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Extracting Relations from Text:
From Word Sequences to Dependency Paths

Razvan C. Bunescu and Raymond J. Mooney

3.1 Introduction

Extracting semantic relationships between entities mentioned in text documents is
an important task in natural language processing. The various types of relationships
that are discovered between mentions of entities can provide useful structured infor-
mation to a text mining system [1]. Traditionally, the task specifies a predefined set
of entity types and relation types that are deemed to be relevant to a potential user
and that are likely to occur in a particular text collection. For example, information
extraction from newspaper articles is usually concerned with identifying mentions
of people, organizations, locations, and extracting useful relations between them.
Relevant relation types range from social relationships, to roles that people hold
inside an organization, to relations between organizations, to physical locations of
people and organizations. Scientific publications in the biomedical domain offer a
type of narrative that is very different from the newspaper discourse. A significant
effort is currently spent on automatically extracting relevant pieces of information
from Medline, an online collection of biomedical abstracts. Proteins, genes, and cells
are examples of relevant entities in this task, whereas subcellular localizations and
protein-protein interactions are two of the relation types that have received signif-
icant attention recently. The inherent difficulty of the relation extraction task is
further compounded in the biomedical domain by the relative scarcity of tools able
to analyze the corresponding type of narrative. Most existing natural language pro-
cessing tools, such as tokenizers, sentence segmenters, part-of-speech (POS) taggers,
shallow or full parsers are trained on newspaper corpora, and consequently they inc-
cur a loss in accuracy when applied to biomedical literature. Therefore, information
extraction systems developed for biological corpora need to be robust to POS or
parsing errors, or to give reasonable performance using shallower but more reliable
information, such as chunking instead of full parsing.

In this chapter, we present two recent approaches to relation extraction that
differ in terms of the kind of linguistic information they use:

1. In the first method (Section 3.2), each potential relation is represented implicitly
as a vector of features, where each feature corresponds to a word sequence an-
chored at the two entities forming the relationship. A relation extraction system



30 Razvan C. Bunescu and Raymond J. Mooney

is trained based on the subsequence kernel from [2]. This kernel is further gen-
eralized so that words can be replaced with word classes, thus enabling the use
of information coming from POS tagging, named entity recognition, chunking,
or Wordnet [3].

2. In the second approach (Section 3.3), the representation is centered on the short-
est dependency path between the two entities in the dependency graph of the
sentence. Because syntactic analysis is essential in this method, its applicability
is limited to domains where syntactic parsing gives reasonable accuracy.

Entity recognition, a prerequisite for relation extraction, is usually cast as a sequence
tagging problem, in which words are tagged as being either outside any entity, or
inside a particular type of entity. Most approaches to entity tagging are therefore
based on probabilistic models for labeling sequences, such as Hidden Markov Mod-
els [4], Maximum Entropy Markov Models [5], or Conditional Random Fields [6],
and obtain a reasonably high accuracy. In the two information extraction methods
presented in this chapter, we assume that the entity recognition task was done and
focus only on the relation extraction part.

3.2 Subsequence Kernels for Relation Extraction

One of the first approaches to extracting interactions between proteins from biomed-
ical abstracts is that of Blaschke et al., described in [7, 8]. Their system is based on
a set of manually developed rules, where each rule (or frame) is a sequence of words
(or POS tags) and two protein-name tokens. Between every two adjacent words is a
number indicating the maximum number of intervening words allowed when match-
ing the rule to a sentence. An example rule is “interaction of (3) <P> (3) with (3)
<P>”, where ’<P>’ is used to denote a protein name. A sentence matches the rule
if and only if it satisfies the word constraints in the given order and respects the
respective word gaps.

In [9] the authors described a new method ELCS (Extraction using Longest
Common Subsequences) that automatically learns such rules. ELCS’ rule represen-
tation is similar to that in [7, 8], except that it currently does not use POS tags,
but allows disjunctions of words. An example rule learned by this system is “- (7)
interaction (0) [between | of] (5) <P> (9) <P> (17) .” Words in square brackets
separated by ‘|’ indicate disjunctive lexical constraints, i.e., one of the given words
must match the sentence at that position. The numbers in parentheses between ad-
jacent constraints indicate the maximum number of unconstrained words allowed
between the two.

3.2.1 Capturing Relation Patterns with a String Kernel

Both Blaschke and ELCS do relation extraction based on a limited set of match-
ing rules, where a rule is simply a sparse (gappy) subsequence of words or POS
tags anchored on the two protein-name tokens. Therefore, the two methods share
a common limitation: either through manual selection (Blaschke), or as a result of
a greedy learning procedure (ELCS), they end up using only a subset of all pos-
sible anchored sparse subsequences. Ideally, all such anchored sparse subsequences
would be used as features, with weights reflecting their relative accuracy. However,
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explicitly creating for each sentence a vector with a position for each such feature is
infeasible, due to the high dimensionality of the feature space. Here, we exploit dual
learning algorithms that process examples only via computing their dot-products,
such as in Support Vector Machines (SVMs) [10, 11]. An SVM learner tries to find
a hyperplane that separates positive from negative examples and at the same time
maximizes the separation (margin) between them. This type of max-margin sepa-
rator has been shown both theoretically and empirically to resist overfitting and to
provide good generalization performance on unseen examples.

Computing the dot-product (i.e., the kernel) between the features vectors asso-
ciated with two relation examples amounts to calculating the number of common
anchored subsequences between the two sentences. This is done efficiently by modify-
ing the dynamic programming algorithm used in the string kernel from [2] to account
only for common sparse subsequences constrained to contain the two protein-name
tokens. The feature space is further prunned down by utilizing the following prop-
erty of natural language statements: when a sentence asserts a relationship between
two entity mentions, it generally does this using one of the following four patterns:

• [FB] Fore–Between: words before and between the two entity mentions are
simultaneously used to express the relationship. Examples: ‘interaction of 〈P1〉 with
〈P2〉,’ ‘activation of 〈P1〉 by 〈P2〉.’

• [B] Between: only words between the two entities are essential for asserting
the relationship. Examples: ‘〈P1〉 interacts with 〈P2〉,’ ‘〈P1〉 is activated by 〈P2〉.’

• [BA] Between–After: words between and after the two entity mentions are
simultaneously used to express the relationship. Examples: ‘〈P1〉 – 〈P2〉 complex,’
‘〈P1〉 and 〈P2〉 interact.’

• [M] Modifier: the two entity mentions have no words between them. Examples:
U.S. troops (a Role:Staff relation), Serbian general (Role:Citizen).

While the first three patterns are sufficient to capture most cases of interactions
between proteins, the last pattern is needed to account for various relationships ex-
pressed through noun-noun or adjective-noun compounds in the newspaper corpora.

Another observation is that all these patterns use at most four words to express
the relationship (not counting the two entity names). Consequently, when computing
the relation kernel, we restrict the counting of common anchored subsequences only
to those having one of the four types described above, with a maximum word-length
of four. This type of feature selection leads not only to a faster kernel computation,
but also to less overfitting, which results in increased accuracy.

The patterns enumerated above are completely lexicalized and consequently their
performance is limited by data sparsity. This can be alleviated by categorizing words
into classes with varying degrees of generality, and then allowing patterns to use both
words and their classes. Examples of word classes are POS tags and generalizations
over POS tags such as Noun, Active Verb, or Passive Verb. The entity type can
also be used if the word is part of a known named entity. Also, if the sentence is
segmented into syntactic chunks such as noun phrases (NP) or verb phrases (VP),
the system may choose to consider only the head word from each chunk, together
with the type of the chunk as another word class. Content words such as nouns and
verbs can also be related to their synsets via WordNet. Patterns then will consist
of sparse subsequences of words, POS tags, generalized POS tags, entity and chunk
types, or WordNet synsets. For example, ‘Noun of 〈P1〉 by 〈P2〉’ is an FB pattern
based on words and general POS tags.
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3.2.2 A Generalized Subsequence Kernel

Let Σ1, Σ2, ..., Σk be some disjoint feature spaces. Following the example in Sec-
tion 3.2.1, Σ1 could be the set of words, Σ2 the set of POS tags, etc. Let
Σ× = Σ1 × Σ2 × ... × Σk be the set of all possible feature vectors, where a fea-
ture vector would be associated with each position in a sentence. Given two feature
vectors x, y ∈ Σ×, let c(x, y) denote the number of common features between x and
y. The next notation follows that introduced in [2]. Thus, let s, t be two sequences
over the finite set Σ×, and let |s| denote the length of s = s1...s|s|. The sequence
s[i:j] is the contiguous subsequence si...sj of s. Let i = (i1, ..., i|i|) be a sequence of
|i| indices in s, in ascending order. We define the length l(i) of the index sequence i
in s as i|i| − i1 + 1. Similarly, j is a sequence of |j| indices in t.

Let Σ∪ = Σ1 ∪ Σ2 ∪ ... ∪ Σk be the set of all possible features. We say that
the sequence u ∈ Σ∗

∪ is a (sparse) subsequence of s if there is a sequence of |u|
indices i such that uk ∈ sik , for all k = 1, ..., |u|. Equivalently, we write u ≺ s[i] as
a shorthand for the component-wise ‘∈‘ relationship between u and s[i].

Finally, let Kn(s, t, λ) (Equation 3.1) be the number of weighted sparse subse-
quences u of length n common to s and t (i.e., u ≺ s[i], u ≺ t[j]), where the weight
of u is λl(i)+l(j), for some λ ≤ 1.

Kn(s, t, λ) =
∑

u∈Σn
∪

∑
i:u≺s[i]

∑
j:u≺t[j]

λl(i)+l(j) (3.1)

Let i and j be two index sequences of length n. By definition, for every k between
1 and n, c(sik , tjk) returns the number of common features between s and t at
positions ik and jk. If c(sik , tjk) = 0 for some k, there are no common feature
sequences of length n between s[i] and t[j]. On the other hand, if c(sik , tjk) is greater
than 1, this means that there is more than one common feature that can be used
at position k to obtain a common feature sequence of length n. Consequently, the
number of common feature sequences of length n between s[i] and t[j], i.e., the size of
the set {u ∈ Σn

∪|u ≺ s[i], u ≺ t[j]}, is given by
∏n

k=1
c(sik , tjk). Therefore, Kn(s, t, λ)

can be rewritten as in Equation 3.2:

Kn(s, t, λ) =
∑

i:|i|=n

∑
j:|j|=n

n∏
k=1

c(sik , tjk)λl(i)+l(j) (3.2)

We use λ as a decaying factor that penalizes longer subsequences. For sparse sub-
sequences, this means that wider gaps will be penalized more, which is exactly the
desired behavior for our patterns. Through them, we try to capture head-modifier
dependencies that are important for relation extraction; for lack of reliable depen-
dency information, the larger the word gap is between two words, the less confident
we are in the existence of a head-modifier relationship between them.

To enable an efficient computation of Kn, we use the auxiliary function K
′
n with

a definition similar to Kn, the only difference being that it counts the length from
the beginning of the particular subsequence u to the end of the strings s and t, as
illustrated in Equation 3.3:

K
′
n(s, t, λ) =

∑
u∈Σn

∪

∑
i:u≺s[i]

∑
j:u≺t[j]

λ|s|+|t|−i1−j1+2 (3.3)
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An equivalent formula for K
′
n(s, t, λ) is obtained by changing the exponent of λ from

Equation 3.2 to |s| + |t| − i1 − j1 + 2.
Based on all definitions above, Kn is computed in O(kn|s||t|) time, by modi-

fying the recursive computation from [2] with the new factor c(x, y), as shown in

Figure 3.1. As in [2], the complexity of computing K
′
i (s, t) is reduced to O(|s||t|) by

first evaluating another auxiliary factor K
′′
i (s, t). In Figure 3.1, the sequence sx is

the result of appending x to s (with ty defined in a similar way). To avoid clutter, the
parameter λ is not shown in the argument list of K and K′, unless it is instantiated
to a specific constant.

K
′
0(s, t) = 1, for all s, t

K
′
i (s, t) = 0, if min(|s|, |t|) < i

K
′′
i (s, ∅) = 0, for all i, s

K
′′
i (sx, ty) = λK

′′
i (sx, t) + λ2K

′
i−1(s, t) · c(x, y)

K
′
i (sx, t) = λK

′
i (s, t) + K

′′
i (sx, t)

Kn(s, t) = 0, if min(|s|, |t|) < n

Kn(sx, t) = Kn(s, t) +
∑

j

λ2K
′
n−1(s, t[1 : j − 1]) · c(x, t[j])

Fig. 3.1. Computation of subsequence kernel.

3.2.3 Computing the Relation Kernel

As described at the beginning of Section 3.2, the input consists of a set of sentences,
where each sentence contains exactly two entities (protein names in the case of
interaction extraction). In Figure 3.2 we show the segments that will be used for
computing the relation kernel between two example sentences s and t. In sentence
s, for instance, x1 and x2 are the two entities, sf is the sentence segment before
x1, sb is the segment between x1 and x2, and sa is the sentence segment after x2.
For convenience, we also include the auxiliary segment s

′
b = x1sbx2, whose span is

computed as l(s
′
b) = l(sb) + 2 (in all length computations, we consider x1 and x2 as

contributing one unit only).
The relation kernel computes the number of common patterns between two sen-

tences s and t, where the set of patterns is restricted to the four types introduced
in Section 3.2.1. Therefore, the kernel rK(s, t) is expressed as the sum of four sub-
kernels: fbK(s, t) counting the number of common fore–between patterns, bK(s, t)
for between patterns, baK(s, t) for between–after patterns, and mK(s, t) for mod-
ifier patterns, as in Figure 3.3. The symbol 1 is used there as a shorthand for the
indicator function, which is 1 if the argument is true, and 0 otherwise.

