

|| Jai Sri Gurudev|| Sri Adichunchanagiri Shikshana Trust®

SJB INSTITUTE OF TECHNOLOGY No. 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru - 560060

Accredited by NAAC, Accredited by NBA. Certified by ISO 9001-2015

Department of Computer Science & Engineering

Question Bank

Subject: Automata Theory & Computability

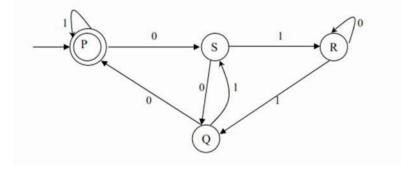
Subject Code: 18CS54

Sem: V

VTU QUESTION BANK

Unit 1

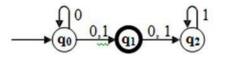
Introduction to Finite Automata

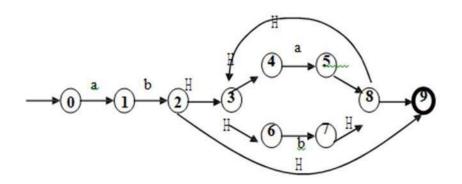

- 1. Obtain DFAs to accept strings of a's and b's having exactly one a.(5m)(Dec-2014)
- 2. Obtain a DFA to accept strings of a's and b's having even number of a's and b's .(5m)(Dec-2013)
- 3. Give Applications of Finite Automata. (5m)(June-July-2014)
- 4. Define DFA, NFA & Language? (5m)(Dec-2014)
- 5. Obtain a DFA to accept strings of a's and b's starting with the string ab. (6m)(Dec-2013) (June-July-2015)
- Draw a DFA to accept string of 0's and 1's ending with the string 011.(4m)(Dec-2013) (June-July 2014)
- 7. DFA to accept strings of 0's, 1's & 2's beginning with a 0 followed by odd number of 1's and ending with a 2. (10m)(Dec-2013)(June-July-2015)
- 8. Design a DFA to accept string of 0's & 1's when interpreted as binary numbers would be multiple . of 3 (5m)(June-July-2013, June-July-2014)
- 9. Find closure of each state and give the set of all strings of length 3 or less accepted by automaton.(5m)(June-July-2013)
- 10. Obtain a DFA to accept strings of a's and b's having a sub string aa. (5m)(June-July-2013)
- 11. Write Regular expression for the following $L = \{ a^n b^m : m, n \text{ are even} \} L = \{ a^n, b^m : m \ge 2, (5m)(Dec-2014, June-July-2014)\}$
- 12. Convert above automaton to a NFA to DFA .(Dec-2013, June-2015)

δ		a	b
□p	{r}	{q}	{p,r}
q	Ι	{ p }	Ι
*r	{ p , q }	{r}	{ p }

13. Convert following NFA to DFA using subset construction method.(10m)(June-July-2014)

δ_N	0	1
□ p	{p,r}	{q}
q	{ r , s }	{ p }
*r	{ p , s }	{ r }
*s	$\{q,r\}$	Ι


14. Convert the following DFA to Regular Expression (10m)(Dec -2014)


- 15. Define NFA. With example explain the extended transition function(5m)(Dec-2014)
- 16. Explain the ground rules of finite automata.(5m)(June-july-2013)

Finite Automata, Regular Expressions

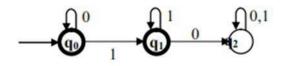
- 1. P.T. Let R be a regular expression. Then there exists a finite automaton $M = (Q, \downarrow, G, q_0, A)$ which accepts L(R). (10m)(June- July2014)
- 2. Define derivation , types of derivation , Derivation tree & ambiguous grammar. Give example for each. (4m)(June- July 2015)
- 3. Obtain an NFA to accept the following language $L = \{w \mid w abab^n \text{ or } aba^n \text{ where n t } 0\}$ (6m)(Dec-2013, June- July- 2014)
- 4. Convert the following NFA into an equivalent DFA. (10m)(June-July-2015)

5. Convert the following NFA to its equivalent DFA(10m) (June-July-2015)

- 6. Obtain an NFA which accepts strings of a's and b's starting with the string ab. (7m)(June- July 2013)
- 7. Define grammar? Explain Chomsky Hierarchy? Give an example (6m)(June- July 2014)
- 8. Is the following grammar ambiguous (7m)(Dec-2013, June-July-2014) S -> aB | bA
 - $A \rightarrow aS \mid bAA \mid a$

