra CO-PC P	rse Ou haping speed, a s such ad cutti plain time wings D-PSO Os	and m feed, d as pla ing, ecc shapin using h Mapp	illing i epth of in turn centric g, incli and too ing	machin cut, an ing, tap turning ned sha ols- V-b	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway narking	ME382 us acconvariou tep tur cuttin y cuttin g gaug	essories is mach ming, th g time ng, Indo e, files, PSOs	inin hrea exin hac
CO5 Average Subject: CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO1 CO2 CO3	2 2.4 WOR Unde attach Selec opera Perfo Cuttin Perfo and C Prepa saw, of 1 3 3 3	1KSHOrstandimentst cuttintionsorm cyng, facrm madear cure fittidrills e22222222	P ANE integra used. ng para lindric ing, kn chining atting an ng moc	al part meters al turn urling, g opera nd estin dels acc	S of la like cu ing ope interna ations s mate cu cording	Cou the, sh utting s eration al threa such as utting t to dra CO-PC P	rse Ou haping speed, a s such ad cutti plain time wings D-PSO Os	and m feed, d as pla ing, ecc shapin using h Mapp	illing i epth of in turn centric g, incli and too ing	machin cut, an ing, tap turning ned sha ols- V-b	es and d tooli per turn and es uping, l	de: 181 variou ng for ning, st stimate keyway narking	ME38A Is acconversion variou tep tur cuttin y cuttin g gaug 1 2 2 2 2	essories is mach ming, th g time ng, Indo e, files, PSOs	inin hrea exin hac

Subject:	CONSTI	FUTION	OF INDIA	, PROFES	SSIONAL	ETHICS	AND CYI	BER LAW	/	Subj	ect Co	ue: 181	ME39		
						Cour	rse Ou	tcome	S						
CO1	Have	consti	tutiona	l know	ledge a	and leg	al liter	acy.							
CO2	Unde	rstand	Engine	ering a	and Pro	ofession	nal ethi	ics and	respor	nsibiliti	es of E	nginee	rs.		
CO3	Unde	rstand	the cyl	percrim	nes and	l cyber	laws fo	or cybe	er safet	y meas	ures.				
	•				(CO-PC)-PSO	Mapp	ing						
CO -						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3										3	2		
CO2	3	3										3	2		

CO3	3	3					3	2	
Average	3	3					3	2	

Semester-IV

Subject: I	Engine	ering N	Aathen	natics-l	V					Subj	ect Co	de:18N	1 AT41		
						Cou	rse Ou	tcome	5						
CO1															
CO2															
CO3															
CO4															
CO5															
					(C O-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
Average															

Subject:	APPLI	ED TH	IERMO	DDYN	AMIC	S				Subj	ect Co	de: 18N	1E42		
						Cou	rse Ou	tcome	5						
CO1	Appl	y thern	nodyna	mic co	ncepts	to ana	lyze th	e perfo	rmance	e of gas	s powe	r cycle	s.		
CO2	Appl	y thern	nodyna	mic co	ncepts	to ana	lyze th	e perfo	rmance	e of va	pour po	ower cy	cles.		
CO3	Unde	erstand	combu	stion c	of fuels	and pe	erforma	ance of	I C en	gines.					
CO4		•	modyn g systei		oncept	s to det	termine	e perfo	rmance	param	eters o	of refrig	geration	n and a	ir-
CO5			the wo lentify							Steam 1	nozzles	s, applio	cations	, releva	ance
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2												2		
CO2	2												2		
CO3	2	2											2		
CO4	2	2	1										2		
CO5	2	2	1										2		
Average	2	2	1										2		

Subject: FL	UID MECHANICS	Subject Code:18ME43
	Course Outcomes	
CO1	Identify and calculate the key fluid properties used in the	e analysis of fluid behavior. Explain
COI	the principles of pressure, buoyancy and floatation	
CO2	Apply the knowledge of fluid statics, kinematics and dy	vnamics while addressing problems
02	mechanical and chemical engineering.	
CO3	Describe the principles of fluid kinematics and dynamic	CS.
CO4	Explain the concept of boundary layer in fluid flow and	apply dimensional analysis to for
04	dimensionless numbers in terms of input output variabl	es.
CO5	Illustrate and explain the basic concept of compressible	flow and CFD

				(CO-PC)-PSO	Mapp	ing					
COa						POs						PSOs	
COs	1	2	3	12	1	2	3						
CO1	3	3	3								3		
CO2	3	3	3								3		
CO3	3	3	3								3		
CO4	3	3	3								3		
CO5	3	3	3								3		
Average	3	3	3								3		

Subject:	KINE	MATIC	CS OF I	MACH	INES					Subj	ect Co	de: 181	ME44		
						Cou	rse Ou	tcome	5						
CO1	Ident	ify the	kinem	atic lin	k, kine	matic j	pairs, c	hains,	mecha	nisms, i	mobili	ty, and	inver	sions.	
CO2	Dete: meth		he velo	ocities a	and acc	celerati	ons of	linkag	es and	joints c	of mech	nanism	is grapł	nical	
CO3				nstein's crank m						ities an	d accel	leratio	ns by a	nalytic	al
CO4		yse dif acterist		cams ar	nd sket	ch the	cam pr	ofiles	for var	ious mo	otions of	of the f	followe	er, moti	on
CO5	Eval	uate the	e veloc	ity ratio	o and t	orque i	n vario	ous typ	es of g	ear trai	ns.				
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												1		
CO2	2												2		
CO3	2	3											2		
CO4	2	2											2		
CO5	2	2											2		
Average	2.2	2.3											1.8		