The first three sub-kernels include in their computation the counting of common
subsequences between s

′
b and t

′
b. In order to speed up the computation, all these
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sf

ft ta

sa

1 2y y

t

t’

b

b

1 2x x

s

s’b

b

s  =

t  =

Fig. 3.2. Sentence segments.

rK(s, t) = fbK(s, t) + bK(s, t) + baK(s, t) + mK(s, t)

bKi(s, t) = Ki(sb, tb, 1) · c(x1, y1) · c(x2, y2) · λl(s
′
b
)+l(t

′
b
)

fbK(s, t) =
∑
i,j

bKi(s, t) · K
′
j(sf , tf ), 1 ≤ i, 1 ≤ j, i + j < fbmax

bK(s, t) =
∑

i

bKi(s, t), 1 ≤ i ≤ bmax

baK(s, t) =
∑
i,j

bKi(s, t) · K
′
j(s

−
a , t−

a ), 1 ≤ i, 1 ≤ j, i + j < bamax

mK(s, t) = 1(sb = ∅) · 1(tb = ∅) · c(x1, y1) · c(x2, y2) · λ2+2,

Fig. 3.3. Computation of relation kernel.

common counts are calculated separately in bKi, which is defined as the number of
common subsequences of length i between s

′
b and t

′
b, anchored at x1/x2 and y1/y2

respectively (i.e., constrained to start at x1 in s
′
b and y1 in t

′
b, and to end at x2 in

s
′
b and y2 in t

′
b). Then fbK simply counts the number of subsequences that match

j positions before the first entity and i positions between the entities, constrained
to have length less than a constant fbmax. To obtain a similar formula for baK we
simply use the reversed (mirror) version of segments sa and ta (e.g., s−

a and t−
a ). In

Section 3.2.1 we observed that all three subsequence patterns use at most 4 words
to express a relation, therefore the constants fbmax, bmax and bamax are set to 4.
Kernels K and K

′
are computed using the procedure described in Section 3.2.2.

3.3 A Dependency-Path Kernel for Relation Extraction

The pattern examples from Section 3.2.1 show the two entity mentions, together
with the set of words that are relevant for their relationship. A closer analysis of
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S1 =

=S2

Protesters stations workers

Troops churches ministers

seized   several   pumping , holding   127   Shell hostage .

recently   have   raided , warning to   stop   preaching .

Fig. 3.4. Sentences as dependency graphs.

these examples reveals that all relevant words form a shortest path between the
two entities in a graph structure where edges correspond to relations between a
word (head) and its dependents. For example, Figure 3.4 shows the full dependency
graphs for two sentences from the ACE (Automated Content Extraction) newspa-
per corpus [12], in which words are represented as nodes and word-word dependen-
cies are represented as directed edges. A subset of these word-word dependencies
capture the predicate-argument relations present in the sentence. Arguments are
connected to their target predicates either directly through an arc pointing to the
predicate (‘troops → raided’), or indirectly through a preposition or infinitive par-
ticle (‘warning ← to ← stop’). Other types of word-word dependencies account for
modifier-head relationships present in adjective-noun compounds (‘several → sta-
tions’), noun-noun compounds (‘pumping → stations’), or adverb-verb constructions
(‘recently → raided’).

Word-word dependencies are typically categorized in two classes as follows:

• [Local Dependencies] These correspond to local predicate-argument (or head-
modifier) constructions such as ‘troops → raided’, or ‘pumping → stations’ in
Figure 3.4.

• [Non-local Dependencies] Long-distance dependencies arise due to various
linguistic constructions such as coordination, extraction, raising and control. In
Figure 3.4, among non-local dependencies are ‘troops → warning’, or ‘ministers
→ preaching’.

A Context Free Grammar (CFG) parser can be used to extract local depen-
dencies, which for each sentence form a dependency tree. Mildly context sensitive
formalisms such as Combinatory Categorial Grammar (CCG) [13] model word-word
dependencies more directly and can be used to extract both local and long-distance
dependencies, giving rise to a directed acyclic graph, as illustrated in Figure 3.4.

3.3.1 The Shortest Path Hypothesis

If e1 and e2 are two entities mentioned in the same sentence such that they are
observed to be in a relationship R, then the contribution of the sentence dependency
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Table 3.1. Shortest Path representation of relations.

Relation Instance Shortest Path in Undirected Dependency Graph

S1:protesters AT stations protesters → seized ← stations

S1:workers AT stations workers → holding ← protesters → seized ← stations

S2:troops AT churches troops → raided ← churches

S2:ministers AT churches ministers → warning ← troops → raided ← churches

graph to establishing the relationship R(e1, e2) is almost exclusively concentrated
in the shortest path between e1 and e2 in the undirected version of the dependency
graph.

If entities e1 and e2 are arguments of the same predicate, then the shortest path
between them will pass through the predicate, which may be connected directly to
the two entities, or indirectly through prepositions. If e1 and e2 belong to different
predicate-argument structures that share a common argument, then the shortest
path will pass through this argument. This is the case with the shortest path be-
tween ‘stations’ and ‘workers’ in Figure 3.4, passing through ‘protesters,’ which is
an argument common to both predicates ‘holding’ and ‘seized’. In Table 3.1, we
show the paths corresponding to the four relation instances encoded in the ACE
corpus for the two sentences from Figure 3.4. All these paths support the Located
relationship. For the first path, it is reasonable to infer that if a Person entity
(e.g., ‘protesters’) is doing some action (e.g., ‘seized’) to a Facility entity (e.g.,
‘station’), then the Person entity is Located at that Facility entity. The second
path captures the fact that the same Person entity (e.g., ‘protesters’) is doing two
actions (e.g., ‘holding’ and ‘seized’) , one action to a Person entity (e.g., ‘workers’),
and the other action to a Facility entity (e.g., ‘station’). A reasonable inference in
this case is that the ‘workers’ are Located at the ‘station’.

In Figure 3.5, we show three more examples of the Located (At) relationship
as dependency paths created from one or two predicate-argument structures. The
second example is an interesting case, as it illustrates how annotation decisions
are accommodated in our approach. Using a reasoning similar with that from the
previous paragraph, it is reasonable to infer that ‘troops’ are Located in ‘vans,’ and
that ‘vans’ are Located in ‘city’. However, because ‘vans’ is not an ACE markable,
it cannot participate in an annotated relationship. Therefore, ‘troops’ is annotated
as being Located in ‘city,’ which makes sense due to the transitivity of the relation
Located. In our approach, this leads to shortest paths that pass through two or
more predicate-argument structures.

The last relation example is a case where there exist multiple shortest paths
in the dependency graph between the same two entities – there are actually two
different paths, with each path replicated into three similar paths due to coordina-
tion. Our current approach considers only one of the shortest paths, nevertheless it
seems reasonable to investigate using all of them as multiple sources of evidence for
relation extraction.

There may be cases where e1 and e2 belong to predicate-argument structures that
have no argument in common. However, because the dependency graph is always
connected, we are guaranteed to find a shortest path between the two entities. In
general, we shall find a shortest sequence of predicate-argument structures with
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target predicates P1, P2, ..., Pn such that e1 is an argument of P1, e2 is an argument
of Pn, and any two consecutive predicates Pi and Pi+1 share a common argument
(where by “argument” we mean both arguments and complements).

(1) He had no regrets for his actions in Brcko.

his → actions ← in ← Brcko

(2) U.S. troops today acted for the first time to capture an alleged
Bosnian war criminal, rushing from unmarked vans parked in the
northern Serb-dominated city of Bijeljina.

troops → rushing ← from ← vans → parked ← in ← city

(3) Jelisic created an atmosphere of terror at the camp by killing,
abusing and threatening the detainees.

detainees → killing ← Jelisic → created ← at ← camp
detainees → abusing ← Jelisic → created ← at ← camp
detainees → threatning ← Jelisic → created ← at ← camp
detainees → killing → by → created ← at ← camp
detainees → abusing → by → created ← at ← camp
detainees → threatening → by → created ← at ← camp

Fig. 3.5. Relation examples.

3.3.2 Learning with Dependency Paths

The shortest path between two entities in a dependency graph offers a very con-
densed representation of the information needed to assess their relationship. A de-
pendency path is represented as a sequence of words interspersed with arrows that
indicate the orientation of each dependency, as illustrated in Table 3.1. These paths,
however, are completely lexicalized and consequently their performance will be lim-
ited by data sparsity. The solution is to allow paths to use both words and their
word classes, similar with the approach taken for the subsequence patterns in Sec-
tion 3.2.1.

The set of features can then be defined as a Cartesian product over words and
word classes, as illustrated in Figure 3.6 for the dependency path between ‘protesters’
and ‘station’ in sentence S1. In this representation, sparse or contiguous subse-
quences of nodes along the lexicalized dependency path (i.e., path fragments) are
included as features simply by replacing the rest of the nodes with their correspond-
ing generalizations.

Examples of features generated by Figure 3.6 are “protesters → seized ← sta-
tions,” “Noun → Verb ← Noun,” “Person → seized ← Facility,” or “Person
→ Verb ← Facility.” The total number of features generated by this dependency
path is 4 × 1 × 3 × 1 × 4.
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⎡
⎢⎣

protesters
NNS
Noun

Person

⎤
⎥⎦ × [→] ×

[
seized
VBD
Verb

]
× [←] ×

⎡
⎢⎣

stations
NNS
Noun

Facility

⎤
⎥⎦

Fig. 3.6. Feature generation from dependency path.

For verbs and nouns (and their respective word classes) occurring along a de-
pendency path we also use an additional suffix ‘(-)’ to indicate a negative polarity
item. In the case of verbs, this suffix is used when the verb (or an attached auxil-
iary) is modified by a negative polarity adverb such as ‘not’ or ‘never.’ Nouns get
the negative suffix whenever they are modified by negative determiners such as ‘no,’
‘neither’ or ‘nor.’ For example, the phrase “He never went to Paris” is associated
with the dependency path “He → went(-) ← to ← Paris.”

As in Section 3.2, we use kernel SVMs in order to avoid working explicitly
with high-dimensional dependency path feature vectors. Computing the dot-product
(i.e., kernel) between two relation examples amounts to calculating the number of
common features (i.e., paths) between the two examples. If x = x1x2...xm and y
= y1y2...yn are two relation examples, where xi denotes the set of word classes
corresponding to position i (as in Figure 3.6), then the number of common features
between x and y is computed as in Equation 3.4.

K(x,y) = 1(m = n) ·
n∏

i=1

c(xi, yi) (3.4)

where c(xi, yi) = |xi ∩ yi| is the number of common word classes between xi and yi.
This is a simple kernel, whose computation takes O(n) time. If the two paths

have different lengths, they correspond to different ways of expressing a relationship
– for instance, they may pass through a different number of predicate argument
structures. Consequently, the kernel is defined to be 0 in this case. Otherwise, it
is the product of the number of common word classes at each position in the two
paths. As an example, let us consider two instances of the Located relationship,
and their corresponding dependency paths:

1. ‘his actions in Brcko’ (his → actions ← in ← Brcko).
2. ‘his arrival in Beijing’ (his → arrival ← in ← Beijing).

Their representation as a sequence of sets of word classes is given by:

1. x = [x1 x2 x3 x4 x5 x6 x7], where x1 = {his, PRP, Person}, x2 = {→}, x3

= {actions, NNS, Noun}, x4 = {←}, x5 = {in, IN}, x6 = {←}, x7 = {Brcko,
NNP, Noun, Location}

2. y = [y1 y2 y3 y4 y5 y6 y7], where y1 = {his, PRP, Person}, y2 = {→}, y3 =
{arrival, NN, Noun}, y4 = {←}, y5 = {in, IN}, y6 = {←}, y7 = {Beijing, NNP,
Noun, Location}

Based on the formula from Equation 3.4, the kernel is computed as K(x, y) =
3 × 1 × 1 × 1 × 2 × 1 × 3 = 18.
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3.4 Experimental Evaluation

The two relation kernels described above are evaluated on the task of extracting
relations from two corpora with different types of narrative, which are described in
more detail in the following sections. In both cases, we assume that the entities and
their labels are known. All preprocessing steps – sentence segmentation, tokeniza-
tion, POS tagging, and chunking – were performed using the OpenNLP1 package.
If a sentence contains n entities (n ≥ 2), it is replicated into

(
n
2

)
sentences, each

containing only two entities. If the two entities are known to be in a relationship,
then the replicated sentence is added to the set of corresponding positive sentences,
otherwise it is added to the set of negative sentences. During testing, a sentence
having n entities (n ≥ 2) is again replicated into

(
n
2

)
sentences in a similar way.

The dependency graph that is input to the shortest path dependecy kernel is
obtained from two different parsers:

• The CCG parser introduced in [14]2 outputs a list of functor-argument depen-
dencies, from which head-modifier dependencies are obtained using a straight-
forward procedure (for more details, see [15]).

• Head-modifier dependencies can be easily extracted from the full parse output
of Collins’ CFG parser [16], in which every non-terminal node is annotated with
head information.

The relation kernels are used in conjunction with SVM learning in order to
find a decision hyperplane that best separates the positive examples from negative
examples. We modified the LibSVM3 package by plugging in the kernels described
above. The factor λ in the subsequence kernel is set to 0.75. The performance is
measured using precision (percentage of correctly extracted relations out of the total
number of relations extracted), recall (percentage of correctly extracted relations
out of the total number of relations annotated in the corpus), and F-measure (the
harmonic mean of precision and recall).

3.4.1 Interaction Extraction from AIMed

We did comparative experiments on the AIMed corpus, which has been previously
used for training the protein interaction extraction systems in [9]. It consists of 225
Medline abstracts, of which 200 are known to describe interactions between human
proteins, while the other 25 do not refer to any interaction. There are 4084 protein
references and around 1000 tagged interactions in this dataset.

The following systems are evaluated on the task of retrieving protein interactions
from AIMed (assuming gold standard proteins):

• [Manual]: We report the performance of the rule-based system of [7, 8].
• [ELCS]: We report the 10-fold cross-validated results from [9] as a Precision-

Recall (PR) graph.
• [SSK]: The subseqeuence kernel is trained and tested on the same splits as

ELCS. In order to have a fair comparison with the other two systems, which use
only lexical information, we do not use any word classes here.

