

|| Jai Sri Gurudev|| Sri Adichunchanagiri Shikshana Trust ${ }^{\circledR}$ SJB INSTITUTE OF TECHNOLOGY

No. 67, BGS Health \& Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru -560060 Accredited by NAAC, Accredited by NBA. Certified by ISO 9001-2015

Department of Computer Science \& Engineering Question Bank
Subject: Automata Theory \& Computability Subject Code: 18CS54

Sem: V

VTU QUESTION BANK

Unit 1

Introduction to Finite Automata

1. Obtain DFAs to accept strings of a's and b's having exactly one a.(5m)(Dec-2014)
2. Obtain a DFA to accept strings of a's and b's having even number of a's and b's.(5m)(Dec-2013)
3. Give Applications of Finite Automata. (5m)(June-July-2014)
4. Define DFA, NFA \& Language? (5m)(Dec-2014)
5. Obtain a DFA to accept strings of a's and b's starting with the string ab. (6m)(Dec-2013) (June-July-2015)
6. Draw a DFA to accept string of 0's and 1's ending with the string 011.(4m)(Dec-2013) (June-July 2014)
7. DFA to accept strings of 0 's, 1 's \& 2's beginning with a 0 followed by odd number of 1 's and ending with a 2. (10m)(Dec-2013)(June-July-2015)
8. Design a DFA to accept string of 0's \& 1's when interpreted as binary numbers would be multiple . of 3 (5m)(June-July-2013, June-July-2014)
9. Find closure of each state and give the set of all strings of length 3 or less accepted by automaton.(5m)(June-July-2013)
10. Obtain a DFA to accept strings of a's and b's having a sub string aa. (5m)(June-July-2013)
11. Write Regular expression for the following $L=\left\{a^{n} b^{m}: m, n\right.$ are even $\}=\left\{a^{n}, b^{m}: m>=2\right.$, (5m)(Dec-2014, June-July-2014)
12. Convert above automaton to a NFA to DFA .(Dec-2013, June-2015)

δ		a	b
$\square \mathrm{p}$	$\{\mathrm{r}\}$	$\{\mathrm{q}\}$	$\{\mathrm{p}, \mathrm{r}\}$
q	\mathbf{I}	$\{\mathrm{p}\}$	\mathbf{I}
$* \mathrm{r}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}\}$

13. Convert following NFA to DFA using subset construction method.(10m)(June-July-2014)

δ_{N}	0	1
$\square \mathrm{p}$	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{q}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}\}$
$*_{\mathrm{r}}$	$\{\mathrm{p}, \mathrm{s}\}$	$\{\mathrm{r}\}$
$*_{\mathrm{s}}$	$\{\mathrm{q}, \mathrm{r}\}$	\mathbf{I}

14. Convert the following DFA to Regular Expression (10m)(Dec -2014)

15. Define NFA. With example explain the extended transition function(5m)(Dec-2014)
16. Explain the ground rules of finite automata.(5m)(June-july-2013)

UNIT 2

Finite Automata, Regular Expressions

1. P.T. Let R be a regular expression. Then there exists a finite automaton $M=\left(Q, 1, G, q_{0}, A\right)$ which accepts L(R). (10m)(June- July 2014)
2. Define derivation, types of derivation, Derivation tree \& ambiguous grammar. Give example for each. (4m)(June- July 2015)
3. Obtain an NFA to accept the following language $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ $\mathrm{abab}^{\mathrm{n}}$ or aba ${ }^{\mathrm{n}}$ where nt 0$\}(\mathbf{6 m})($ Dec-2013, June- July- 2014)
4. Convert the following NFA into an equivalent DFA. (10m)(June-July-2015)

5. Convert the following NFA to its equivalent DFA(10m) (June-July-2015)

6. Obtain an NFA which accepts strings of a's and b's starting with the string ab. (7m)(June- July 2013)
7. Define grammar? Explain Chomsky Hierarchy? Give an example ($\mathbf{6 m}$)(June- July 2014)
8. Is the following grammar ambiguous (7m)(Dec-2013, June-July-2014)