Subject: 1	META	L CAS	TING	AND V	WELD	ING				Subj	ect Co	de: 18M	1E45B		
						Cou	rse Ou	tcome	S						
CO1	Descr	ibe the	e castin	g proce	ess and	l prepa	re diffe	erent ty	pes of	cast pr	oducts	•			
CO2	Comp	oare the	e Gas f	ired pit	t, Resis	stance,	Corele	ss, Ele	ctrical	and Cu	ipola N	Aetal F	urnaces	5.	
CO3	Unde	rstand	the Sol	lidifica	tion pr	ocess a	and Cas	sting o	f Non-I	Ferrous	Metal	S			
CO4			e Metal ufactur		TIG, M	IG, Su	bmerge	ed and	Atomi	c Hydr	ogen V	Velding	proce	sses et	с.
CO5	Descr	ibe me	ethods	for the	quality	y assur	ance of	comp	onents	made of	of casti	ng and	joining	g proce	ess
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3												2		
CO3	3	2											2		
CO4	3												2		
CO5	3	2											2		
Average	3	2											2		

Subject:	MECHANICAL MEASUREMENTS AND METROLOGY	Subject Code:18ME46B
	Course Outcomes	
CO1	Understand the objectives of metrology, methods of measure	rement, standards of measurement &
COI	various measurement parameters	

CO2	Unde	rstand	limits,	fits and	d tolera	ance ar	nd the v	workin	g of co	mparat	ors				
CO3		ribe me		nent of	major	& mir	or dia	neter, j	pitch, a	ngle ar	nd effeo	ctive di	ameter	r of scr	ew
CO4	Expla devic	ain mea es	surem	ent sys	tems, t	ransdu	cers, ir	nterme	diate m	odifyir	ıg devi	ces and	l termi	nating	
CO5	Unde	rstand	the me	asurem	nent of	force,	Torque	e and P	ressure	;					
	-				(CO-PC)-PSO	Mapp	ing						
COs					-	P	Os	-		-	-	-		PSOs	
0.08	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2	1										2		
CO3	3	1											2		
CO4	3												2		
CO5	3												2		
Average	3	1.67	1										2		

Subject: N	MECHA	NICAI	L MEAS	SUREM	ENTS .	AND M	ETROI	LOGY I	LAB	Subj	ect Co	de: 18N	1EL47	В	
						Cou	rse Ou	tcome	5						
CO1	Unde	rstand	the C	alibrat	tion of	press	ure gau	uge, th	ermoc	ouple,	LVD	T, load	l cell, i	micror	neter
CO2			•				angle angle		g Sine	Centre	e/ Sine	e Bar/	Bevel	Protra	actor,
CO3				isurem ompar		sing (Optical	Proje	ctor/T	ool ma	aker m	icrosc	ope, C	Optical	flats
CO4				screw		-	ameter	s usir	ng gea	ar too	th pro	ofile u	ising	gear	tooth
CO5	Anal	yse too	ol forc	es usir	ng Lati	he/Dri	ll tool	dynar	nomet	er					
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	3	2											2		
CO5	3	1											2		
Average	3	1.8											2		

Subject:	FOUN	DRY, I	FORG	ING A	ND W	ELDIN	IG LA	В		Subj	ect Co	de: 18N	MEL48	В	
						Cou	rse Ou	tcome	S						
CO1	Identi	ify the	proper	ties of	mould	ing sar	nd (Ten	sion,co	ompres	sion,sh	ear&p	ermeal	oility)		
CO2	Build	sand r	noulds	using	hand to	ools ,pa	atterns	and co	res						
CO3	Estim	nate the	e raw n	naterial	l requir	red for	change	e of cro	ss s ec	tion an	d dime	nsions	•		
CO4	Demo	onostra	te the t	forging	g opera	tions									
CO5															
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		2										3		
CO2	3		2										3		
CO3	3		2										3		
CO4	3		2										3		
Average	3		2										3		

Subject:	MANA	AGEM	ENT A	ND EC	CONO	MICS				Subj	ect Co	de:18N	AE51		
						Cou	rse Ou	tcome	5						
CO1	Expla	in the c	levelopn	nent of	manage	ement a	and the	role it p	lays at	differe	nt level	s in an c	organiz	ation	
CO2	-	orehend ization	the proo	cess and	d role o	f effect	ive pla	nning, c	organizi	ing and	staffing	g for the	develo	opment	of an
CO3			he neces organiz	•	good le	eadersh	ip, com	munica	tion an	d coord	ination	for esta	blishin	g effect	ive
CO4		rstand e em solv	engineer ing	ng eco	nomics	deman	d supp	y and it	ts impo	rtance i	n econo	omic deo	cision r	naking	and
CO5	Calcu	late pre	esent wo	rth, anr	nual wo	rth and	IRR fo	r differ	ent alte	rnatives	s in eco	nomic d	lecisior	n makin	g
					(Mapp	ing					PSOs	
COs	1	2	3	4	5		O-PSO Os 7	Mapp	ing 9	10	11	12	1	PSOs 2	3
COs CO1	1 2	2	3	4		P				10	11	12	1 2	1	3
	-	2	3	4		P				10	11	12	1 2 2	1	3
CO1	2	2	3	4		P				10	11	12	_	1	3
CO1 CO2	2 2	2	3	4		P				10	11		2	1	3
CO1 CO2 CO3	2 2 3		3	4		P				10	11		2	1	3