1 URL: http://opennlp.sourceforge.net
2 URL:http://www.ircs.upenn.edu/˜juliahr/Parser/
3 URL:http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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• [SPK]: This is the shortest path dependency kernel, using the head-modifier
dependencies extracted by Collins’ syntactic parser. The kernel is trained and tested
on the same 10 splits as ELCS and SSK.

The Precision-Recall curves that show the trade-off between these metrics are
obtained by varying a threshold on the minimum acceptable extraction confidence,
based on the probability estimates from LibSVM. The results, summarized in Fig-
ure 3.7, show that the subsequence kernel outperforms the other three systems, with
a substantial gain. The syntactic parser, which is originally trained on a newspaper
corpus, builds less accurate dependency structures for the biomedical text. This is
reflected in a significantly reduced accuracy for the dependency kernel.
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Fig. 3.7. Precision-Recall curves for protein interaction extractors.

3.4.2 Relation Extraction from ACE

The two kernels are also evaluated on the task of extracting top-level relations
from the ACE corpus [12], the version used for the September 2002 evaluation.
The training part of this dataset consists of 422 documents, with a separate set of
97 documents reserved for testing. This version of the ACE corpus contains three
types of annotations: coreference, named entities and relations. There are five types
of entities – Person, Organization, Facility, Location, and Geo-Political
Entity – which can participate in five general, top-level relations: Role, Part,
Located, Near, and Social. In total, there are 7,646 intra-sentential relations, of
which 6,156 are in the training data and 1,490 in the test data.
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A recent approach to extracting relations is described in [17]. The authors use
a generalized version of the tree kernel from [18] to compute a kernel over rela-
tion examples, where a relation example consists of the smallest dependency tree
containing the two entities of the relation. Precision and recall values are reported
for the task of extracting the five top-level relations in the ACE corpus under two
different scenarios:

– [S1] This is the classic setting: one multi-class SVM is learned to discriminate
among the five top-level classes, plus one more class for the no-relation cases.

– [S2] One binary SVM is trained for relation detection, meaning that all positive
relation instances are combined into one class. The thresholded output of this binary
classifier is used as training data for a second multi-class SVM, trained for relation
classification.

The subsequence kernel (SSK) is trained under the first scenario, to recognize
the same five top-level relation types. While for protein interaction extraction only
the lexicalized version of the kernel was used, here we utilize more features, corre-
sponding to the following feature spaces: Σ1 is the word vocabulary, Σ2 is the set of
POS tags, Σ3 is the set of generic POS tags, and Σ4 contains the five entity types.
Chunking information is used as follows: all (sparse) subsequences are created ex-
clusively from the chunk heads, where a head is defined as the last word in a chunk.
The same criterion is used for computing the length of a subsequence – all words
other than head words are ignored. This is based on the observation that in general
words other than the chunk head do not contribute to establishing a relationship
between two entities outside of that chunk. One exception is when both entities in
the example sentence are contained in the same chunk. This happens very often due
to noun-noun (‘U.S. troops’) or adjective-noun (‘Serbian general’) compounds. In
these cases, the chunk is allowed to contribute both entity heads.

The shortest-path dependency kernel (SPK) is trained under both scenarios. The
dependencies are extracted using either Hockenmaier’s CCG parser (SPK-CCG) [14],
or Collins’ CFG parser (SPK-CFG) [16].

Table 3.2 summarizes the performance of the two relation kernels on the ACE
corpus. For comparison, we also show the results presented in [17] for their best
performing kernel K4 (a sum between a bag-of-words kernel and a tree dependency
kernel) under both scenarios.

Table 3.2. Extraction Performance on ACE.

(Scenario) Method Precision Recall F-measure

(S1) K4 70.3 26.3 38.0

(S1) SSK 73.9 35.2 47.7

(S1) SPK-CCG 67.5 37.2 48.0

(S1) SPK-CFG 71.1 39.2 50.5

(S2) K4 67.1 35.0 45.8

(S2) SPK-CCG 63.7 41.4 50.2

(S2) SPK-CFG 65.5 43.8 52.5
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The shortest-path dependency kernels outperform the dependency kernel from
[17] in both scenarios, with a more substantial gain for SP-CFG. An error analy-
sis revealed that Collins’ parser was better at capturing local dependencies, hence
the increased accuracy of SP-CFG. Another advantage of shortest-path dependency
kernels is that their training and testing are very fast – this is due to representing
the sentence as a chain of dependencies on which a fast kernel can be computed. All
of the four SP kernels from Table 3.2 take between 2 and 3 hours to train and test
on a 2.6GHz Pentium IV machine.

As expected, the newspaper articles from ACE are less prone to parsing errors
than the biomedical articles from AIMed. Consequently, the extracted dependency
structures are more accurate, leading to an improved accuracy for the dependency
kernel.

To avoid numerical problems, the dependency paths are constrained to pass
through at most 10 words (as observed in the training data) by setting the kernel
to 0 for longer paths. The alternative solution of normalizing the kernel leads to
a slight decrease in accuracy. The fact that longer paths have larger kernel scores
in the unnormalized version does not pose a problem because, by definition, paths
of different lengths correspond to disjoint sets of features. Consequently, the SVM
algorithm will induce lower weights for features occurring in longer paths, resulting
in a linear separator that works irrespective of the size of the dependency paths.

3.5 Future Work

There are cases when words that do not belong to the shortest dependency path do
influence the extraction decision. In Section 3.3.2, we showed how negative polarity
items are integrated in the model through annotations of words along the depen-
dency paths. Modality is another phenomenon that is influencing relation extraction,
and we plan to incorporate it using the same annotation approach.

The two relation extraction methods are very similar: the subsequence patterns
in one kernel correspond to dependency paths in the second kernel. More exactly,
pairs of words from a subsequence pattern correspond to pairs of consecutive words
(i.e., edges) on the dependency path. The lack of dependency information in the
subsequence kernel leads to allowing gaps between words, with the corresponding
exponential penalty factor λ. Given the observed similarity between the two meth-
ods, it seems reasonable to use them both in an integrated model. This model would
use high-confidence head-modifier dependencies, falling back on pairs of words with
gaps, when the dependency information is unreliable.

3.6 Conclusion

Mining knowledge from text documents can benefit from using the structured infor-
mation that comes from entity recognition and relation extraction. However, accu-
rately extracting relationships between relevant entities is dependent on the granu-
larity and reliability of the required linguistic analysis. In this chapter, we presented
two relation extraction kernels that differ in terms of the amount of linguistic infor-
mation they use. Experimental evaluations on two corpora with different types of
discourse show that they compare favorably to previous extraction approaches.
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Mining Diagnostic Text Reports by Learning
to Annotate Knowledge Roles

Eni Mustafaraj, Martin Hoof, and Bernd Freisleben

Book Chapter in Natural Language Processing and Text Mining. Editors: Anne Kao and Steve Poteet. November 2006. Springer.

1.1 Introduction

Several tasks approached by using text mining techniques, like text categoriza-
tion, document clustering, or information retrieval, operate on the document
level, making use of the so called bag-of-words model. Other tasks, like docu-
ment summarization, information extraction, or question answering, have to
operate on the sentence level, in order to fulfill their specific requirements.
While both groups of text mining tasks are typically affected by the prob-
lem of data sparsity, this is more accentuated for the latter group of tasks.
Thus, while the tasks of the first group can be tackled by statistical and ma-
chine learning methods based on a bag-of-words approach alone, the tasks of
the second group need natural language processing (NLP) at the sentence or
paragraph level in order to produce more informative features.

Another issue common to all previously mentioned tasks is the availability
of labeled data for training. Usually, for documents in real world text mining
projects, training data do not exist or are expensive to acquire. In order to
still satisfy the text mining goals while making use of a small contingent of
labeled data, several approaches in machine learning have been developed
and tested: different types of active learning Jones et al. [2003], bootstrapping
Ghani and Jones [2002], or a combination of labeled and unlabeled data Blum
and Mitchell [1998]. Thus, the issue of the lack of labeled data turns into the
issue of selecting an appropriate machine learning approach.

The nature of the text mining task as well as the quantity and quality of
available text data are other issues that need to be considered. While some text
mining approaches can cope with data noise by leveraging the redundancy and
the large quantity of available documents (for example, information retrieval
on the Web), for other tasks (typically those restricted within a domain) the
collection of documents might not possess such qualities. Therefore, more care
is required for preparing such documents for the text mining task.
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The previous observations suggest that performing a text mining task on
new and unknown data requires handling all of the above mentioned issues,
by combining and adopting different research approaches. In this paper, we
present an approach to extract knowledge from text documents containing
diagnostic problem solving situations in a technical domain (i.e. electrical
engineering). In the proposed approach, we have combined techniques from
several areas, including NLP, knowledge engineering, and machine learning to
implement a learning framework for annotating cases with knowledge roles.
The ultimate goal of the approach is to discover interesting problem solving
situations (hereafter simply referred to as cases) that can be used by an ex-
perience management system to support new engineers during their working
activities. However, the performed annotations facilitate the retrieval of cases
on demand, allow collecting empirical domain knowledge, and can be formal-
ized with the help of an ontology to also permit reasoning. The experimental
results presented in the paper are based on a collection of 500 Microsoft Word
documents written in German, amounting to about one million words. Sev-
eral processing steps were required to achieve the goal of case annotation.
In particular, we had to (a) transform the documents in an XML format, (b)
extract paragraphs belonging to cases, (c) perform part-of-speech tagging, (d)
perform syntactical parsing, (e) transform the results into XML representation
for manual annotation, (f) construct features for the learning algorithm, and
(g) implement an active learning strategy. Experimental results demonstrate
the feasibility of the learning approach and a high quality of the obtained
annotations.

The paper is organized as follows. In Section 1.2 we describe our domain
of interest, the related collection of documents, and how knowledge roles can
be used to annotate text. In Section 1.3 we consider work in natural language
processing, especially frame semantics and semantic role labeling, emphasiz-
ing parallels to our task and identifying how resources and tools from these
domains can be applied to perform annotation. Section 1.4 describes in detail
all the preparatory steps for the process of learning to annotate cases. Sec-
tion 1.5 evaluates the results of learning. Section 1.6 concludes the paper and
outlines areas of future work.

1.2 Domain Knowledge And Knowledge Roles

1.2.1 Domain Knowledge

Our domain of interest is predictive maintenance in the field of power en-
gineering, more specifically, the maintenance of insulation systems of high
voltage rotating electrical machines. Since in many domains it is prohibitive
to allow faults that could result in a breakdown of the system, components of
the system are periodically or continuously monitored to look for changes in
the expected behavior, in order to undertake predictive maintenance actions
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when necessary. Usually, the findings related to the predictive maintenance
process are documented in several forms: the measured values in a relational
database; the evaluations of measurements/tests in diagnostic reports written
in natural language; or the recognized symptoms in photographs. The focus
of the work described here are the textual diagnostic reports.

In the domain of predictive maintenance, two parties are involved: the
service provider (the company that has the know-how to perform diagnostic
procedures and recommend predictive maintenance actions) and the customer
(the operator of the machine). As part of their business agreement, the service
provider submits to the customer an official diagnostic report. Such a report
follows a predefined structure template and is written in syntactically correct
and parsimonious language. In our case, the language is German.

A report is organized into many sections: summary, reason for the inspec-
tion, data of the inspected machine, list of performed tests and measurements,
evaluations of measurement and test results, overall assessment and recom-
mendations, as well as several attachments with graphical plots of numerical
measurements or photographs of damaged parts.

From a diagnostic point of view, the most important information is found
in the evaluations of the measurements and tests performed. As a demon-
stration, consider the two excerpts in Figure 1.1 (originating from English
documents for non-German speaking customers).

At 1.9UN (= 30kV ), an insulation breakdown
occurred on the upper bar of the slot N◦18,
at the slot exit on the NDE side. The break-
down indicates that the bar insulation is se-
riously weakened. This may be caused by in-
tense discharges due to a malfunction of the
slot anti-corona protection.

The measured bypass currents are in a rel-
atively high range indicating a certain sur-
face conductivity. This is due to the fact that
the motor was stored in cold area before it
was moved to the high voltage laboratory
where the temperature and humidity was much
higher so that a certain degree of condensation
could occur on the surface of the winding.

Fig. 1.1. Excerpts from two evaluations of isolation current measurements.

As it is often the case with diagnosis, while the quantities that are mea-
sured or the components that are inspected are the same, the findings depend
on a series of contextual factors, and the reasons for these findings could be
quite unique (as the examples of Figure 1.1 demonstrate). Usually, human
experts need many years of field experience to gain a degree of expertise that
allows them to handle any situation. The goal of our project is to mine the
text documents for relevant pieces of knowledge acquired during diagnostic
problem solving situations.

1.2.2 Domain Concepts

In some text mining applications, such as text categorization or information
retrieval, the goal is often to discover terms specific to the domain that could
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be used as indices for organizing or retrieving information. Indeed, the ex-
cerpts of Figure 1.1 contain several of such domain-specific terms: insulation,
discharge, slot anti-corona protection, conductivity, or winding. Still, using
these terms as indices or keywords for representing the documents does not
contribute to the purpose of our intended application, which is to find knowl-
edge that supports diagnostic problem solving. To exemplify, consider the
sentences in Figure 1.2:

1) The calculated insulating resistance values lay in the safe operating area.
2) Compared to the last examination, lower values for the insulating resistance

were ascertained, due to dirtiness at the surface.

Fig. 1.2. Two sentences with the same domain concept shown in boldface.

In both sentences, the domain concept insulating resistance is found, but
from a diagnostic point of view only the second sentence is interesting, because
it describes a possible cause for lower values. Thus, more than domain concepts
are needed to capture the knowledge expressed in the documents. Our solution
to this problem is to label the text with semantic annotations expressed in
terms of knowledge roles, which are introduced in the following subsection.