S -> aB |bA
A -> aS |bAA $\mid \mathrm{a}$

B -> bS |aBB |b
9. Obtain grammar to generate string consisting of any number of a's and b's with at least one b. (5m)(Dec-2014, June-July-2015)
10. Obtain a grammar to generate the following language $\mathrm{L}=\left\{\mathrm{WWR}\right.$ Where $\left.\mathrm{W}\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$. (5m)(June-july-2015)
11. Obtain a grammar to generate the following language: $L=\left\{0^{m} 1^{m} 2^{n} \mid m>=1\right.$ and $\mathrm{n}>=0\}$. (5m)(June-July 2013)
12. Obtain a grammar to generate the following language: (5m)(Dec-2013)
$\mathrm{L}=\left\{\mathrm{w} \mid \mathrm{n}_{\left.\mathbf{a}^{(\mathrm{w})}>\mathrm{n}_{\mathbf{b}^{(\mathrm{w})}}\right\}}\right.$
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{n}+2 \mathrm{~m}=\mathrm{k}\right.$ for $\left.\mathrm{n}>=0, \mathrm{~m}>=0\right\}$
13. Define PDA. Obtain PDA to accept the language $L=\left\{a^{n} b^{n} \mid n>=1\right\}$ by a final state. (5m)(June-july-2014)
14. Write a short note on application of context free grammar. (7m)(Dec- 2014)
15. Explain finite automata with epsilon transition. (7m)(June-July- 2014)
16. Explain the application of regular expression (6m)(June-july- 2015)

Unit 3

Regular Languages, Properties of Regular Languages

1. Prove pumping lemma? 5m)(June-July-2015, July-2014)
2. Prove that $\mathrm{L}=\left\{\mathrm{w} \mid \mathrm{w}\right.$ is a palindrome on $\left.\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ is not regular. i.e., $\mathrm{L}=\{\mathrm{aabaa}, \mathrm{aba}$, abbbba,...\} (8m)(Dec-2014, June-July 2013)
3. Prove that $\mathrm{L}=\{$ all strings of 1 's whose length is prime $\}$ is not regular. i.e., $\mathrm{L}=\left\{1^{2}, 1^{3}, 1^{5}, 1^{7}\right.$ $\left., 1^{11},---\right\}(8 m)(D e c-2013)$
4. Let $\mathrm{M}=(\mathrm{Q}, \mathrm{i}, \mathrm{G}, \mathrm{q} 0, \mathrm{~A})$ be an FA recognizing the language L . Then there exists an equivalent regular expression R for the regular language L such that $L=L(R) .(8 m)$ (June-July-2015, Dec-2014)
5. What is the language accepted by the following FA. ($\mathbf{6 m}$)(June-July-2013)

6. Show that following languages are not regular (10m)(June-July 2014)
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mid \mathrm{n}, \mathrm{m} \mathbf{t} 0\right.$ and $\left.\mathrm{n}<\mathrm{m}\right\}$
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mid \mathrm{n}, \mathrm{m} \mathbf{t} 0\right.$ and $\left.\mathrm{n}>\mathrm{m}\right\}$
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{m}} \mathrm{d}^{\mathrm{n}} \mid \mathrm{n}, \mathrm{m} \mathbf{t} 1\right\}$
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n}\right.$ is a perfect square $\} \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n}\right.$ is a perfect cube $\}$
7. Apply pumping lemma to following languages and understand why we cannot complete proof (10m)(Dec-2014)
$\mathrm{L}=\{$ anaba|nt0 $\}$
$\mathrm{L}=\{\operatorname{anbm} \mid \mathrm{n}, \mathrm{mt} 0\}$
8. Obtain a DFA to accept strings of a's and b's starting with the string ab (10m)(Dec-2013)
9. Obtain a regular expression for the FA shown below: (10m) (June-July-2015)