 $B \rightarrow bS | aBB | b$

- 9. Obtain grammar to generate string consisting of any number of a's and b's with at least one b. (5m)(Dec-2014, June-July-2015)
- 10. Obtain a grammar to generate the following language L ={WWR Where W {a, b}*}.(5m)(June-july-2015)
- 11. Obtain a grammar to generate the following language: $L = \{ 0^m \ 1^m 2^n \mid m \ge 1 \text{ and } n \ge 0 \}$. (5m)(June-July 2013)
- 12. Obtain a grammar to generate the following language: (5m)(Dec-2013) $L = \{ w \mid n a^{(w)} > n b^{(w)} \}$

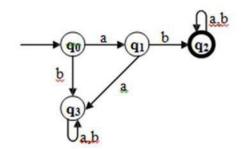

 $L = \{ a^{n} b^{m} c^{k} | n+2m = k \text{ for } n \ge 0, m \ge 0 \}$

- 13. Define PDA. Obtain PDA to accept the language $L = \{a^n b^n | n \ge 1\}$ by a final state. (5m)(June-july-2014)
- 14. Write a short note on application of context free grammar. (7m)(Dec- 2014)
- 15. Explain finite automata with epsilon transition. (7m)(June-July- 2014)
- 16. Explain the application of regular expression (6m)(June-july- 2015)

Unit 3

Regular Languages, Properties of Regular Languages


- 1. Prove pumping lemma? 5m)(June-July-2015, July-2014)
- Prove that L={w|w is a palindrome on {a,b}*} is not regular. i.e., L={aabaa, aba, abbbba,...} (8m)(Dec-2014, June-July 2013)
- 3. Prove that L={ all strings of 1's whose length is prime} is not regular. i.e., L={ 1^2 , 1^3 , 1^5 , 1^7 , 1^{11} ,----} (8m)(Dec-2013)
- 4. Let M = (Q, ¦, G, q0, A) be an FA recognizing the language L. Then there exists an equivalent regular expression R for the regular language L such that L = L(R). (8m) (June-July-2015, Dec-2014)
- 5. What is the language accepted by the following FA. (6m)(June-July-2013)


- 6. Show that following languages are not regular (10m)(June-July 2014) L={aⁿb^m | n, m t0 and n<m }
 L={aⁿb^m | n, m t0 and n>m }
 L={aⁿb^mc^mdⁿ | n, m t1 }
 L={aⁿ | n is a perfect square }L={aⁿ | n is a perfect cube }
- 7. Apply pumping lemma to following languages and understand why we cannot complete proof (10m)(Dec-2014)

L= $\{anaba | n t0 \}$ L= $\{anbm | n, mt0 \}$

- 8. Obtain a DFA to accept strings of a's and b's starting with the string ab (10m)(Dec-2013)
- 9. Obtain a regular expression for the FA shown below: (10m) (June-July-2015)

10. Solve: (10m)(Dec-14)

11. Explain Closure properties with an example. (10m)(June-July 2013)

Context-Free Grammars And Languages

- 1. P.T. If L and M are regular languages, then so is L⊂ M. (10m)(June-July 2014)
- 2. Write a DFA to accept the intersection of L1=(a+b)*a and L2=(a+b)*b that is for L1 ^L2. (10m)(June-July 2015, June-July-2013)
- 3. Find the DFA to accept the intersection of L1=(a+b)*ab(a+b)* and L2=(a+b)*ba(a+b)* and that is for L1 ^ L2 (10m)(Dec-2013, June-July-2014)
- 4. P.T. If L and M are regular languages, then so is L M. (10m)(Dec-2014)
- 5. Design context-free grammar for the following cases(10m)(Dec-2013, June-July 2014) L={ 0n1n | n
 - L={aibjck| $i \neq j$ or $j \neq k$ }
- 6. Generate grammar for RE 0*1(0+1)* (10m)(June-July 2015)
- 7. P.T. If L is a regular language over alphabet S, then $L = 6^* L$ is also a regular language. (8m)(June-July-2013)
- P.T. If L is a regular language over alphabet 6, then, L = 6* L is also a regular language. (8m)(Dec-2013)
- 9. P.T. If L is a regular language, so is L^{R} (6m)(Dec-2014)
- 10. If L is a regular language over alphabet 6, and h is a homomorphism on 6, then h (L) is also regular. (10m)(June-july- 2015).
- 11. Explain CGF with an example. . (5m)(June-July-2014)
- 12. Explain decision properties of regular language. . (5m)(June-July-2013)