Semester-V

Subject:	DESIC	GN OF	MACH	HINE E	ELEME	ENTS I				Subj	ect Co	de: 18N	AE52		
						Cou	rse Ou	tcome	S						
CO1	Appl	y the co	oncepts o	of selec	tion of	materia	ls for g	iven me	echanic	al comp	onents				
CO2	List t	he func	tions an	nd uses o	of mach	nine ele	ments u	ised in 1	nechan	ical sys	tems.				
CO3			and sta r's cata		in the d	lesign o	f machi	ne elen	nents ar	nd selec	t an ele	nent ba	used on	the	
CO4			perform ng using						al comp	onents	subject	ed to co	ombined	l loadin	g and
CO5			the app ower sci							esign of	fmachi	ne com	ponents	like sh	afts,
CO6	Unde	rstand t	the art o	f worki	ng in a	team									
					(CO-PC)-PSO	Mapp	ing						
Car						Р	Os							PSOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											2		
CO2	3	3											2		
CO3	3	2	3										2		
CO4	3	3											2		
CO5	2	2	2										2		
CO6	2	2	2										2		
	2.7	2.5	2.3		1	1		1	1	1	1		2	1	

Subject:	DYNAMICS OF MACHINES	Subject Code:18ME53
	Course Outc	omes
CO1	Estimate the forces and couples for four bars and sliequilibrium	ider crank mechanisms to keep the system in
CO2	Analyze and estimate balancing of rotating & recipi	ocating masses in same and different planes

CO3	Apply	ying pri	nciples	of gove	ernors a	nd gyrc	scope a	and its a	pplicati	ions					
CO4	Analy	ze diff	erent mo	odes of	vibratio	on for d	amped	vibratio	on with	single d	legree o	of freed	om syst	ems	
CO5	Comp	oare mo	des of v	vibratio	n for fo	rced an	d damp	ed vibr	ation wi	ith sing	le degre	e of fre	eedom s	ystems	
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO1	2														
CO2	2	2											2		
CO3	3	3											2		
CO4	2	2											2		
CO5	2	2	2										2		
Average	2	2	2										2		

Subject:	TURB	O MAG	CHINE	S						Subj	ect Co	de: 18N	1E54			
						Cou	rse Ou	tcome	S							
CO1	Mode	l studie	s and th	ermody	ynamic	s analys	sis of tu	rbo ma	chines.							
CO2	Analy	Analyze the energy transfer in Turbo machine with degree of reaction and utilization factor.														
CO3	Class	Classify, analyze and understand various type of steam turbine.														
CO4	Class	Classify, analyze and understand various type of hydraulic turbine.														
CO5		Classify, analyze and understand various type of hydraulic turbine. Understand the concept of radial power absorbing machine and the problems involved during its operation.														
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3										3			
CO2	3	3	3										3			
CO3	3	3	3										3			
CO4	3	3	3										3			
CO5	3	3	3										3			
Average	3	3	3										3			

Subject:	FLUID	POW	ER EN	GINE	ERINC	ì				Subj	ect Co	de: 18N	AE55			
						Cou	rse Ou	tcome	5							
CO1			he basic lication		pts (pri	nciples) of wor	king an	d main	tenance	of fluic	l power	system	with it	ts	
CO2	^		constru ic pump			•	-	id outpu	ıt eleme	ents of f	luid po	wer sys	tems vi	z. hydra	aulic	
CO3	Demo	nstrate	the fun	ctionin	g of coi	ntrol va	lves for	obtaini	ng desi	red outj	out from	n fluid j	power s	ystems	•	
CO4	Form	Demonstrate the functioning of control valves for obtaining desired output from fluid power systems. Formulate (construct) the hydraulic and pneumatic circuits for various outputs														
CO5	Ű	Integrate fluid power system with electrical and logic elements, controls to maintain the sequence of operations														
						CO-PC)-PSO	Mapp	ing							
00-						Р	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												2			
CO2	2	2											2			
CO3	2												1			
CO4	1		2		2								2	2		
CO5	2		3		2							1	2	2		
Average	2	2	2.5	İ	2	1	1	İ		1	1	1	1.45	2	1	

Subject: OPERATIONS MANAGEMENT	Subject Code:18ME56
Course Outcomes	

	Unde	rstand t	he fund	lamenta	l basis a	and nat	ure of o	peratio	n mana	gement	technio	ues for	the ma	nufactu	ring	
CO1	Indus		also to	assess a											0	
CO2	Analy	ze the	appropr	riateness l foreca			•	a range	of oper	ations n	nanagei	nent sys	stems/r	nodels	in	
CO3																
CO4		Summarize Aggregate Planning & Master Scheduling methods by graphical, charting techniques and mathematical techniques as applied to product and process industries.														
CO5		Assess the operational issues between Industry, vendor and customer by using Material Requirement Planning (MRP), Purchasing and Supply Chain Management (SCM).														
	•					CO-PC)-PSO	Mapp	ing							
00							Os		0					PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3										1	3			
CO2	3	3	2									1	3	2		
CO3	3	3										1	3			
CO4	3	3										1	3			
005	3	3										1	3	2		
CO5	5	5														