10. Solve: (10m)(Dec-14)

11. Explain Closure properties with an example. (10m)(June-July 2013)

UNIT 4

Context-Free Grammars And Languages

1. P.T. If L and M are regular languages, then so is $L c M$. (10m)(June-July 2014)
2. Write a DFA to accept the intersection of $\mathrm{L} 1=(\mathrm{a}+\mathrm{b})^{*} \mathrm{a}$ and $\mathrm{L} 2=(\mathrm{a}+\mathrm{b})^{*} \mathrm{~b}$ that is for $\mathrm{L} 1{ }^{\wedge} \mathrm{L} 2$. (10m)(June-July 2015, June-July-2013)
3. Find the DFA to accept the intersection of $\mathrm{L} 1=(\mathrm{a}+\mathrm{b})^{*} \mathrm{ab}(\mathrm{a}+\mathrm{b})^{*}$ and $\mathrm{L} 2=(\mathrm{a}+\mathrm{b}) * \mathrm{ba}(\mathrm{a}+\mathrm{b})^{*}$ and that is for L1 ^ L2 (10m) (Dec-2013, June-July-2014)
4. P.T. If L and M are regular languages, then so is $L-M$. (10m)(Dec-2014)
5. Design context-free grammar for the following cases(10m)(Dec-2013, June-July 2014)

L=\{0n1n |n
$\mathrm{L}=\{$ aibjck| $\mathrm{i} \neq \mathrm{j}$ or $\mathrm{j} \neq \mathrm{k}\}$
6. Generate grammar for RE $0 * 1(0+1)^{*}(\mathbf{1 0 m})($ June-July 2015)
7. P.T. If L is a regular language over alphabet S, then $L=6^{*}-L$ is also a regular language.
(8m)(June-July-2013)
8. P.T. - If L is a regular language over alphabet 6 , then, $L=6^{*}$ - L is also a regular language. (8m)(Dec-2013)
9. P.T. If L is a regular language, so is $L^{R}(\mathbf{6 m})(\mathbf{D e c}-2014)$
10. . If L is a regular language over alphabet 6 , and h is a homomorphism on 6 , then $h(L)$ is also regular. (10m)(June-july- 2015).
11. Explain CGF with an example. . (5m)(June-July-2014)
12. Explain decision properties of regular language. . ($\mathbf{5 m}$)(June-July-2013)

UNIT 5

Pushdown Automata

1. Give leftmost and rightmost derivations of the following strings
a. 00101
b) 1001
c) $00011(4 \mathrm{~m})$ (June-July 2015) (Dec-2013)
2. Construct PDA: For the language (4m)(June-July2014)

$$
\mathrm{L}=\left\{\mathrm{w}_{\mathrm{w}} \mathrm{w} \mid \mathrm{w} \quad\{\mathrm{a}, \mathrm{~b}\}^{*}, \mathrm{c} \quad \Sigma\right\}
$$

3. Construct DPDA which accepts the language $\mathrm{L}=\left\{\mathrm{wcw}^{\mathrm{R}} \mid \mathrm{w}\{\mathrm{a}, \mathrm{b}\}^{*}, \mathrm{c} \Sigma\right\}$. (4m)(June-July 2013)
4. Construct DPDA for the following: Accepting the language of balanced parentheses. (Consider any type of parentheses)Accepting strings with number of a's is more than number of b's Accepting $\{0 \mathrm{n} 1 \mathrm{~m} \mid \mathrm{nt} \mathrm{m}\}$ (June-July-2015)
5. Design nPDA to accept the language: (Dec-2013)

$$
\begin{aligned}
& \left\{a^{i} b^{j} c^{k} \mid i, j, k t 0 a n d i=j \text { or } i=k\right\} \\
& \left\{a^{i} b^{j} c^{i+j} \mid i, j t 0\right\} \\
& \left\{a^{i} b^{i+j} c^{j} \mid i t 0, j t 1\right\}
\end{aligned}
$$