1.2.3 Knowledge Roles

Knowledge roles are a concept introduced in CommonKADS Schreiber et al.
[2000], a knowledge engineering methodology for implementing knowledge-
based systems. More specifically, knowledge roles are abstract names that re-
fer to the role a domain concept plays when reasoning about a knowledge task.
Such tasks are, for example, diagnosis, assessment, monitoring, or planning.
Although these tasks are found in many domains, their description in Com-
monKADS is domain-independent. Thus, when describing a diagnosis task,
knowledge roles like finding, symptom, fault, parameter, or hypothesis
would be used.

Indeed, if we consider again the sentences in Figure 1.2, it is reasonable to
represent the second sentence with knowledge roles as shown in Figure 1.3:

Knowledge Role Text Phrase
Observed Object: insulating resistance
Symptom: lower values
Cause: dirtiness at the surface

Fig. 1.3. Knowledge roles for sentence 2 of Figure 1.2.
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Such a representation can have several advantages. Given a certain value
of an Observed Object, a list of Symptoms that should be checked during the
diagnosis could be retrieved. Or, given a certain Symptom, possible Causes
for it could be listed, and so forth.

Understandably, we are interested in performing the text annotation with
knowledge roles automatically. To achieve this goal, we draw on research in
natural language understanding as described in Section 1.3.

It might be argued that one could simply use a combination of keywords
to retrieve the information. For example, for sentences like that in Figure 1.2,
one might write a query as below:

[low | small | high | large] && [value] && [insulating resistance]

for retrieving symptoms. Or one can search for:

[due to] | [caused by] | [as a result of] . . .

to retrieve sentences containing causes. While this approach may be ap-
pealing and in some occasions even successful, there are several reasons why
it could not be applied in our application:

• A large number of words (adjectives, nouns, adverbs, or verbs) can be used
to describe changes (considered as symptoms in our domain), and no one
can know beforehand which of them is used in the text.

• While verbs are very important for capturing the meaning of a sentence,
they also abound in numbers. For example, to express an observation, any
of the following verbs can be used: observe, detect, show, exhibit, recognize,
determine, result in, indicate, etc. Furthermore, adverbs and negations can
change their meaning and therefore need to be considered. Thus, instead of
using verbs as keywords, we use them to bootstrap the annotating process,
and incorporate them within semantic frames, like the frame Observation
for the group above.

• Often, meaning emerges from the relation between different words, instead
of the words separately, and this is exactly what we encountered in the
diagnostic cases.

The knowledge roles used for annotating cases are abstract constructs in
knowledge engineering, defined independently of any natural language con-
structs. Thus, a contribution of this work lies in trying to bridge the gap
between knowledge roles and the natural language constructs whose mean-
ing they capture. For this purpose, frame semantics, as described in the next
section, is an ideal place to start.
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1.3 Frame Semantics and Semantic Role Labeling

1.3.1 Frame Semantics

In frame semantics theory Fillmore [1976], a frame is a “script-like conceptual
structure that describes a particular type of situation, object, or event and
the participants involved in it” Ruppenhofer et al. [2005]. Based on this the-
ory, the Berkeley FrameNet Project1 is creating an online lexical resource for
the English language by annotating text from the 100 million words British
National Corpus.

The structure of a frame contains lexical units (pairs of a word with its
meaning), frame elements (semantic roles played by different syntactic depen-
dents), as well as annotated sentences for all lexical units that evoke the frame.
An example of a frame with its related components is shown in Figure 1.4.

Annotation of text with frames and roles in FrameNet has been performed
manually by trained linguists. An effort to handle this task automatically is
being carried out by research in semantic role labeling, as described in the
next subsection.

1.3.2 Semantic Role Labeling

Automatic labeling of semantic roles was introduced in Gildea and Jurafsky
[2002]. In this work, after acknowledging the success of information extraction
systems that try to fill in domain-specific frame-and-slot templates (see Sec-
tion 1.3.4), the need for semantic frames that can capture the meaning of text
independently of the domain was expressed. The authors envision that the se-
mantic interpretation of text in terms of frames and roles would contribute to
many applications, like question answering, information extraction, semantic
dialogue systems, as well as statistical machine translation or automatic text
summarization, and finally also to text mining.

After this initial work, research on semantic role labeling (SRL) has grown
steadily, and in the years 2004 and 2005 Carreras and Màrquez [2004, 2005] a
shared task at the CoNLL2 was defined, in which several research institutions
compared their systems. In the meantime, besides FrameNet, another corpus
with manually annotated semantic roles has been prepared, PropNet Palmer
and Gildea [2005], which differs from FrameNet in the fact that it has general
semantic roles not related to semantic frames. PropNet is also the corpus
used for training and evaluation of research systems on the SRL shared task.
A similar corpus to FrameNet for the German language is been created by
the Salsa project Erk et al. [2003a], and a discussion on the differences and
similarities among these three projects is found in Ellsworth et al. [2004].

SRL is approached as a learning task. For a given target verb in a sen-
tence, the syntactic constituents expressing semantic roles associated to this
1 http://framenet.icsi.berkeley.edu/
2 Conference of Natural Language Learning
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Frame Evidence

Definition: The Support, a phenomenon or fact, lends support to a claim or proposed course of

action, the Proposition, where the Domain of Relevance may also be expressed.

Lexical units: argue.v, argument.n, attest.v, confirm.v, contradict.v, corroborate.v, demonstrate.v, dis-
prove.v, evidence.n, evidence.v, evince.v, from.prep, imply.v, indicate.v, mean.v, prove.v, reveal.v,
show.v, substantiate.v, suggest.v, testify.v, verify.v

Frame Elements:

Proposition [PRP]
This is a belief, claim, or proposed course of action to which the
Support lends validity.

Support [SUP] Support is a fact that lends epistemic support to a claim, or that
provides a reason for a course of action.

. . .

Examples:

And a [SUP sample tested] REVEALED [PRP some inflammation].

It says that [SUP rotation of partners] does not DEMONSTRATE [PRP independence].

Fig. 1.4. Information on the frame Evidence from FrameNet.

verb need to be identified and labeled with the right roles. SRL systems usu-
ally divide sentences word-by-word or phrase-by-phrase and for each of these
instances calculate many features creating a feature vector. The feature vec-
tors are then fed to supervised classifiers, such as support vector machines,
maximum entropy, or memory-based learners. While adapting such classifiers
to perform better on this task could bring some improvement, better results
can be achieved by constructing informative features for learning. A thor-
ough discussion of different features used for SRL can be found in Gildea and
Jurafsky [2002], Pradhan et al. [2005].

1.3.3 Frames and Roles for Annotating Cases

On the one hand, in knowledge engineering there are knowledge tasks and
knowledge roles to represent knowledge; on the other hand, in natural lan-
guage understanding there are semantic frames and semantic roles to repre-
sent meaning. When knowledge related to a knowledge task (like diagnosis) is
represented by natural language, it is reasonable to expect that some knowl-
edge roles will map to some semantic roles. The question is how to find these
mappings, and more importantly, how to label text with these roles?

A knowledge task like diagnosis or monitoring is not equivalent to a se-
mantic frame. The former are more complex and abstract, and can usually be
divided into several components, which in turn can be regarded equivalent to
semantic frames. By analyzing the textual episodes of diagnostic evaluations,
we noticed that they typically contain a list of observations, explanations
based on evidence, and suggestions to perform some activities. Thus, we con-
sulted FrameNet for frames like Observation, Change, Evidence, or Activity.
Indeed, these frames are all present in FrameNet, for example, Activity is
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present in 10 subframes, or different meanings of Change are captured in 21
frames. The frame Evidence was shown in Figure 1.4, and besides the two
roles of Proposition and Support, it has also roles for Degree, Depictive, Do-
main of Relevance, Manner, Means, and Result. When one carefully reads
the definition of the roles Proposition and Support and looks at the exam-
ples (Figure 1.4), one can conclude that Proposition is similar to Cause and
Support to Symptom in a diagnosis task.

The problem is to determine which frames to look for, given that there
are currently more than six hundred frames in FrameNet. The key are the
lexical units related to each frame, usually verbs. Starting with the verbs,
one gets to the frames and then to the associated roles. This is also the
approach we follow. We initially look for the most frequent verbs in our corpus,
and by consulting several sources (since the verbs are in German), such as
im Walde [2003], VerbNet3, and FrameNet, we connect every verb with a
frame, and try to map between semantic roles in a frame and knowledge roles
we are interested in. One could also use the roles of FrameNet, but they are
linguistically biased, and as such are not understandable by domain users that
will annotate training instances for learning (a domain user would directly
know to annotate Cause, but finds Proposition somehow confusing.)

In this work, FrameNet was only used as a lexical resource for consultation,
that is, to find out which frames are evoked by certain lexical units, and what
the related semantic roles are. Since the language of our corpus is German, we
cannot make any statements about how useful the FrameNet frames could be
to a learning system based on English annotated data corresponding to the
defined frames.

Finally, it should be discussed why such an approach to annotating text
cases with frames and roles could be beneficial to text mining. For the pur-
pose of this discussion, consider some facts from the introduced domain cor-
pus. During the evaluation of the learning approach, we manually annotated
a subcorpus of unique sentences describing one specific measurement (high-
voltage isolation current). In the 585 annotated sentences, the frame Evi-
dence was found 152 times, 84 times evoked by the verb zurückführen (trace
back to), 40 times by the verb hindeuten (point to), and 28 times by 9 other
verbs. Analyzing the text annotated with the role Cause in the sentences with
zurückführen, 27 different phrases expressing causes of anomalies pointed to
by the symptoms were found. A few of these expressions appeared frequently,
some of them occasionally, some others rarely. In Table 1.1, some of these
expressions are shown.

If for every sentence with the frame Evidence the text annotated with
Symptom and Cause is extracted, this text can then be processed further
with other text mining techniques for deriving domain knowledge, which is
not available in any of the analyzed texts alone. For example, one could get
answers to questions like: which are the most frequent symptoms and what

3 http://www.cis.upenn.edu/˜bsnyder3/cgi-bin/search.cgi
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Table 1.1. Some phrases annotated with the role Cause.

German Phrase English Translation Frequency

Verschmutzungseinflüsse influences of pollution 10
leitende Verschmutzungen conducting pollutions 8
Ionisation in Klemmenbereich ionization in the terminal area 3
äussere Entladungen external discharges 1

causes can explain them; what problems (i.e. causes) do appear frequently in
a specific type of machine, etc. Thus, such an annotation with frames and
roles preprocesses text by generating very informative data for text mining,
and it can also be used in the original form for information retrieval. Still,
such an approach makes sense in those cases when text contains descriptions
of repetitive tasks, which are then expressed by a small number of underlying
semantic frames. Since data and text mining try to extract knowledge from
data of the same nature in the same domain, we find that annotation of text
with knowledge roles could be a valuable approach.

Before explaining in detail the process of learning to automatically anno-
tate text with knowledge roles (based on the SRL task) in Section 4, we briefly
discuss the related field of information extraction.

1.3.4 Information Extraction

Information extraction (IE), often regarded as a restricted form of natural
language understanding, predates research in text mining, although today, IE
is seen as one of the techniques contributing to text mining Weiss et al. [2004].
Actually, the purpose of IE is very similar to what we are trying to achieve
with role annotation. In IE it is usually known in advance what information is
needed, and part of text is extracted to fill in slots of a predefined template. An
example, found in Mooney and Bunescu [2005], is the job posting template,
where, from job posting announcements in Usenet, text to fill slots like: title,
state, city, language, platform, etc. is extracted and stored in a database for
simpler querying and retrieval.

Usually, methods used by IE have been based on shallow NLP techniques,
trying to extract from a corpus different types of syntactic rules that match
syntactic roles to semantic categories, as for example in Rillof and Schelzen-
bach [1998].

With the advances in NLP and machine learning research, IE methods
have also become more sophisticated. Actually, SRL can also be seen as a
technology for performing information extraction, in those cases when text is
syntactically and semantically more demanding and expressive. All these tech-
nologies are intended to be used for extracting knowledge from text, despite
their differences in implementation or scope.
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1.4 Learning to Annotate Cases with Knowledge Roles

To perform the task of learning to annotate cases with knowledge roles, we
implemented a software framework, as shown in Figure 1.5. Only the prepa-
ration of documents (described in Section 1.4.1) is performed outside of this
framework. In the remainder of the section, every component of the framework
is presented in detail.

ParsingTagging

Tree Representation

Corpus
Statistics and

Clustering

Feature
Creature

Selection &
Annotation

Learning
Algorithm

1

3

4
5

6

7

8

Corpus

Initialization
Bootstrap

2

Active Learning

Fig. 1.5. The Learning Framework Architecture.

1.4.1 Document Preparation

In Section 1.2.1 it was mentioned that our documents are official diagnostic
reports hierarchically structured in several sections and subsections, written
by using MS R© Word. Actually, extracting text from such documents, while
preserving the content structure, is a difficult task. In completing it we were
fortunate twice. First, with MS R© Office 2003 the XML based format WordML
was introduced that permits storing MS R© Word documents directly in XML.
Second, the documents were originally created using a MS R© Word document
template, so that the majority of them had the same structure. Still, many
problems needed to be handled. MS R© Word mixes formatting instructions
with content very heavily and this is reflected also in its XML format. In
addition, information about spelling, versioning, hidden template elements,
and so on are also stored. Thus, one needs to explore the XML output of
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the documents to find out how to distinguish text and content structure from
unimportant information. Such a process will always be a heuristic one, de-
pending on the nature of the documents. We wrote a program that reads the
XML document tree, and for each section with a specified label (from the
document template) it extracts the pure text and stores it in a new XML
document, as the excerpt in Figure 1.6 shows.

<section title="Measurements">
<subsection title="Stator_Winding">

<measurement title="Visual_Control">
<submeasurement title="Overhang_Support">

<evaluation>
Die Wickelkopfabsttzung AS und NS befand sich in einem ...