Subject: l	Subject Code:18MEL57 Course Outcomes Perform experiments to determine the coefficient of discharge of flow measuring devices. Conduct experiments on hydraulic turbines and pumps to draw characteristics. Determine the frictional losses for flow through pipe. Apply the momentum equation for determination of coefficient of impact of jet on vanes. Test the performance of reciprocating air compressor and air blower. PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
						Cou	rse Ou	tcome	s							
CO1	Perfo	Conduct experiments on hydraulic turbines and pumps to draw characteristics.														
CO2	Cond	Conduct experiments on hydraulic turbines and pumps to draw characteristics.														
CO3	Deter	Determine the frictional losses for flow through pipe.														
CO4	Apply	Apply the momentum equation for determination of coefficient of impact of jet on vanes.														
CO5	Test t															
COs						Р	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
~ ~ 1																
CO1	3	1											2			
CO1 CO2	3 3	1 2							1				2 2			
	-	-							1				_			
CO2	3	2							1				2			
CO2 CO3	3	2							1				2 2			

Subject:	ENER	GY CO	ONVEF	RSION	LAB					Subj	ect Co	de: 18N	1EL58		
						Cou	rse Ou	tcome	5						
CO1	Perfo	Perform experiments to determine the properties of Fuels and Oils. Conduct experiments on Internal Combustion engines to determine performance parameters.													
CO2	Cond	Conduct experiments on Internal Combustion engines to determine performance parameters.													
CO3	Ident	Identify Exhaust Emission and factors affecting them.													
CO4	Exhit	Exhibit his competency towards preventive maintenance of Internal Combustion engines.													
CO5															
		CO-PO-PSO Mapping													
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2											2		
CO3	3					1	1	1					2		
CO4	3											1	2		
CO5															
Average	3	2				1	1	1				1	2		

Subject:	ENVIR	RONM	ENTA	L STU	DIES					Subj	ect Co	de: 18C	IV59		
						Cou	rse Ou	tcome	S						
CO1			the pringlobal s	-	of eco	ology a	nd env	ironme	ental iss	sues that	at apply	y to air,	land,	and wa	ater
CO2		-		-	and/or vironm		vation s	skills, a	ind app	oly then	n to the	e analys	sis of a	a proble	em or
CO3		onstrate onents		gy kno	wledge	e of a c	omple	x relati	onship	betwee	en biot	ic and a	abiotic	;	
CO4			0		owledg	-		0	raph a	probler	n and o	describe	e the r	ealities	that
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1						2									
CO2						2									
CO3						2									
CO4						2									
Average						2									

Semester-VI

Subject: FINITE ELEMENT METHODS		Subject Code:18ME61
	Course Outcomes	
	Page 11 of 23	

CO1		•	applicati lements.		charact	teristics	s of FEA	A eleme	ents suc	h as bar	s, beam	is, plane	e and is	0-	
CO2	Deve	lop elei	nent cha	aracteris	stic equ	ation a	nd gene	eration of	of globa	ıl equati	on.				
CO3	Form	Formulate and solve Axi-symmetric and heat transfer problems Apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat													
CO4		Apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat ransfer, fluid flow, axi-symmetric and dynamic problems													
CO5	Solve	Solve for field variables in heat transfer, fluid flow problems, axi-symmetric and dynamic problems													
COs						-	D-PSO Os			10				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											2		
CO2	3	3											2		
CO3	3	2	3										2		
CO4	3	3											2		
CO5	2	2	2										2		
Average	2.8	2.6	2.5										2		

Subject:	DESIG	NOF	MACH	IINE E	ELEME	ENTS I	Ι			Subj	ect Co	de: 18N	1E62			
						Cou	rse Ou	tcome	5							
CO1	Apply ropes	design	i princip	oles for	the des	ign of 1	mechan	ical sys	tem inv	olving	springs,	, belts, p	oulleys	and wir	e	
CO2	Desig	Design different types of gears and simple gear boxes for relevant applications Understand the design principles of brakes and clutches Apply design concepts of hydrodynamics bearings for different applications and select anti friction														
CO3	Under	stand t	he desig	gn princ	ciples of	f brakes	s and cl	utches								
CO4		0	-	-			bearing he man				ions an	d select	anti fri	ction		
CO5	Apply	the en	gineerir	ng desig	gn tools	to proc	duct des	sign								
					(CO-PC)-PSO	Mapp	ing							
COa						Р	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2													
CO2	2	3	2													
CO3	3	3	2													
CO4	3	3														
CO5	3	3														
Average	3	3	2													