6. Construct PDA: For the language $L=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{2 n} \mid \mathbf{a}, \mathbf{b} \in \mathbf{n t} \mathbf{0}\right\}(\mathbf{5 m})$ (Dec-2015,July-2013)
7. Construct PDA to accept if-else of a C program and convert it to CFG. (This does not accept if -if-else-else statements) (5m)(Dec-2013)
8. Show that deviation for the string aab is ambiguous. (5m)(June-July 2014)
9. Suppose h is the homomorphism from the alphabet $\{0,1,2\}$ to the alphabet $\{\mathrm{a}, \mathrm{b}\}$
defined by $h(0)=a ; h(1)=a b \& h(2)=b a$
a) What is $\mathrm{h}(0120)$?
b) What is $\mathrm{h}(21120)$?
c) If L is the language $\mathrm{L}\left(01^{*} 2\right)$, what is $\mathrm{h}(\mathrm{L})$?
d) If L is the language $L(0+12)$, what is $h(L)$?

If L is the language $\mathrm{L}\left(\mathrm{a}(\mathrm{ba})^{*}\right)$, what is $\mathrm{h}-1(\mathrm{~L}) ? \quad(\mathbf{5 m})($ Dec-2013)
10. Design a PDA to accept the set of all strings of 0 's and 1 's such that no prefix has more 1's than 0's. (5m)(June-July 2015)
11. Construct PDA: Accepting the set of all strings over $\{a, b\}$ with equal number of a's and b's. Show the moves for abbaba. (5m))(June-July 2013)
12. Construct PDA: Accepting the language of balanced parentheses, (consider any type of parentheses). (5m)(Dec-2014)
13. How do you convert From PDA to CFG. (5m)(Dec-2013)
14. Convert PDA to CFG. PDA is given by $P=(\{p, q\},\{0,1\},\{X, Z\}, \delta, q, Z))$, Transition function δ is defined by ($\mathbf{5 m}$)(Dec-2014)

$$
\begin{aligned}
\delta(\mathrm{q}, 1, \mathrm{Z}) & =\{(\mathrm{q}, \mathrm{XZ})\} \\
\delta(\mathrm{q}, 1, \mathrm{X}) & =\{(\mathrm{q}, \mathrm{XX})\} \\
\delta(\mathrm{q}, \mathrm{H}, \mathrm{X}) & =\{(\mathrm{q}, \mathrm{H})\} \\
\delta(\mathrm{q}, 0, X) & =\{(\mathrm{p}, \mathrm{X})\} \\
\delta(\mathrm{p}, 1, X) & =\{(\mathrm{p}, \mathrm{H})\}
\end{aligned}
$$

15. Convert to PDA, CFG with productions (10m)(Dec-2014)

A o aAA, A -> aS $|\mathrm{bS}| \mathrm{a}$
S -> SS |(S)|H
S-> aAS |bAB|aB,
A $->\mathrm{bBB}|\mathrm{aS}| \mathrm{a}$,
B -> bA |a
16. Explain push down automata with an example(10m)(Dec- 2013)

UNIT 6

Properties of Context-Free Languages

1. Eliminate the $\mathrm{n}->\mathrm{n}$-generating symb->ls fr->m S -> aS $|\mathrm{A}| \mathrm{C}, \mathrm{A}->\mathrm{a}, \mathrm{B}->\mathrm{aa}, \mathrm{C}$ $>\mathrm{aCb}$. (8m)(June-July 2015)
2. Draw the dependency graph as given above. A is non-reachable from S . After