</evaluation>
<action>Keine</action>

</submeasurement>
...

Fig. 1.6. Excerpt of the XML representation of the documents.

Based on such an XML representation, we create subcorpora of text con-
taining measurement evaluations of the same type, stored as paragraphs of
one to many sentences.

1.4.2 Tagging

The part-of-speech (POS) tagger (TreeTagger4) that we used Schmid [1995]
is a probabilistic tagger with parameter files for tagging several languages:
German, English, French, or Italian. For some small problems we encountered,
the author of the tool was very cooperative in providing fixes. Nevertheless, our
primary interest in using the tagger was not the POS tagging itself (the parser,
as is it shown in Section 1.4.3 performs tagging and parsing), but getting
stem information (since the German language has a very rich morphology)
and dividing the paragraphs in sentences (since the sentence is the unit of
operation for the next processing steps).

The tag set used for tagging German is slightly different from that of
English 5. Figure 1.7 shows the output of the tagger for a short sentence 6.

As indicated in Figure 1.7, to create sentences it suffices to find the lines
containing: ". \$. ." (one sentence contains all the words between
two such lines). In general, this is a very good heuristic, but its accuracy
depends on the nature of the text. For example, while the tagger correctly

4 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
5 http://www.ims.uni-stuttgart.de/projekte/corplex/TagSets/stts-table.html
6 Translation: A generally good external winding condition is present.
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Es PPER es
liegt VVFIN liegen
insgesamt ADV insgesamt
ein ART ein
guter ADJA gut
äusserer ADJA äuβer
Wicklungszustand NN <unknown>
vor PTKVZ vor
. $. .

Fig. 1.7. A German sentence tagged with POS-tags by TreeTagger.

tagged abbreviations found in its list of abbreviations (and the list of abbre-
viations can be customized by adding abbreviations common to the domain
of the text), it got confused when the same abbreviations were found inside
parentheses, as the examples in Figure 1.8 for the word ‘ca.’ (circa) show.

If such phenomena occur often, they become a problem for the further
correct processing of sentences, although one becomes aware of such problems
only in the course of the work. A possible solution in such cases is to use
heuristics to replace erroneous tags with correct ones for the types of identified
errors.

an APR an
ca. ADV ca.
50 CARD 50
% NN %

( $( (
ca NE <unknown>
. $. .
20 CARD 20

Fig. 1.8. Correct and erroneous tagging for the word ‘ca.’

The more problematic issue is that of words marked with the stem
<unknown>. Actually, their POS is usually correctly induced, but we are specif-
ically interested in the stem information. The two reasons for an <unknown>

label are a) the word has been misspelled and b) the word is domain spe-
cific, and as such not seen during the training of the tagger. On the positive
side, selecting the words with the <unknown> label directly creates the list of
domain specific words, useful in creating a domain lexicon.

A handy solution for correcting spelling errors is to use a string similarity
function, available in many programming language libraries. For example, the
Python language has the function “get close matches” in its “difflib” library.
An advantage of such a function is having as a parameter the degree of simi-
larity between strings. By setting this value very high (between 0 and 1) one
is sure to get really similar matches if any at all.

Before trying to solve the problem of providing stems for words with the
<unknown> label, one should determine whether the stemming information
substantially contributes to the further processing of text. Since we could not
know that in advance, we manually provided stems for all words labeled as



1 Learning to Annotate Knowledge Roles 13

<unknown>. Then, during the learning process we performed a set of experi-
ments, where: a) no stem information at all was used and b) all words had stem
information (tagger + manually created list of stems). Table 1.2 summarizes
the recall and precision of the learning task in each experiment.

Table 1.2. Results of experiments for the contribution of stem information on
learning.

Experiment Recall Precision

a) no stems (only words) 90.38 92.32
b) only stems 91.29 93.40

These results show approximately 1% improvement in recall and precision
when stems instead of original words are used. We can say that at least for
the learning task of annotating text with knowledge roles stem information
is not necessarily important, but this could also be due to the fact that a
large number of other features (see Section 1.4.5) besides words are used for
learning.

Still, the reason for having a list of stems was not in avoiding more data
due to word inflections, but in capturing the word composition, a phenomenon
typical for the German language. For example, all the words in the first row
of Table 1.3 are compound words that belong to the same semantic category
identified by their last word ‘wert’ (value), i.e. they all denote values of differ-
ent measured quantities, and as such have a similar meaning. This similarity
cannot be induced if one compares the words in the original form, something
possible by comparing the word representations of the second row.

Table 1.3. Original words (first row), words composed of stems (second row).

Ableitstromwerte, Gesamtstromwerte, Isolationswiderstandswerte, Isolation-
sstromwerte, Kapazitätswerte, Ladestromwerte, Stromwerten, Verlustfak-
toranfangswert, etc.

Ableit-Strom-Wert, Gesamt-Strom-Wert, Isolation-Widerstand-Wert,
Isolation-Strom-Wert, Kapazität-Wert, Lade-Strom-Wert, Strom-Wert,
Verlustfaktor-Anfang-Wert, etc.

Unfortunately, there are only a few tools available for morphological analy-
sis of German words. We tried Morphy Lezius [2000], which is publicly avail-
able, but it was not able to analyze any of our domain-specific words. There-
fore, we had to perform this task by hand.
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1.4.3 Parsing

Syntactical parsing is one of the most important steps in the learning frame-
work, since the produced parse trees serve as input for the creation of features
used for learning. Since we are interested in getting qualitative parsing re-
sults, we experimented with three different parsers: the Stanford parser (Klein
2005), the BitPar parser Schmid [2004], Schiehlen [2004], and the Sleepy parser
Dubey [2003]. What these parsers have in common is that they all are based
on unlexicalized probabilistic context free grammars (PCFG) Manning and
Schütze [1999], trained on the same corpus of German, Negra7 (or its super-
set Tiger8), and their source code is publicly available. Still, they do differ in
the degree they model some structural aspects of the German language, their
annotation schemas, and the information included in the output. Figure 1.9
shows the output of the same sentence9 parsed by each parser, and in the
following, we discuss each of them.

Stanford Parser - The Stanford parser is an ambitious project that tackles
the task of generating parse trees from unlabeled data independently of
the language. For the moment, the parser is distributed with parameter
files for parsing English, German, and Chinese. We tested the parser on
our data and noticed that the POS tags were often erroneously induced
(in the sentence with only 8 words of Figure 1.9 there are 3 such errors—
CARD tags for 2 nouns and 1 adjective), which then resulted in erroneous
parse trees. But, in those cases when the tagging was performed correctly,
the parse trees were also correct. Still, the parser could not parse long
sentences, perhaps due to the fact that it was trained in the part of the
Negra corpus with sentences having up to 10 words. Trying the parser with
long English sentences instead, produced excellent results. We concluded
that at this phase of implementation, the Stanford parser could not be
used with our corpus of German sentences that contain an average of up
to 18 words per sentence.

BitPar Parser - This parser is composed of two parts, the parser itself Schmid
[2004] and the parameter files (chart rules, lexicon, etc.) from Schiehlen
[2004]. Published experimental results claim robust performance, due to
the use of sophisticated annotation and transformation schemata for mod-
eling grammars. Another advantage of the parser is that its lexicon can be
extended very easily with triples of domain-dependent words, their tags,
their frequency counts in corpus, thus avoiding the tagging errors typical
for unlexicalised parsers. These tagging errors damage the parse results,
as can be seen from the results of the Stanford parser. Our critique for the
described BitPar is that it usually produces trees with more nodes than

7 http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
8 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/
9 English translation: “On NS were detected circa 5 torn wedge’s safety bands.”
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Stanford Parser

(ROOT
(NUR
(S
(PP (APPR Auf) (CARD NS))
(VAFIN wurden)
(VP
(AP (ADV ca.)
(NM (CARD 5)
(CARD gerissene)
(CARD Keilsicherungsbandagen)))

(VVPP festgestellt)))
($..)))

BitPar Parser

(utt:
(S.fin:
(PP: (APPR: Auf)
(NN: NS))

(VWFIN: wurden)
(AP: (AVP-MAD: (ADV-MAD: ca.))
(CARD: 5))

(NP.nom: (AP: (ADJA%: gerissene))
(NN.nom: Keilsicherungsbandagen))

(VVPP%: festgestellt)))
(\$.: .))

Sleepy Parser

(TOP
(S
(PP-MO (APPR-AD Auf)
(NE-NK NS) )

(VAFIN-HD wurden)
(NP-SB
(ADV-MO ca.) (CARD-NK 5)
(ADJA-NK gerissene)
(NN-NK Keilsicherungsbandagen))

(VP-OC (VVPP-HD festgestellt)))
($. .))

Auf NS wurden ca. 5 gerissene   Keilsicherungsbandagen festgestellt.
On  NS were     ca. 5 torn            wedge’s safety bands      detected.

Fig. 1.9. Parsing output of the same sentence from the three parsers

the other parsers and the annotation of nodes contains specialized linguis-
tic information, not very appropriate for creating features for learning.

Sleepy Parser - This parser has been specifically tuned for the German lan-
guage, and while it is a statistical parser like the others, it uses different
annotation schemas and incorporates grammatical functions (SB–subject,
OC–clausal object, MO–modifier, HD–head, etc.) or long-distance depen-
dencies between terms. In constrast to the two other parsers, it also has
a highly tuned suffix analyzer for guessing POS tags Dubey [2005], which
contributes to more accurate tagging results than the other parsers, al-
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though some domain-dependent words are not always correctly tagged.
Erroneous parsing is also encountered for very long sentences.

Chossing a Parser

All the tested parsers make errors during parsing. In the end, the criteria upon
which we based our choice of the parser were: speed and output information.
Sleepy was the fastest and had the most informative output (it prints the log
value expressing the likelihood of parsing, and it labels the majority of nodes
with their grammatical function). Actually, choosing a parser upon these cri-
teria instead of the accuracy of parsing could be regarded as inappropriate.
Our justification is that a metric to measure the accuracy of parsing on new
data does not exist. These parsers have all been trained on the same corpus,
and at least the two German parsers tuned up to the point where their results
are almost the same. Thus, a priori their expected accuracy in a new corpus
should be equal, and accuracy is not a criterion for choosing one over the
other. Given the difficulty of evaluating the accuracy of the parse trees and
their presumed similarity, we based the choice of parser on the qualities that
contributed most to our task, namely speed and informative output.

1.4.4 Tree Representation

The bracketed parse tree and the stem information of tagging serve as input
for the step of creating a tree data structure. The tree is composed of ter-
minals (leaf nodes) and non-terminals (internal nodes), all of them known as
constituents of the tree. For export purposes as well as for performing ex-
ploration or annotation of the corpus, the tree data structures are stored in
XML format, according to a schema defined in the TigerSearch10 tool. The
created tree, when visualized in TigerSearch, looks like the one shown in Fig-
ure 1.1011. The terminals are labeled with their POS tags and also contain the
corresponding words and stems; the inside nodes are labeled with their phrase
types (NP, PP, etc.); and the branches have labels, too, corresponding to the
grammatical functions of the nodes. The XML representation of a portion of
the tree is shown in Figure 1.11.

1.4.5 Feature Creation

Features are created from the parse tree of a sentence. A feature vector is
created for every constituent of the tree, containing some features unique to
the constituent, some features common to all constituents of the sentence, and
some others calculated with respect to the target constituent (the predicate
verb).
10 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
11 English translation: “. . . irregularities, which point to a not anymore continuous

steering of voltage in the area of the winding head.”
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OA

$,

,

NK

NK

AD

AP

PP

PP

MOSB MO HD

 S

NK RC

NG HD

AD NK NK

die auf eine mehrnicht kontinuierliche Spannugssteuerung im Wickelkopfbereich hindeutenUnregelmässigkeiten
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Fig. 1.10. Representation of a parsed tree in the TigerSearch tool. Due to space
reasons, only a branch of the tree is shown.

...
<t lemma="Spannung-Steuerung" word="Spannungssteuerung" pos="NN"

id="sentences._108_28" />
<t lemma="in" word="im" pos="APPRART"

id="sentences._108_29" />
<t lemma="Wickel-Kopf-Bereich" word="Wickelkopfbereich" pos="NN"

id="sentences._108_30" />
<t lemma="hindeuten" word="hindeuten" pos="VVFIN" id="sentences._108_31" />

</terminals>
<nonterminals>
<nt id="sentences._108_500" cat="PP">
<edge idref="sentences._108_3" label="NK" />
<edge idref="sentences._108_2" label="DA" />
<edge idref="sentences._108_1" label="DA" />

</nt>
...

Fig. 1.11. XML representation of a portion of the parse tree from Figure 1.10.

A detailed linguistic description of possible features used by different re-
search systems for the SRL task is found in Pradhan et al. [2005]. In this
subsection, we only list the features used in our system and give example
values for the leaf node Spannungssteuerung of the parse tree in Figure 1.10.
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Phrase type NN
Grammatical function NK
Terminal (is the constituent a terminal or non-terminal node?) 1
Path (path from the target verb to the constituent, denoting u(up) and d(down) for the direction)
uSdPPd
Grammatical path (like Path, but instead of node labels, branches labels are considered) uHDdMOdNK
Path length (number of branches from target to constituent) 3
Partial path (path to the lowest common ancestor between target and constituent) uPPuS
Relative Position (position of the constituent relative to the target) left
Parent phrase type (phrase type of the parent node of the constituent) PP
Target (lemma of the target word) hindeuten
Target POS (part-of-speech of the target) VVFIN
Passive (is the target verb passive or active?) 0
Preposition (the preposition if the constituent is a PP) none
Head Word (for rules on head words refer to Collins [1999]) Spannung-Steuerung
Left sibling phrase type ADJA
Left sibling lemma kontinuierlich
Right sibling phrase type none
Right sibling lemma none
Firstword, Firstword POS, Lastword, Lastword POS (in this case, the constituent has only one word,
thus, these features get the same values: Spannung-Steuerung and NN. For non-terminal constituents
like PP or NP, first word and last word will be different.)
Frame (the frame evoked by the target verb) Evidence
Role (this is the class label that the classifier will learn to predict. It will be one of the roles related
to the frame or none, for an example refer to Figure 1.12.) none

If a sentence has several clauses where each verb evokes a frame, the feature
vectors are calculated for each evoked frame separately and all the vectors
participate in the learning.