Subject:	Heat tra	ansfer								Subj	ect Co	de: 18N	1E63		
						Cou	rse Ou	tcome	5						
CO1	Unde	rstand	the mo	des of	heat tr	ansfer	and ap	ply the	basic 1	laws to	formu	late eng	gineeri	ng syst	æms.
CO2			and ap ite heat				f heat t	ransfei	to exte	ended s	surface	, compo	osite m	aterial	and
CO3	-		at cond ion hea		0		erical n	nethod	s and a	pply th	e fund	amenta	l princ	iple to	
CO4	Analy	yze hea	at trans	fer due	to free	e and fo	orced c	onvect	ive hea	at trans	fer.				
CO5			the des	0	-		•		heat ex	change	ers and	their p	ractica	1	
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3										3		
CO2	3	3	3										3		
CO3	3	3	3										3		

CO4	3	3	3					3	
CO5	3	3	3					3	
Average	3	3	3					3	

Subject: I	NON-T	RADI	TIONA	AL MA	CHIN	ING				Subj	ect Co	de: 18N	1 E641		
						Cou	rse Ou	tcome	5						
CO1			he comj nal mac				on-tradi	tional n	nachinir	ng proce	ess and	recogni	ze the	need for	ſ
CO2			he cons nd limit						meters,	proces	s charao	cteristic	s, appli	ications	,
CO3		•							•••	rocess a s, advar	•				
CO4			he cons advanta						process	parame	ters, pro	ocess ch	naractei	ristics,	
CO5										ristics. & EBN		quipme	nt and 1	nechan	ism
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											2		
CO2	2	2											2		
CO3	2	2											2		
CO4	2	2											2		
CO5	2	2											2		
Average	2	2											2		

Subject:	ENTRI	EPREN	VEURS	SHIP D	EVEL	OPME	ENT			Subj	ect Co	de:18N	/IE646		
	-					Cou	rse Ou	tcome	5						
CO1	Under	stand t	he selec	tion, pr	rioritiza	tion and	d initiat	ion of i	ndividu	al proje	ects				
CO2	organi	ization.		e	Ĩ	5	e		work b				U	e	
CO3		stand tl y tools.	he sche	duling a	and unc	ertainty	in proj	jects; ai	nalyze r	isk man	agemer	nt plann	ing usi	ng proje	ect
CO4	Understand the activities like purchasing, acquisition, contracting, partnering and collaborations related to programming projects.														
CO5	Determine projects. Determine project progress and results scorecard, draw the network diagram to calculate duration of the project. CO-PO-PSO Mapping														
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1					2		1	3	2	3	2	2		
CO2	1					2		1	3	2	3	2	2		
CO3	1					2		1	3	2	3	2	2		
CO4	1					2		1	3	2	3	2	2		
CO5	1					2		1	3	2	3	2	2		
Average	1					2		1	3	2	3	2	2		

Subject:	NON-CONVENTIONAL ENERGY SOURCES	Subject Code:18ME651
	Course Outcomes	
CO1	To introduce the concepts of solar energy, its radiation, coll	ection, storage and application.
CO2	To introduce the concepts and applications of Wind energy,	Biomass energy, Geothermal energy
02	and Ocean energy as alternative energy sources.	
CO3	To explore society's present needs and future energy deman	nds
CO4	To examine energy sources and conversion of energy include	ling non-renewable ,renewable energy
04	sources into useful energy .	

CO5	To ge	et expo	sed to	energy	conser	rvation	metho	ds							
						CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1										1	1		
CO2	2	1										1	1		
CO3	2	1										1	1		
CO4	2	1										1	1		
CO5	2	1										1	1		
Average	2	1										1	1		

Subject:	SUPPI	LY CH	AIN M	ANAC	GEME	NT				Subj	ect Co	de: 18N	AE653		
						Cou	rse Ou	tcome	S						
CO1	Unde	rstand t	he fram	ework a	and sco	pe of su	upply cl	nain ma	nageme	ent					
CO2			nanage techno		oetitive	e supply	y chain	using	strateg	ies, mo	odels, t	echniq	ues and	l	
CO3	Anal	yze the	materi	al hanc	lling ti	ranspor	tation	and tra	ffic ma	nagem	ent				
CO4	Plan	the der	nand, i	nvento	ry and	supply	and of	ptimize	e suppl	y chain	netwo	ork.			
CO5	Unde	rstand t	he emer	ging tre	ends an	d impa	ct of IT	on Sup	ply cha	in.					
						CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2											2			
CO2	2	2													
CO3	2														
CO4	2														
CO5	2	2										2			
Average	2	2										2			

Subject:	COMPU	UTER A	AIDED	MODE	ELLING	G AND	ANAL	YSIS L	AB	Subj	ect Co	de:18N	1EL66			
						Cou	rse Ou	tcome	5							
CO1	Analy	ze the	structu	ıral me	embers	like ba	ars, trus	sses, ar	d bear	ns for c	lifferen	t loads	5.			
CO2	Deter	mine tl	he stres	sses in	plates	under	plane s	tress co	onditio	ns.						
CO3			nperati neat tra		tributio	on in 1	D and 2	2D mei	nbers 1	under c	onduct	ion and	d			
CO4	Analy	Analyze bars and beams for dynamic response														
					(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	3	3		3							3	3	3		
CO2	3	3	3		3							3	3	3		
CO3	3	3	3		3							3	3	3		
CO4	3	3	3		3							3	3	3		
Average	3	3	3		3							3	3	3		