3. Find out the grammar without H - Productions $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{D}\}$, $\{\mathrm{a}\}$, $\{\mathrm{S}$ o aS \mid AB, A -> H, B-> H, D ->b \}, S). (6m)(June-July 2014)
4. Eliminate $\mathrm{n}->\mathrm{n}$-reachable symbols from $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}\},\{\mathrm{S}->\mathrm{a}, \mathrm{A}->\mathrm{a}\}, \mathrm{S})$ (10m)(Dec-2013)
5. Eliminate non-reachable symbols from S-> aS \mid A, A -> a, B -> aa. (10m) (Dec-2014)
6. Eliminate useless symbols from the grammar with productions S-> $\mathrm{AB} \mid \mathrm{CA}, \mathrm{B}$ $>B C|A B, A->a, C->A B|$ b. (5m)(June-July 2014)
7. Eliminate useless symbols from the grammar (5m)(June-July 2015)
$\mathrm{P}=\{\mathrm{S}$ o aAa, $\mathrm{A}->\mathrm{Sb} \mid \mathrm{bCC}, \mathrm{C}->\mathrm{abb}, \mathrm{E}->\mathrm{aC}\}$
$\mathrm{P}=\{\mathrm{S}->\mathrm{aBa}|\mathrm{BC}, \mathrm{A} \mathrm{->} \mathrm{aC}| \mathrm{BCC}, \mathrm{C}->\mathrm{a}, \mathrm{B}->\mathrm{bcc}, \mathrm{D}->\mathrm{E}, \mathrm{E}->\mathrm{d}\}$
$P=\{S->a A a, A->b B B, B->a b, C->a B\}$
$P=\{S->a S \mid A B, A->b A, B->A A\}$.
8. Write Algorithm to find nullable variables. (5m)(June-July 2015)
9. Eliminate H - productions from the grammar. (5m)(Dec-2014, Dec-2013)

S -> a $|\mathrm{Xb}| a Y a, X->Y \mid H, Y$-> b|X
S -> Xa, X -> aX |bX|H
S -> XY, X ->Zb, Y -> bW, Z ->AB, W ->Z, A -> aA |bB|H, B -> Ba|Bb|H
S -> ASB | H, A -> aAS |a, B -> SbS $|A| b b$
10. Eliminate H - pr->ductions and useless symbols from the grammar $\mathrm{S}->\mathrm{a}|\mathrm{aA}| \mathrm{B} \mid \mathrm{C}$, A ->aB|H, B ->aA, C ->aCD, D ->dd. (10m)(Dec-2014)
11. Show that $L=\left\{a^{i} b^{i} c^{i} \mid i t 1\right\}$ is not CFL. (10m)(Dec-2013)
12. Show that $L=\left\{w w \mid w\{0,1\}^{*}\right\}$ is not CFL. (10m)(June-july-2014)
13. Using pumping lemma for CFL prove that below languages are not context free $\{\mathrm{p} \mid \mathrm{p}$ is a prime $\}$. . ($\mathbf{1 0 m}$)(Dec-2013)

UNIT 7

Introduction To Turing Machine

Explain with example problems that Computers cannot solve.(6m)(June-

1. July-2015)

Explain briefly the following Halting problem. (4m)(June-July 2013)
2. Explain Programming techniques for Turning Machines (10m)(Dec-Jan-2010)
3.

Design a Turing machine to accept a Palindrome. (10m)(Dec-2013)
4.

Design a TM to recognize a string of the form $a^{n} b^{2 n .}$ (10m)(Dec-2013)
5. Design a Turing machine to accept a Palindrome. (10m)(Dec--2014)

6: Define undesirability, decidability. (10m)(June-July 2014)
Post's Correspondence problem Design a TM to recognize a string of 0 s and 1 s 8.
such that the number of 0 s is not twice as that of 1s. (10m) (June-July-2015, Dec-2013)

UNIT 8

Undecidability

1. Design a TM to recognize a string of the form $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n} .}(\mathbf{1 0 m})$ (June-July -2013)
2. P.t If L is a recursive language, L is also recursive.(10m) (June-July 2014)
3. Design a Turing Machine to recognize 0n1n2n. (10m)(Dec-2013)
4. Explain briefly the following Halting problem(6m)(Dec-2014, Dec-2013)
5. Define undesirability, decidability. (8m) (June-July 2013, June-July 2014)
6. Post's Correspondence problem Design a TM to recognize a string of 0 s and 1 s such that the number of 0 s is not twice as that of 1 s . (Dec-2014)
7. Design a Turing machine to accept a Palindrome. (7m)(Dec-2013)
8. Write a short note on: (20m) Dec-2014)
a. Undesirability,
b. Halting problem,
c. decidability