1.4.6 Annotation

To perform the manual annotation, we used the Salsa annotation tool (pub-
licly available) Erk et al. [2003b]. The Salsa annotation tool reads the XML
representation of a parse tree and displays it as shown in Figure 1.12. The
user has the opportunity to add frames and roles as well as to attach them
to a desired target verb. In the example of Figure 1.12 (the same sentence of
Figure 1.10), the target verb hindeuten (point to) evokes the frame Evidence,
and three of its roles have been assigned to constituents of the tree. Such an
assignment can be easily performed per point-and-click. After this process,
an element <frames> is added to the XML representation of the sentence,
containing information about the frame. Excerpts of the XML code are shown
in Figure 1.13.

1.4.7 Active Learning

Research in IE has indicated that using an active learning approach for ac-
quiring labels from a human annotator has advantages over other approaches
of selecting instances for labeling Jones et al. [2003]. In our learning frame-
work, we have also implemented an active learning approach. The possibilities
for designing an active learning strategy are manifold; the one we have imple-
mented uses a committee-based classification scheme that is steered by corpus
statistics. The strategy consists of the following steps:
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AP

PP

S

NP

PP

Find Symptom

Cause

Loc

hindeutendie auf eine nicht mehr kontinuierliche im WickelkopfbereichUnregelmässigkeiten  ,

irregularities which one not anymore continuous steering of voltage winding’s head areato in point

Risk

Evidence

Manner

Spannugssteuerung

Fig. 1.12. Annotation with roles with the Salsa tool.

<frames>
<frame name="Evidence" id="sentences._108__f1">
<target><fenode idref="sentences._108_31"/></target>
<fe name="Symptom" id="sentences._108_f1_e1">
<fenode idref="sentences._108_22"/>

</fe>
<fe name="Cause" id="sentences._108__f1_e2">
<fenode idref="sentences._108_509"/>

</fe>
<fe name="Loc" id="sentences._108__f1_e5">
<fenode idref="sentences._108_510"/>

</fe>
...

Fig. 1.13. XML Representation of an annotated frame.

a) Divide the corpus in clusters of sentences with the same target verb. If a
cluster has fewer sentences than a given threshold, group sentences with
verbs evoking the same frame into the same cluster.

b) Within each cluster, group the sentences (or clauses) with the same parse
sub-tree together.

c) Select sentences from the largest groups of the largest clusters and present
them to the user for annotation.

d) Bootstrap initialization: apply the labels assigned by the user to groups
of sentences with the same parse sub-tree.

e) Train all the classifiers of the committee on the labeled instances; apply
each trained classifier to the unlabeled sentences.

f) Get a pool of instances where the classifiers of the committee disagree
and present to the user the instances belonging to sentences from the
next largest clusters not yet manually labeled.

g) Repeat steps d)–f) a few times until a desired accuracy of classification is
achieved.
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In the following, the rationale behind choosing these steps is explained.
Steps a), b), c): In these steps, statistics about the syntactical structure

of the corpus are created, with the intention of capturing its underlying dis-
tribution, so that representative instances for labeling can be selected.

Step d): This step has been regarded as applicable to our corpus, due to
the nature of the text. Our corpus contains repetitive descriptions of the same
diagnostic measurements on electrical machines, and often, even the used lan-
guage has a repetitive nature. Actually, this does not mean that the same
words are repeated (although often standard formulations are used, especially
in those cases when nothing of value was observed). Rather, the kind of sen-
tences used to describe the task has the same syntactical structure. As an
example, consider the sentences shown in Figure 1.14.

[PP Im Nutaustrittsbereich] wurden [NP stärkere Glimmentladungsspuren] festgestellt.

In the area of slot exit stronger signs of corona discharges were detected.

[PP Bei den Endkeilen] wurde [NP ein ausreichender Verkeildruck] festgestellt.

At the terminals’ end a sufficient wedging pressure was detected.

[PP An der Schleifringbolzenisolation] wurden [NP mechanische Beschädigungen] festgestellt.

On the insulation of slip rings mechanical damages were detected.

[PP Im Wickelkopfbereich] wurden [NP grossflächige Decklackablätterungen] festgestellt.

In the winding head area extensive chippings of the top coating were detected.

Fig. 1.14. Examples of sentences with the same structure.

S

VAFIN NP VPPP

Fig. 1.15. Parse tree of the sentences in Figure 1.14.

What all these sentences have in common is the passive form of the verb
feststellen (wurden festgestellt), and due to the subcategorization of this verb,
the parse tree on the level of phrases is identical for all sentences, as indicated
by 1.15. Furthermore, for the frame Observation evoked by the verb, the
assigned roles are in all cases: NP—Finding, PP—Observed Object. Thus, to
bootstrap initialization, we assign the same roles to sentences with the same
sub-tree as the manually labeled sentences.

Step e): The committee of classifiers consists of a maximum entropy (Max-
Ent) classifier from Mallet McCallum [2002], a Winnow classifier from SNoW
Carlson et al. [2004], and a memory-based learner (MBL) from TiMBL Daele-
mans et al. [2004]. For the MBL, we selected k=5 as the number of the nearest
neighbours. The classification is performed as follows: if at least two classifiers
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agree on a label, the label is accepted. If there is disagreement, the cluster
of labels from the five nearest neighbours is examined. If the cluster is not
homogenous (i.e. it contains different labels), the instance is included in the
set of instances to be presented to the user for manual labeling.

Step f): If one selects new sentences for manual annotation only based
on the output of the committee-based classifier, the risk of selecting outlier
sentences is high Tang et al. [2002]. Thus, from the instances’ set created by
the classifier, we select those belonging to large clusters not manually labeled
yet.

1.5 Evaluations

To evaluate this active learning approach on the task of annotating text with
knowledge roles, we performed a series of experiments that are described in
the following. It was explained in Section 1.4.1 that based on the XML struc-
ture of the documents we created subcorpora with text belonging to different
types of diagnostic tests. After such subcorpora have been processed to create
sentences, only unique sentences are retained for further processing (repeti-
tive, standard sentences do not bring any new information, they only disturb
the learning and therefore are discarded). Then, lists of verbs were created,
and by consulting the sources mentioned in Section 1.3.3, verbs were grouped
with one of the frames: Observation, Evidence, Activity, and Change. Other
verbs that did not belong to any of these frames were not considered for role
labeling.

1.5.1 Learning Performance on the Benchmark Datasets

With the aim of exploring the corpus to identify roles for the frames and
by using our learning framework, we annotated two different subcorpora and
then manually controlled them, to create benchmark datasets for evaluation.
Some statistics for the manually annotated subcorpora are summarized in
Table 1.4. Then, to evaluate the efficiency of the classification, we performed
10-fold cross-validations on each set, obtaining the results shown in Table 1.5,
where recall, precision, and the Fβ=1 measure are the standard metrics of
information retrieval.

Table 1.4. Statistics for the benchmark datasets.

Subcorpus Cases No. Sentences No. Unique Sentences No. Annotated Roles No.

Isolation Current 491 1134 585 1862
Wedging System 453 775 602 1751
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Table 1.5. Learning results for the benchmark datasets.

Subcorpus Recall Precision Fβ=1 measure

Isolation Current 0.913 0.934 0.92
Wedging System 0.838 0.882 0.86

We analyzed some of the classification errors and found that they were
due to parsing anomalies, which had forced us in several occasions to split a
role among several constituents.

1.5.2 Active Learning versus Uniform Random Selection

In order to evaluate the advantages of active learning, we compared it to the
uniform random selection of sentences for manual annotations. Some results
for both approaches are summarized in Table 1.6 and Table 1.7. Recall, pre-
cision, and Fβ=1 measure were calculated after each iteration, in which 10
new sentences manually labeled were added to the training set. The results of
active learning (Fβ=1 measure) are 5–10 points better than those of random
learning. For this experiment, the step d) of the active learning strategy was
not applied, since it is very specific to our corpus.

Table 1.6. Random Learning Results.

Sentences No. Recall Precision Fβ=1 measure

10 0.508 0.678 0.581
20 0.601 0.801 0.687
30 0.708 0.832 0.765
40 0.749 0.832 0.788

Table 1.7. Active Learning Results.

Sentences No. Recall Precision Fβ=1 measure

10 0.616 0.802 0.697
20 0.717 0.896 0.797
30 0.743 0.907 0.817
40 0.803 0.906 0.851
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1.5.3 Bootstrapping Based on Other Sets

During the annotation of the two benchmark datasets, we noticed that the
two subcorpora, although different in nature (set 1: Isolation Current contains
evaluations of numerical measurements performed on the three phases of the
machine, set 2: Wedging System describes visual inspections on the wedging
components of the machine) had very often the frame Observation or Change
in common, while the frame Evidence appeared almost only in the first set,
and the frame Activity almost always in the second. Thus, we tested whether
text annotated with the same roles in one set could bootstrap the learning in
the second, and the results are summarized in Table 1.8.

Table 1.8. Results for bootstrapping based on other labeled sets..

Training File Testing File Recall Precision

Isolation Current Wedging System 0.765 0.859
Wedging System Isolation Current 0.642 0.737

We consider these results as very promising, since they give a hint at
the possibility of using previously annotated text from other subcorpora to
bootstrap the learning process, something that would alleviate the process of
acquiring manual annotations for new text.

1.6 Conclusions

In this paper, we have presented an approach for extracting knowledge from
text documents containing descriptions of knowledge tasks in a technical do-
main. Knowledge extraction in our approach is based on the annotation of
text with knowledge roles (a concept originating in knowledge engineering),
which we map to semantic roles found in frame semantics. The framework
implemented for this purpose is based on deep NLP and active learning.
Experiments have demonstrated a robust learning performance, and the ob-
tained annotations were of high quality. Since our framework is inspired by
and founded upon research in semantic role labeling (SRL), the results indi-
cate that SRL could become a highly valuable processing step for text mining
tasks.

In future work, we will consider the advantages of representing annotated
text by means of knowledge roles and the related frames. Besides the pre-
viously explained uses for semantic retrieval of cases and the extraction of
empirical domain knowledge facts, such a representation could also permit
looking for potentially interesting relations in text and can be exploited to
populate application and domain ontologies with lexical items.
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A Case Study in Natural Language Based Web
Search

Giovanni Marchisio, Navdeep Dhillon, Jisheng Liang, Carsten Tusk, Krzysztof
Koperski, Thien Nguyen, Dan White, and Lubos Pochman

5.1 Introduction

Is there a public for natural language based search? This study, based on our experi-
ence with a Web portal, attempts to address criticisms on the lack of scalability and
usability of natural language approaches to search. Our solution is based on InFact R©,
a natural language search engine that combines the speed of keyword search with
the power of natural language processing. InFact performs clause level indexing, and
offers a full spectrum of functionality that ranges from Boolean keyword operators
to linguistic pattern matching in real time, which include recognition of syntactic
roles, such as subject/object and semantic categories, such as people and places. A
user of our search can navigate and retrieve information based on an understanding
of actions, roles and relationships. In developing InFact, we ported the functional-
ity of a deep text analysis platform to a modern search engine architecture. Our
distributed indexing and search services are designed to scale to large document
collections and large numbers of users. We tested the operational viability of InFact
as a search platform by powering a live search on the Web. Site statistics and user
logs demonstrate that a statistically significant segment of the user population is
relying on natural language search functionality. Going forward, we will focus on
promoting this functionality to an even greater percentage of users through a series
of creative interfaces.

Information retrieval on the Web today makes little use of Natural Language
Processing (NLP) techniques [1, 3, 11, 15, 18]. The perceived value of improved
understanding is greatly outweighed by the practical difficulty of storing complex
linguistic annotations in a scalable indexing and search framework. In addition, any
champion of natural language techniques must overcome significant hurdles in user
interface design, as greater search power often comes at a price of more work in for-
mulating a query and navigating the results. All of these obstacles are compounded
by the expected resistance to any technological innovation that has the potential to
change or erode established models for advertising and search optimization, which
are based on pricing of individual keywords or noun phrases, rather than relation-
ships or more complex linguistic constructs.

Nevertheless, with the increasing amount of high value content made available on
the Web and increased user sophistication, we have reasons to believe that a segment
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of the user population will eventually welcome tools that understand a lot more than
present day keyword search does. Better understanding and increased search power
depend on better parameterization of text content in a search engine index. The most
universal storage employed today to capture text content is an inverted index. In
a typical Web search engine, an inverted index may register presence or frequency
or keywords, along with font size or style, and relative location in a Web page.
Obviously this model is only a rough approximation to the complexity of human
language and has the potential to be superseded by future generation of indexing
standards.

InFact relies on a new approach to text parameterization that captures many
linguistic attributes ignored by standard inverted indices. Examples are syntactic
categories (parts of speech), syntactical roles (such as subject, objects, verbs, prepo-
sitional constraints, modifiers, etc.) and semantic categories (such as people, places,
monetary amounts, etc.). Correspondingly, at query time, there are explicit or im-
plicit search operators that can match, join or filter results based on this rich as-
sortment of tags to satisfy very precise search requirements.

The goal of our experiment was to demonstrate that, once scalability barriers
are overcome, a statistically significant percentage of Web users can be converted
from keyword search to natural language based search. InFact has been the search
behind the GlobalSecurity.org site (www.globalsecurity.org) for the past six months.
According to the Alexa site (www.alexa.com), GlobalSecurity.org has a respectable
overall traffic rank (no. 6,751 as of Feb 14, 2006). Users of the site can perform key-
word searches, navigate results by action themes, or enter explicit semantic queries.
An analysis of query logs demonstrate that all these non-standard information dis-
covery processes based on NLP have become increasingly popular over the first six
months of operation.