Subject:	HEAT TRANSFER LAB	Subject Code:18MEL67
	Course	Dutcomes
CO1		
CO2		
CO3		
CO4		

CO5															
						CO-PC)-PSO	Mapp	ing						
COa						Р	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
Average															

Subject: 1	MINI-I	PROJE	CT							Subje	ect Co	de: 18N	IEMP	68	
						Cou	rse Ou	tcome	S						
CO1	Practi	ice acq	uired k	nowle	dge wi	thin th	e chose	en area	of tech	nnology	for pr	oject d	levelop	oment.	
GQA	Identi	ify, dis	cuss a	nd justi	ify the	techni	cal asp	ects of	the ch	osen pr	oject v	with a c	compre	ehensiv	e and
CO2	system	natic a	pproac	ch.											
	Repro	oduce,	impro	ve and	d refin	ne tech	nnical	aspects	s for e	enginee	ring p	rojects	by a	pplyin	g the
CO3	know	ledge o	of desig	gn/solv	ve com	plex er	ngineer	ing pro	blems	by the	usage	of mod	ern too	ols.	
CO4	Work	as an	indivic	lual or	in a tea	am in c	levelop	ment o	of tech	nical pr	ojects.				
CO5	Com	nunica	te and	report	effecti	vely pi	oject r	elated	activiti	es and	finding	gs.			
	1				(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	2			2									2		
CO3	2		2		3								2		
CO4	2								2				2		
CO5	2									2	2		2		
05	-										-		-		

Subject:										Subj	ect Co	de:			
						Cou	rse Ou	tcome	S						
CO1															
CO2															
CO3															
CO4															
CO5															
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
Average															

Semester-VII

Page **15** of **23**

Subject: (CONT	ROLE	ENGIN	EERIN	IG					Subj	ect Co	de: 18N	ME71		
						Cou	rse Ou	tcome	5						
CO1	Identi	ify the o	control	system	and its	types, o	control	actions							
CO2		truct the anical	e systen	n goveri	ning eq	uations	for phy	rsical m	odels(E	Electrica	l, Ther	mal, M	echanic	al, Elec	tro
CO3	Analy	yze the	gain of	the syst	em usi	ng blocl	k diagra	um and	signal f	low gra	ph				
CO4	Evalu	ate the	stability	y of Co	ntrol sy	stem in	comple	ex doma	ain and	frequen	cy don	nain			
CO5	Empl	oy state	e equation	ons to s	tudy the	e Bode'	s plot								
						CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2											1	1		
CO2	2	2	1										1		
CO3	2	2											1		
CO4	2	2	1									1	1		
CO5	1	2	1									1	1		
Average	1.8	1.6	0.6									1	1		

Subject: (COMPU	JTER A	AIDED	DESIG	N ANI) MAN	UFAC	TURIN	G	Subj	ect Co	de:18N	/IE72		
						Cou	rse Ou	tcome	5						
CO1							-		rences		en these	e conce	epts. So	olve sir	nple
	-							-	screen						
CO2	1							0	stries t	hrough	mathe	matica	l mode	els and	
002	•		erent ty	<u> </u>											
CO3	•								enhan	<u> </u>		•			
CO4	-					-	1 1		n manu	facturii	ng and	able to	prepa	re part	
004	1 0		simple	3				<u> </u>	0						
CO5									facturii			e man	ufactur	ring	
	indus	try 4.0	and ap	plicati			U		t manu	facturi	ng.				
								Mapp	ing				1		
COs						P	Os							PSOs	1
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											1		
CO2	3	2											1		
CO3	3	2											1		
CO4	3	2											1		
CO5	3	2											1		
Average	3	2											1		

Subject:	TOTA	L QUA	LITY	MAN	AGEM	ENT				Subj	ect Co	de: 18N	1E734		
						Cou	rse Ou	tcome	S						
CO1					aches										
CO2	Infer	the cus	stomer	percep	tion of	qualit	у								
CO3	Analy	yze cus	tomer	needs a	and per	ceptio	n to de	sign fe	ed bac	k syster	ms				
CO4	Appl	y statis	tical to	ols for	contin	uous in	mprove	ement (of syste	ems					
CO5	Appl	y the to	ols and	d techn	ology	for eff	ective i	mprov	ement	of TQN	Ν				
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2											1	1		

CO2	2	2					1	1	1		
CO3	2	2						1	1		
CO4	2						1	1	1	1	
CO5	2	2					1	1	1		
Average	2	2					1	1	1	1	