Pushdown Automata

- 1. Give leftmost and rightmost derivations of the following strings
 - **a.** 00101 b) 1001 c) 00011(**4m**) (**June-July 2015**) (**Dec-2013**)
- 2. Construct PDA: For the language (4m)(June-July2014)

 $L = \{ \underline{\mathrm{wcw}}^R \mid \underline{\mathrm{w}} \quad \{ \underline{\mathrm{a}}, \underline{\mathrm{b}} \}^*, \underline{\mathrm{c}} \quad \Sigma \quad \}$

- 3. Construct DPDA which accepts the language $L = \{wcw^R | w \{a, b\}^*, c \Sigma\}$. (4m)(June-July 2013)
- 4. Construct DPDA for the following: Accepting the language of balanced parentheses. (Consider any type of parentheses)Accepting strings with number of a's is more than number of b's Accepting {0n1m| n t m}(**June-July-2015**)
- 5. Design nPDA to accept the language: (Dec-2013)
 - $\{a^{i}b^{j}c^{k} | i, j, k \mathbf{t} \ 0 \text{ and } i = j \text{ or } i = k \}$ $\{a^{i}b^{j}c^{i+j} | i, j \mathbf{t} \ 0 \}$ $\{a^{i}b^{i+j}c^{j} | i \mathbf{t} \ 0, j \mathbf{t} \ 1 \}$
- 6. Construct PDA: For the language $L=\{a^n b^{2n}|a,b \in n t 0\}$ (5m)(Dec-2015,July-2013)
- Construct PDA to accept if-else of a C program and convert it to CFG. (This does not accept if –if –else-else statements) (5m)(Dec-2013)
- 8. Show that deviation for the string aab is ambiguous. (5m)(June-July 2014)
- 9. Suppose h is the homomorphism from the alphabet {0,1,2} to the alphabet { a,b} defined by h(0) = a; h(1) = ab & h(2) = ba
 - a) What is h(0120)?
 - b) What is h(21120)?
 - c) If L is the language L(01*2), what is h(L)?
 - d) If L is the language L(0+12), what is h(L)?
 - If L is the language $L(a(ba)^*)$, what is h-1(L)? (5m)(Dec-2013)
- **10.** Design a PDA to accept the set of all strings of 0's and 1's such that no prefix has more 1's than 0's. (**5m**)(**June-July2015**)
- 11. Construct PDA: Accepting the set of all strings over {a, b} with equal number of a's and b's. Show the moves for abbaba. (5m))(June-July 2013)
- 12. Construct PDA: Accepting the language of balanced parentheses, (consider any type of parentheses). (**5m**)(**Dec-2014**)

- 13. How do you convert From PDA to CFG. (5m)(Dec-2013)
- 14. Convert PDA to CFG. PDA is given by $P = (\{p,q\}, \{0,1\}, \{X,Z\}, \delta, q, Z))$, Transition function δ is defined by (**5m**)(**Dec-2014**)

$$\begin{split} \delta(q,\,1,\,Z) &= \{(q,\,XZ)\}\\ \delta(q,\,1,\,X) &= \{(q,\,XX)\}\\ \delta(q,\,H,\,X) &= \{(q,\,H)\}\\ \delta(q,\,0,\,X) &= \{(p,\,X)\}\\ \delta(p,\,1,\,X) &= \{(p,\,H)\} \end{split}$$

15. Convert to PDA, CFG with productions (10m)(Dec-2014)

A o aAA, A -> aS | bS | a S -> SS | (S) | H S -> aAS | bAB | aB, A -> bBB | aS | a, B -> bA | a