The remainder of this chapter is organized as follows. Section 5.2 presents an
overview of our system, with special emphasis on the linguistic analyses and new
search logic. Section 5.3 describes the architecture and deployment of a typical
InFact system. Section 5.4 is a study of user patterns and site statistics.

5.2 InFact System Overview

InFact consists of an indexing and a search module. With reference to Figure 5.1, in-
dexing pertains to the processing flow on the bottom of the diagram. InFact models
text as a complex multivariate object using a unique combination of deep pars-
ing, linguistic normalization and efficient storage. The storage schema addresses the
fundamental difficulty of reducing information contained in parse trees into gener-
alized data structures that can be queried dynamically. In addition, InFact handles
the problem of linguistic variation by mapping complex linguistic structures into se-
mantic and syntactic equivalents. This representation supports dynamic relationship
and event search, information extraction and pattern matching from large document
collections in real time.

5.2.1 Indexing

With reference to Figure 5.1, InFact’s Indexing Service performs in order: 1) docu-
ment processing, 2) clause processing, and 3) linguistic normalization.
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Fig. 5.1. Functional overview of InFact.

Document Processing

The first step in document processing is format conversion, which we handle through
our native format converters, or optionally via search export conversion software
from Stellant

TM
(www.stellent.com), which can convert 370 different input file types.

Our customized document parsers can process disparate styles and recognized zones
within each document. Customized document parsers address the issue that a Web
page may not be the basic unit of content, but it may consist of separate sections
with an associated set of relationships and metadata. For instance a blog post may
contain blocks of text with different dates and topics. The challenge is to automat-
ically recognize variations from a common style template, and segment information
in the index to match zones in the source documents, so the relevant section can
be displayed in response to a query. Next we apply logic for sentence splitting in
preparation for clause processing. Challenges here include the ability to unambigu-
ously recognize sentence delimiters, and recognize regions such as lists or tables that
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are unsuitable for deep parsing. Last, we extract morphological stems and compute
frequency counts, which are then entered in the index.

Clause Processing

The indexing service takes the output of the sentence splitter and feeds it to a
deep linguistic parser. A sentence may consist of multiple clauses. Unlike traditional
models that store only term frequency distributions, InFact performs clause level
indexing and captures syntactic category and roles for each term, and grammatical
constructs, relationships, and inter-clause links that enable it to understand events.
One strong differentiator of our approach to information extraction [4, 5, 7, 8, 14, 19]
is that we create these indices automatically, without using predefined extraction
rules, and we capture all information, not just predefined patterns. Our parser per-
forms a full constituency and dependency analysis, extracting part-of-speech (POS)
tags and grammatical roles for all tokens in every clause. In the process, tokens
undergo grammatical stemming and an optional, additional level of tagging. For
instance, when performing grammatical stemming on verb forms, we normalize to
the infinitive, but we may retain temporal tags (e.g., past, present, future), aspect
tags (e.g., progressive, perfect), mood/modality tags (e.g., possibility, subjunctive,
irrealis, negated, conditional, causal) for later use in search.

Next we capture inter-clause links, through: 1) explicit tagging of conjunctions
or pronouns that provide the link between the syntactic structures for two adjacent
clauses in the same sentence; and 2) pointing to the list of annotated keywords in the
antecedent and following sentence. Note that the second mechanism ensures good
recall in those instances where the parser fails to produce a full parse tree for long
and convoluted sentences, or information about an event is spread across adjacent
sentences. In addition, appositive clauses are recognized, split into separate clauses
and cross-referenced to the parent clause.

For instance, the sentence: “Appointed commander of the Continental Army
in 1775, George Washington molded a fighting force that eventually won indepen-
dence from Great Britain” consists of three clauses, each containing a governing
verb (appoint, mold, and win). InFact decomposes it into a primary clause (“George
Washington molded a fighting force”) and two secondary clauses, which are related
to the primary clause by an appositive construct (“Appointed commander of the
Continental Army in 1775”) and a pronoun (“that eventually won independence
from Great Britain”), respectively. Each term in each clause is assigned a syntac-
tic category or POS tag (e.g., noun, adjective, etc.) and a grammatical role tag
(e.g., subject, object, etc.). InFact then utilizes these linguistic tags to extract re-
lationships that are normalized and stored in an index, as outlined in the next two
sections.

Linguistic Normalization

We apply normalization rules at the syntactic, semantic, or even pragmatic level.
Our approach to coreferencing and anaphora resolution make use of syntactic agree-
ment and/or binding theory constraints, as well as modeling of referential distance,
syntactic position, and head noun [6, 10, 12, 13, 16, 17]. Binding theory places syn-
tactic restrictions on the possible coreference relationships between pronouns and
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their antecedents [2]. For instance, when performing pronoun coreferencing, syntac-
tic agreement based on person, gender and number limits our search for a noun
phrase linked to a pronoun to a few candidates in the text. In addition, consistency
restrictions limit our search to a precise text span (the previous sentence, the pre-
ceding text in the current sentence, or the previous and current sentence) depending
upon whether the pronoun is personal, possessive, reflective, and what is its person.
In the sentence “John works by himself,” “himself” must refer to John, whereas in
“John bought him a new car,” “him” must refer to some other individual mentioned
in a previous sentence. In the sentence, ““You have not been sending money,” John
said in a recent call to his wife from Germany,” binding theory constraints limit pro-
noun resolution to first and second persons within a quotation (e.g., you), and the
candidate antecedent to a noun outside the quotation, which fits the grammatical
role of object of a verb or argument of a preposition (e.g., wife). Our coreferencing
and anaphora resolution models also benefit from preferential weighting based on
dependency attributes. The candidate antecedents that appear closer to a pronoun
in the text are scored higher (weighting by referential distance). Subject is favored
over object, except for accusative pronouns (weighting by syntactic position). A head
noun is favored over its modifiers (weighting by head label). In addition, as part of
the normalization process, we apply a transformational grammar to map multiple
surface structures into an equivalent deep structure. A common example is the nor-
malization of a dependency structure involving a passive verb form into the active,
and recognition of the deep subject of such clause. At the more pragmatic level, we
apply rules to normalize composite verb expressions, capture explicit and implicit
negations, or to verbalize noun or adjectives in cases where they convey action sense
in preference to the governing verb of a clause. For instance, the sentences “Bill did
not visit Jane,” which contains an explicit negation, and “Bill failed to visit Jane,”
where the negation is rendered by a composite verb expression, are mapped to the
same structure.

5.2.2 Storage

The output of a deep parser is a complex augmented tree structure that usually does
not lend itself to a tractable indexing schema for cross-document search. Therefore,
we have developed a set of rules for converting an augmented tree representation
into a scalable data storage structure.

In a dependency tree, every word in the sentence is a modifier of exactly one
other word (called its head), except the head word of the sentence, which does not
have a head. We use a list of tuples to specify a dependency tree with the following
format:

(Label Modifier Root POS Head-label Role Antecedent [Attributes])

where: Label is a unique numeric ID; Modifier is a term in the sentence; Root
is the root form (or category) of the modifier; POS is its lexical category; Head-
label is the ID of the term that modifier modifies; Role specifies the type of de-
pendency relationship between head and modifier, such as subject, complement, etc;
Antecedent is the antecedent of the modifier; Attributes is the list of semantic
attributes that may be associated with the modifier, e.g., person’s name, location,
time, number, date, etc.
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For instance, the parse tree for our Washington example above is shown in Table
5.1.

Table 5.1. The parse tree representation of a sentence.

Head
Label Modifier Root POS

Label
Role Antecedent Attributes

1 Appointed Appoint V

2 commander N 1 Obj Person/title

3 of Prep 2 Mod

4 the Det 5 Det

Continental
5

Army
N 3 Pcomp Organization/name

6 in Prep 1 Mod

7 1775 N 6 Pcomp Numeric/date

George
8

Washington
N 9 Subj Person/name

9 molded mold V

10 a Det 12 Det

11 fighting A 12 Mod

12 force N 9 Obj

13 that N 15 Subj 12

14 eventually A 15 Mod

15 won win V

16 independence N 15 Obj

17 from Prep 16 Mod

Great
18

Britain
N 17 Pcomp Location/country

Fig. 5.2. The Subject-Action-Object indexing structure.

The basic idea behind or approach to indexing involves collapsing selected nodes
in the parse tree to reduce the overall complexity of the dependency structures.
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We model our storage structures after the general notion of subject-action-object
triplets, as shown in Figure 5.2. Interlinked subject-action-object triples and their
respective modifiers can express most types of syntactic relations between various
entities within a sentence.

The index abstraction is presented in Table 5.2, where the additional column
“Dist” denotes degrees of separations (or distance) between primary Subject, Verb,
Object and each Modifier, and “Neg” keeps track of negated actions.

Table 5.2. The index abstraction of a sentence.

Subject- Object- Verb-Subject
Modifier

Object
Modifier

Verb
Modifier

Prep Pcomp Dist Neg

Washington George appoint 1 F
commander appoint 1 F
Army Continental appoint 3 F

appoint in 1775 2 F
Washington George force fighting mold 2 F
force fighting independence win 1 F

Greatwin from
Britain

3 F

win eventually 1 F

InFact stores the normalized triplets into dedicated index structures that

• are optimized for efficient keyword search
• are optimized for efficient cross-document retrieval of arbitrary classes of rela-

tionships or events (see examples in the next section)
• store document metadata and additional ancillary linguistic variables for filter-

ing of search results by metadata constraints (e.g., author, date range), or by
linguistic attributes (e.g., retrieve negated actions, search subject modifier field
in addition to primary subject in a relationship search)

• (optionally) superimposes annotations and taxonomical dependencies from a
custom ontology or knowledge base.

With regard to the last feature, for instance, we may superimpose a [Country] entity
label on a noun phrase, which is the subject of the verb “to attack.” The index
supports multiple ontologies and entangled multiparent taxonomies.

InFact stores “soft events” instead of fitting textual information into a rigid
relational schema that may result in information loss. “Soft events” are data struc-
tures that can be recombined to form events and relationships. “Soft events” are
pre-indexed to facilitate thematic retrieval by action, subject, and object type. For
instance, a sentence like “The president of France visited the capital of Tunisia”
contains evidence of 1) a presidential visit to a country’s capital and 2) diplomatic
relationships between two countries. Our storage strategy maintains both interpre-
tations. In other words, we allow more than one subject or object to be associated
with the governing verb of a sentence. The tuples stored in the database are there-
fore “soft events,” as they may encode alternative patterns and relationships found
in each sentence. Typically, only one pattern is chosen at search time, in response to
a specific user request (i.e., request #1: gather all instances of a president visiting a
country; request #2: gather all instances of interactions between any two countries).
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5.2.3 Search

Unlike keyword search engines, InFact employs a highly expressive query language
(IQL or InFact Query Language) that combines the power of grammatical roles
with the flexibility of Boolean operators, and allows users to search for actions,
entities, relationships, and events. InFact represents the basic relationship between
two entities with an expression of the kind:

Subject Entity > Action > Object Entity,

The arrows in the query refer to the directionality of the action, which could be
either uni-directional (as above) or bi-directional. For example,

Entity 1 <> Action <> Entity 2

will retrieve all relationships involving Entity 1 and Entity 2, regardless of their
roles as subject or object of the action. Wildcards can be used for any grammatical
role. For instance, the query “∗ > eat > cake” will retrieve a list of anybody or
anything that eats a cake; and a query like “John > ∗ > Jane” will retrieve a list
of all uni-directional relationships between John and Jane. InFact also supports the
notion of entity types. For instance, in addition to entering an explicit country name
like “Argentina” as Entity 1 or Entity 2 in a relationship query, a user can enter a
wildcard for any country name by using the syntax [Country]. InFact comes with
a generic ontology that includes [Location], [Person], [Organization], [Numeric] as
the four main branches. Entity types can be organized hierarchically in a taxonomy.
IQL renders hierarchical dependencies by means of taxonomy paths. For instance,
in [Entity/Location/Country] and [Entity/Location/City] both [Country] and [City]
nodes have a common parent [Location]. Taxonomy path can encode “is-a” relations
(as in the above examples), or any other relations defined in a particular ontology
(e.g., “part-of” relation). When querying, we can use a taxonomy node in a relation-
ship search, e.g., [Location], and the query will automatically include all subpaths
in the taxonomic hierarchy, including [City], [Location], or narrow the search by
expanding the path to [Location/City].

With the InFact query language, we can search for:

• Any relationships involving an entity of interest

For example, the query “George Bush <> * <> *” will retrieve any events involving
“George Bush” as subject or object

• Relationships between two entities or entity types

For example, the query “China <> * <> Afghan*” will retrieve all relationships
between the two countries. Note in this case a wildcard is used in “Afghan*” to
handle different spelling variations of Afghanistan. The query “Bin Laden <>*<>
[Organization]” will retrieve any relationships involving “Bin Laden” and an orga-
nization.

• Events involving one or more entities or types

For example, the query “Pope > visit > [country]” will return all instances of the
Pope visiting a country. In another example, “[Organization/name] > acquire >
[Organization/name]” will return all events involving a named company buying
another named company.
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• Events involving a certain action type

“Action types” are groups of semantically linked actions. For example, query “[Per-
son] > [Communication] > [Person]” will retrieve all events involving communica-
tion between two people.

InFact’s query syntax supports Boolean operators (i.e., AND, OR, NOT). For
example, the query:

Clinton NOT Hillary > visit OR travel to > [Location]

is likely to retrieve the travels of Bill Clinton, but not Hillary Clinton.
We can further constrain actions with modifiers, which can be explicit entities

or entity types, e.g., Paris or [location]. For example, the query

[Organization/Name] > buy > [Organization/Name]ˆ[money]

will only return results where a document mentions a specific monetary amount
along with a corporate acquisition. Similarly, the query

Bush <> meet<> Clinton ˆ[location]

will return results restricted to actions that occur in an explicit geographical loca-
tion.