Subject: (OPER.	ATION	NS RES	EARC	Η					Subj	ect Co	de: 18N	AE735		
						Cou	rse Ou	tcome	S						
CO1	mode	l from	gnifican verbal d	escripti	on of re	eal syste	em proł	olems		-			_		natica
CO2			olution												
CO3	varia	nts of n			Ŷ			C				•			
CO4			etwork ashing o												work
CO5	Deter	mine n	ems on ninimun d 2 jobs	n proces	ssing ti	mes fo	r seque	ncing c	of n job						
			5			CO-PC									
<u> </u>							Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3	2	2										2		
CO3	3	2	2										2		
CO4	3	2	2										2		
CO5	3	2	2										2		
Average	3	2	2										2		
Subject: 1	MECH	IATRO	ONICS							Subj	ect Co	de: 18N	ЛЕ744		
	I							tcome							
CO1			rious c	_					ms.						
CO2			ous cor												
CO3	comp	onent	conduct with re	spect to	o speci	ficatio	ns, as v	well as	to anal	yse and				n or	
CO4			orincipl												
CO5	Func	tion ef	fective	ly as m	ember	s of mu	ıltidisc	iplinar	y teams	5.					
						СО-РС)-PSO	Марр	ing						
							Os		0					PSOs	
00				-	5	6	7	8	9	10	11	12	1	2	3
COs	1	2	3	4	5			1	I	1		1	1		
COs CO1	1 3	2	3	4	5								3		
		2 3	3	4	5								3 2		
CO1	3		3	4											
CO1 CO2	3 3	3	3	4									2		
CO1 CO2 CO3	3 3	3	3	4									2		

Subject:	PROJECT MANAGEMENT	Subject Code:18ME745
	Course Outcomes	
CO1	Understand the selection, prioritization and initiation of inc	lividual projects
CO2	Understand the strategic role of project management.work with organization.	breakdown structure by integrating it

CO3			the sch ity tool		g and u	incerta	inty in	projec	ts. anal	yse ris	k mana	igemen	ıt planı	ning us	ing
CO4			the act rformi		-	rchasii	ng, acq	uisitio	ns, con	tracting	g, partn	ering a	and col	laborat	tions
CO5		1	5				0		anced and anced and anced and anced and anced and anced and anced and an anced and an anced and anced and anced		11		using o	crashing	g.
					(CO-PO)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1					2		2	2	2	3	1	2		
CO2	1					2		2	2	2	3	1	2		
CO3	1					2		2	2	2	3	1	2		
CO4	1					2		2	2	2	3	1	2		
CO5	1					2		2	2	2	3	1	2		
Average	1					2		2	2	2	3	1	2		

Subject:	ENER	GY AN	ND EN	VIRO	NMEN	Т				Subj	ect Co	de: 18N	1E751		
						Cou	rse Ou	tcome	S						
CO1						of ene arious				use, en	ergy ef	ficienc	y, and	resulti	ng
CO2	To in	troduce	e vario	us aspe	ects of	enviro	nmenta	ıl pollu	tion an	d its co	ontrol				
CO3				causes change		medies	s relate	d to so	cial iss	ues like	e globa	l warm	ing, oz	zone la	yer
CO4						d to pre on act e		n and o	control	of poll	ution o	f water	and a	ir, fore	st
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1										1	1		
CO2	2	1										1	1		
CO3	2	1										1	1		
CO4	2	1										1	1		
Average	2	1										1	1		

Subject:	COMPUTER INTEGRATED MANUFACTURING LAB	Subject Code:18MEL76										
	Course Outcomes											
CO1												
CO2	Generate CNC Mill Part programs for point to point motions & l	ine motions										

CO3		use of d cuttir		Cycles	for Dr	illing, H	Peck dri	lling, E	Boring, '	Tapping	, Turni	ng, Fac	ing,Tap	er turni	ng
CO4			U U	for diffe	erent ma	achinin	g opera	tions us	sing CN	IC TRA	IN soft	ware.			
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											3		
CO2			3										2		
CO3						2	2								
CO4									2	2					
Average	3	2	3			2	2		2	2			2.5		

Subject:	DESIC	SN LA	В							Subj	ect Co	de:18N	MEL77	1	
						Cou	rse Ou	tcome	5						
CO1	Analy	yze prin	cipal st	resses, s	strains i	in mem	bers sul	ojected	to varic	ous load	ing usi	ng Strai	n Gaug	e Roset	tes
CO2		ate the ent mo	parame des	ters for	single	DOF of	f vibrati	onal sy	stems a	nd iden	tify crit	tical spe	ed of sl	haft for	
CO3		nate the	parame ses	ters of j	journal	bearing	g, gover	nor and	apply	the know	wledge	of dyna	amics to	balanc	e the
CO4	Appl	y the co	ncept o	f photo	elastici	ty for s	tress an	alysis a	nd to ca	alibrate	photo o	elastic r	nodels		
						CO-PC)-PSO	Mapp	ing						
COs						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2	3	2										2	1		
CO3	3	2	2										1		
CO4	3	2											2		
Average	3	2	2									2	1.8		

Subject:	Project	Phase	Ι							Subj	ect Co	de:18N	<u>1EP78</u>			
						Cou	rse Ou	tcome	5							
CO1	the su		ble con							nplex en nciples						
CO2	engin		proble	ms in c	U .					existing nealth,	-	-		-	1	
CO3	the so	ciety t	o addr	ess the	-		0	0		ology f ssociate				opmen	t in	
CO4		environmental factors. Form internal & external group to work together as a team in the project under consideration under multi disciplinary settings.														
CO5		Form internal & external group to work together as a team in the project under consideration under multi disciplinary settings. Communicate effectively addressing the complex engineering activities with documentation reports and proper presentation tools.														
				_	(CO-PC)-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2											2			
CO2																
CO3			3			2	2						3			
CO4									2							
CO5										3						
Average	3	2	3			2	2		2	3			2.5			