16. Explain push down automata with an example(10m)(Dec- 2013)

Properties of Context-Free Languages

- **1.** Eliminate the n->n-generating symb->ls fr->m S -> aS | A | C, A ->a, B -> aa, C > aCb. (8m)(June-July 2015)
- 2. Draw the dependency graph as given above. A is non-reachable from S. After eliminating A, G1= ({S}, {a}, {S -> a}, S). (6m)(June-July 2013)
- 3. Find out the grammar without H Productions G = ({S, A, B, D}, {a}, {S o aS | AB, A -> H, B-> H, D ->b}, S). (6m)(June-July 2014)
- 4. Eliminate n->n-reachable symbols from G= ({S, A}, {a}, {S -> a, A ->a}, S) (10m)(Dec-2013)

5. Eliminate non-reachable symbols from S -> aS | A, A -> a, B -> aa. (10m) (Dec-2014)

- 6. Eliminate useless symbols from the grammar with productions S -> AB | CA, B > BC | AB, A -> a, C -> AB | b. (5m)(June-July 2014)
- 7. Eliminate useless symbols from the grammar (5m)(June-July 2015)
 P= {S o aAa, A ->Sb | bCC, C ->abb, E -> aC}
 P= {S -> aBa | BC, A -> aC | BCC, C ->a, B -> bcc, D -> E, E ->d}
 P= {S -> aAa, A -> bBB, B -> ab, C -> aB}
 P= {S -> aS | AB, A -> bA, B -> AA}.
- 8. Write Algorithm to find nullable variables. (5m)(June-July 2015)
- 9. Eliminate H productions from the grammar. (5m)(Dec-2014, Dec-2013)
 S -> a |Xb | aYa, X -> Y| H, Y -> b | X
 S -> Xa, X -> aX | bX | H
 S -> XY, X ->Zb, Y -> bW, Z ->AB, W ->Z, A -> aA | bB | H, B -> Ba | Bb| H
 S -> ASB | H, A -> aAS | a, B -> SbS | A| bb
- **10.** Eliminate H pr->ductions and useless symbols from the grammar S ->a |aA|B|C, A ->aB| H, B ->aA, C ->aCD, D ->dd. (**10m**)(**Dec-2014**)
- **11.** Show that $L = \{a^i b^i c^i | i t1\}$ is not CFL. (10m)(Dec-2013)
- **12.** Show that $L = \{ww | w \in \{0, 1\}^*\}$ is not CFL. (10m)(June-july-2014)
- 13. Using pumping lemma for CFL prove that below languages are not context free $\{p \mid p \text{ is a prime}\}$. (10m)(Dec-2013)

Introduction To Turing Machine

Explain with example problems that Computers cannot solve.(6m)(June-

^{1.} July-2015)

Explain briefly the following Halting problem. (4m)(June-July 2013)

- 2. Explain Programming techniques for Turning Machines(10m)(Dec-Jan-2010)
- 3. Design a Turing machine to accept a Palindrome. (**10m**)(**Dec-2013**)
- ^{4.} Design a TM to recognize a string of the form $a^{n}b^{2n}$. (10m)(Dec-2013)
- 5. Design a Turing machine to accept a Palindrome. (10m)(Dec--2014)
- ⁶: Define undesirability, decidability. (10m)(June-July 2014)

Post's Correspondence problem Design a TM to recognize a string of 0s and 1s

such that the number of 0s is not twice as that of 1s. (10m) (June-July-2015, Dec-2013)

UNIT 8

Undecidability

- 1. Design a TM to recognize a string of the form $a^{n}b^{2n}$ (**10m**) (**June-July -2013**)
- 2. P.t If L is a recursive language, L is also recursive.(10m) (June-July 2014)
- 3. Design a Turing Machine to recognize 0n1n2n. (10m)(Dec-2013)
- 4. Explain briefly the following Halting problem(6m)(Dec-2014, Dec-2013)
- 5. Define undesirability, decidability. (8m) (June-July 2013, June-July 2014)
- 6. Post's Correspondence problem Design a TM to recognize a string of 0s and 1s such that the number of 0s is not twice as that of 1s. (**Dec-2014**)
- 7. Design a Turing machine to accept a Palindrome. (**7m**)(**Dec-2013**)
- 8. Write a short note on: (20m) Dec-2014)
- a. Undesirability,
- b. Halting problem,
- c. decidability