Semester-VIII

Page **20** of **23**

Subject:	ENER	GY EN	GINE	ERINC	3					Subj	ect Co	de: 18N	1E81		
						Cou	rse Ou	tcome	5						
CO1	Summa	arize th	e basic	concep	ots of th	ermal e	energy s	systems	5						
CO2	Identif	Identify renewable energy sources and their utilization													
CO3	Understand the basic concepts of solar radiation and analyze the working of solar PV and thermal systems.														
CO4	Understand principles of energy conversion from alternate sources including wind, geothermal, ocean, biomass, and biogas.														
CO5	Understand the concepts and applications of fuel cells, thermoelectric convertor and MHD generator. Identify methods of energy storage for specific applications.														
	-				(CO-PC)-PSO	Mapp	ing						
COa	POs											PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
CO2	3						2						2		
CO3	3						2						2		
CO4	3						1						2		
CO5	3						2						2		
Average	3						1.75						2		

Subject:	TRIBO	LOGY	7							Subj	ect Co	de: 18N	1E822			
						Cou	rse Ou	tcome	S							
CO1	Unde	rstand	the fun	damen	ntals of	tribolo	ogy and	d assoc	iated p	aramet	ers					
CO2	11.	Apply concepts of tribology for the performance analysis and design of components experiencing relative motion														
CO3	-	Analyse the requirements and design hydrodynamic journal and plane slider bearings for a given application														
CO4	Selec	t prope	er beari	ng mat	terials	and lub	oricants	s for a	given t	ribolog	ical ap	plicatio	on			
CO5	Apply the principles of surface engineering for different applications of tribology															
						CO-PC)-PSO	Mapp	ing							
COs	POs													PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3												2			
CO2	3	2											2			
CO3	3	2	3										2			
CO4	3	2											2			
CO5	3	2											2			
Average	3	2	3										2			

Subject:	AUTO	MOBI	LE EN	GINE	ERING	ſ				Subj	ect Co	de: 18N	1E824		
						Cou	rse Ou	tcome	S						
CO1		Understand the structure and working principles pertaining to Power plant, Transmission, Control & amp; Accessory systems employed in Automobiles.													
CO2	Appl	Apply the knowledge of Automobile systems to Contribute to enhancement of Efficiency.													
CO3	Appr	Appreciate the recent developments in engine and Emission control systems.													
CO4															
CO5															
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												2		
		•			•				•				•	•	

CO2	3	2						2	
CO3	3	2		1	1			2	
CO4									
CO5									
Average	3	2						2	

Subject:	PROJE	CT W	ORK F	PHASE	- 2					Subj	ect Co	de: 18N	AEP83		
						Cou	rse Ou	tcome	S						
CO1	Review the research literature, identify and analyze the complex engineering problems, formulate the sustainable conclusions or solutions using the basic principles of applied mathematics, science and engineering														
CO2	Design proper methodology to derive the solutions for the existing or anticipated complex engineering problems in concern with the issues of public health ,safety societal, cultural and environmental areas.														
CO3	Practice and establish the professional engineering methodology for sustainable development in the society to address the complex engineering problems associated with societal and environmental factors.														
CO4	Form internal & external group to work together as a team in the project under consideration under multi disciplinary settings.														
CO5	Communicate effectively addressing the complex engineering activities with documentation reports and proper presentation tools.														
				_	(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		
CO2															
CO3			3			2	2						3		
CO4									2						
CO5										3					
Average	3	2	3			2	2		2	3			2.5		

Subject: '	TECHI	NICAL	L SEM	INAR						Subj	ect Co	de: 18N	1ES8 4		
						Cou	rse Ou	tcome	S						
CO1	Revie	ewing o	of adva	inced o	r recer	nt techr	nologie	s in the	e field	of mec	hanical	engine	ering		
CO2	Investigate and study the literature of recent technologies from various sources														
CO3	Skill to write detailed technical report describing the gained knowledge.														
CO4	Enhances the effective communication and presentation skill.														
CO5							_								
	•					CO-PC)-PSO	Mapp	ing						
COs	POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3											3		
CO2		3											3		
CO3										3		3	3		
CO4										3			3		
CO5															
Average		3								3		3	3		

Subject:	Internship	Subject Code:18MEI84									
Course Outcomes											
CO1	Apply modern techniques, resources, engineering and IT tools while addressing complex engineering problems.										

CO2	Demonstrate the contextual knowledge to access societal, health, safety and cultural issues normally encountered in industries.														
CO3	enviro	Contribute through engineering solutions for the sustainable development in societal and environmental context and exercise professional ethics, norms, standards and responsibilities in engineering practice.													
CO4	Effectively work as a team member as well as a leader while demonstrating the knowledge of project management, finance handling and other management practices in a multidisciplinary environment.														
C05	and d prepa	Demonstrate the knowledge of documentation, report writing, effective presentation, receiving and delivering clear instructions in the professional environment and recognize the need & have preparation ability to engage in independent & life- long learning facing the challenges of technological changes.													
						CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2				2								2	2	
CO2						2							2		
CO3							2	2							
CO4									3		3				
CO5										3		3		2	
Average	2				2	2	2	2	3	3	3	3	2	2	

Coordinator

XOX HOD

Head of the Department Department of Meritacical Engineering SUB Institute of Technology Kengeri, Bengaluru-560 060