We can also filter search results by specifying document-level constraints, in-
cluding:

• Document metadata tags – lists of returned actions, relationships or events are
restricted to documents that contain the specified metadata values.

• Boolean keyword expressions – lists of returned actions, relationships or events
are restricted to documents that contain the specified Boolean keyword expres-
sions.

For instance, a query like:

[Organization/Name] > buy > [Organization/Name]ˆ[money]; energy NOT oil

will return documents that mentions a corporate acquisition with a specific monetary
amount, and also contain the keyword “energy” but do not contain the keyword
“oil.”

InFact also provides a context operator for inter-clause linking. Suppose for
instance, that we want to retrieve all events where a plane crash kills a certain
number of passengers. The event could be spread over adjacent sentences, as in:
“The plane crashed shortly after take-off. As many as 224 people were killed.”

In this case, a query like:

* > kill > [numeric] ∼plane crash

will retrieve all plane crash events, regardless of whether they are contained in a
single or multiple, adjacent sentences.

InFact can also support synonyms and query expansion via custom ontologies.
In this case, InFact will automatically recognize the equivalence of entities or actions
that belong to the same ontology node.

The InFact Query Language rests on a flexible Java Search API. The Java
Search API allows us to programmatically concatenate search operators, package
and present them to the end user through a simpler interface.
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5.3 Architecture and Deployment

We designed both indexing and search as parallel distributed services. Figure 5.3
shows a typical deployment scenario, with an indexing service on the left and a
search service on the right. A typical node in each of the diagrams would is a dual
processor (e.g., 2.8+GHz Xeon 1U) machine with 4GB of RAM and two 120GB
drives.

The Indexing Service (left) processes documents in parallel. Index workers access
source documents from external web servers. Multiple index workers can run on each
node. Each index worker performs all the “Annotation Engine” analyses described in
Figure 5.1. An index manager orchestrates the indexing process across many index
workers. The results of all analyses are stored in temporary indices in the index
workers. At configurable intervals, the index manager orchestrates the merging of
all temporary indices into the partition index components.

A partition index hosts the actual disk based indices used for searching. The
contents of a document corpus are broken up into one or more subsets that are
each stored in a partition index. The system supports multiple partition indices: the
exact number will depend on corpus size, number of queries per second and desired
response time. Indices are queried in parallel and are heavily IO bound. Partition
indices are attached to the leaf nodes of the Search Service on the right.

In addition to storing results in a temporary index, index workers can also store
the raw results of parsing in a Database Management System (DBMS). The database
is used almost exclusively to restore a partition index in the event of index corrup-
tion. Data storage requirements on the DBMS range between 0.5 and 6x corpus
size depending on which recovery options for the InFact system are enabled. Once
a document has been indexed and merged into a partition index it is available for
searching.

In a typical search deployment, queries are sent from a client application; the
client application may be a Web browser or a custom application built using the
Search API. Requests arrive over HTTP and are passed through a Web Server to
the Search Service layer and on to the top searcher of a searcher tree. Searchers
are responsible for searching one or more partition index. Multiple searchers are
supported and can be stacked in a hierarchical tree configuration to enable searching
large data sets. The top level searcher routes ontology related requests to one or more
ontology searchers, which can run on a single node. Search requests are passed to
child searchers, which then pass the request down to one or more partition indices.
The partition index performs the actual search against the index, and the result
passes up the tree until it arrives back at the client for display to the user.

If a particular segment of data located in a partition index is very popular and
becomes a search bottleneck, it may be cloned; the parent searcher will load bal-
ance across two or three partition indices. In addition, if ontology searches become
a bottleneck, more ontology searchers may be added. If a searcher becomes a bot-
tleneck, more searchers can be added. The search service and Web server tier may
be replicated, as well, if a load balancer is used.

The example in Figure 5.3 is an example of a large-scale deployment. In the
GlobalSecurity.org portal, we currently need only four nodes to support a user com-
munity of 100,000 against a corpus of several GB of international news articles,
which are updated on a daily basis.
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Fig. 5.3. Architectural overview of InFact.

5.4 The GlobalSecurity.org Experience

5.4.1 Site Background

InFact started powering the GlobalSecurity.org Web site on June 22, 2005. Based
in Alexandria, VA, and “launched in 2000, GlobalSecurity.org is the most compre-
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hensive and authoritative online destination for those in need of both reliable back-
ground information and breaking news . . . GlobalSecurity.org’s unique positioning
enables it to reach both a targeted and large diversified audience. The content of
the website is updated hourly, as events around the world develop, providing in-
depth coverage of complicated issues. The breadth and depth of information on the
site ensures a loyal repeat audience. This is supplemented by GlobalSecurity.org’s
unique visibility in the mass media, which drives additional growth” [9]. The direc-
tor of GlobalSecurity.org, John Pike, regularly provides commentary and analysis on
space and security issues to PBS, CNN, MSNBC, Fox, ABC, CBS, NBC, BBC, NPR,
and numerous print and online publications. In powering this site, InFact serves the
information search needs of a well-established user community of 100,000, consist-
ing of news reporters, concerned citizens, subject matter experts, senior leaders, and
junior staff and interns.

5.4.2 Operational Considerations

When preparing the GlobalSecurity.org deployment, one of our prime concerns was
the response time of the system. For this reason, we kept the data size of the partition
indices small enough so that most operations occur in memory and disk access
is minimal. We split the GlobalSecurity.org data across two index chunks, each
containing roughly 14 GB of data in each partition index. Another concern was
having sufficient capacity to handle the user load. To account for future user traffic,
we specified the deployment for 2-3 times the maximum expected load of about
11,000 queries per day. This left us with two cloned partition indices per index
chunk. In addition, we wanted a hot back up of the entire site, in case of any
hardware failures, and to support us each time we are rolling out new features.

Fig. 5.4. The GlobalSecurity.org home page.

Another area of concern was the distribution of query types. Our system has
significantly varying average response time and throughput (measured in queries/
minute) depending on the type of queries being executed. We assumed that users
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would take some time to migrate from keyword queries to fact queries. Therefore, we
selected a very conservative ratio of 50/50 fact-to-keyword query types with a view
to adding more hardware if needed. After automatically generating millions of query
files, we heavily loaded the system with the queries to simulate heavy traffic using
JMeter, a multi-threaded client web user simulation application from the Apache
Jakarta organization. Based on these simulations, we deployed with only four nodes.

Fig. 5.5. Keyword search result and automatic tip generation with InFact in re-
sponse to the keyword query “blackhawk.”

5.4.3 Usability Considerations

In deploying InFact on the GlobalSecurity.org site, our goal was to serve the infor-
mation needs of a wide community of users, the majority of which are accustomed
to straightforward keyword search. Therefore, on this site, by default, InFact acts
as a keyword search engine. However, we also started experimenting with ways to
progressively migrate users away from keyword search and towards natural language
search or “fact search.” With reference to Figure 5.4, users approaching the site can
enter InFact queries from the search box in the upper left, or click on the Hot Search
link. The latter executes a predefined fact search, which is particularly popular over
an extended time period (days or even weeks). The Hot Search is controlled by Glob-
alSecurity.org staff, and is outside the control of the general user. However, once in
the InFact search page (Figure 5.5), the user can execute fact searches explicitly by
using the IQL syntax. The IQL syntax is fully documented in the InFact Help page.
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Alternatively, by clicking on the “Try your own Fact Search” link on the upper right
of the InFact Search page, the user is introduced to a Custom Query Generator
(Figure 5.6), which produces the query of Figure 5.7.

Fig. 5.6. Fact search with the InFact Custom Query Generator: the user is looking
for facts that involve the export of plutonium.

The most interesting device we employed is guided fact navigation in response to
a keyword entry. We call this process “tip generation.” In this scenario, we capture
keywords entered by a user and try to understand whether these are names of people,
places, organization, military units, vehicles, etc. When executing a keyword search,
the InFact system can recommend several fact searches which may be of interest to
a user based on the keywords entered. These recommendations are presented to the
user as a guided navigation menu consisting of links. In the example of Figure 5.5,
the user is performing a keyword search for “blackhawk.” The user sees a series of
links presented at the top of the result set. They read: “Tip: View facts involving
blackhawk and: Combat, Its Usage/Operation, Locations, Military Organizations,
Money.” Each of these links when clicked in turn executes a fact search. For instance,
clicking on Military Organizations will generate the list of facts or relationships
of Figure 5.8, which gives an overview of all military units that have used the
blackhawk helicopter; clicking on Money will generate the list of facts or relationships
of Figure 5.9, which gives an overview of procurement and maintenance costs, as well
as government spending for this vehicle. The relationships are returned in a table
display where each row is an event, and columns identify the three basic semantic
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Fig. 5.7. Fact search with the InFact Custom Query Generator: InFact translates
the query of Figure 5.6 into the InFact Query Language (IQL) and returns a list of
results. IQL operators are fully documented in the Help page.

roles of source (or subject), action (or verb), and target (or object). Note that
relationships, by default, are sorted by relevance to a query, but can also be resorted
by date, action frequency, or alphabetically by source, action or target. Each of the
relationships or facts in the table is in turn hyperlinked to the exact location in the
source document where it was found, so the user can quickly validate the findings
and explore its context (Figure 5.10).

Usage logs were the primary driver for this customization effort. The personnel
at GlobalSecurity.org were very helpful and provided us with many months of user
traffic Web logs. We wrote some simple scripts to analyze the logs. For example,
we studied the 500 most popular key word searches performed on the site ranked in
order of popularity. Next, we began looking for entity types that would be helpful
to the most number of users. We found a lot of user interest in weapons, terrorists,
and US officials, amongst other things. We then set about creating ontologies for
each of these areas. New custom ontologies can easily be mapped into the internal
InFact ontology XML format.

5.4.4 Analysis of Query Logs

We wish to quantify the relative popularity of natural language (Fact) search versus
keyword search. In addition, we wish to compare the relative success of alternative
strategies we adopted to overcome usability issues. This study of log data reflect
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Fig. 5.8. Tip Navigation with InFact: facts involving the “blackhawk” helicopter
and military organizations.

Fig. 5.9. Tip Navigation with InFact: facts involving the “blackhawk” helicopter
and money.

four ways users submit a natural language query to InFact: 1) they click on the
Hot Search link; 2) they click on a keyword tip; 3) they click on an example in the
Query Generator or Help page; 4) they attempt to type an explicit relationship or
fact search using the IQL syntax.
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Fig. 5.10. Tip Navigation with InFact: each fact is hyperlinked to the exact location
where it was found in the source document.

At the time of this writing, an average of 36% of advanced search users click
on the hot search link “Iran and Nuclear program,” which executes a predefined
search like “Iran > * ∼ nuclear.” However, it is difficult to assess what the user
experience is like because in 80% of cases the user performs non-search-related tasks,
and therefore we don’t know how long they spent looking at the results. Note that
users clicking on this link may not realize that they are going to a search engine
page, since the link title is ambiguous. The results of this search are quite good,
and still relevant. The hot search is an important entry point into our search site,
as 36% of all the fact search queries executed came from this source. It seems likely
that adding more of these hot search links or otherwise accentuating them on the
page would significantly increase user exposure to natural language based queries.

Our analysis of query logs shows that keyword tips are the most effective way
to migrate users to Fact Search. Users who click on tips frequently follow up with
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queries of their own. Tip clickers also write better queries, probably because, after
seeing the column display, they have a much better sense of how queries can be
composed. Keyword tip clickers typically find the results engaging enough to spend
an average of 1.5 minutes studying the results: 37% of users go back and click on
more than one tip. Even better, 87% follow up by clicking on the “Try your own
Fact Search” link and try their own query. All of the queries attempted are queries;
90% produce results; our follow up analysis suggests that for two thirds of these
queries the results are relevant to the users search goals. In other words, users who
click on the tips are extremely likely not only to try their own fact search, but also
to pay enough attention to the format to write both valid and useful queries.

Examples in the Help File or Query Generator are largely ineffective at getting
users to try Fact Search. Because the results returned by the examples usually do
not necessarily relate to what the user wishes to search on, the column display is
more of a distraction than an enticement to try Fact Search. However, those who go
on to try Fact Search, after clicking on an example, have a better chance of writing
good queries. Example link clickers are less likely to experiment with Fact Search
or invest time learning how it works. Seventy-two percent of users end their session
after clicking on one or more examples, not even returning to perform the keyword
search that presumably brought them to the site in the first place. Of the 28% who
did not leave the site after clicking an example, two thirds went on to try a Fact
Search. Only 6% of users click on examples after having tried a Fact Search query
on their own. Analysis of this user group suggests that examples have a place in the
UI, but are not sufficiently compelling to motivate users to try Fact Search alone.
However, this evidence does lend support to the hypothesis that users who see the
column display are more likely to create valid queries: 60% of the users who click on
examples and go on to write their own queries write valid queries and get results,
which is still a much higher percentage than for users who blindly try to create
queries.

About 75% of users who try Fact Search directly by using the IQL syntax, and
without seeing the column display first fail to get results. Forty-five percent of users
write invalid queries where nouns are inserted in the action field (the most com-
mon error). Another common error is specifying too much information or attaching
prepositions to noun phrases. We can detect some of these errors automatically,
and we plan to provide automatic guidance to users going forward. About 20% of
query creators get impressive results. Most successful users get their queries right
on the first shot, and, in general, seem unwilling to invest much time experimenting.
Successful users are most likely expert analysts. In reproducing their searches and
inspecting their results, we estimate that they have a positive impression of Fact
search. In 75% of cases the results of Fact Search take direct the user quickly to the
relevant parts of relevant documents, providing a deeper overview and faster naviga-
tion of content. However, in 25% of cases, expert users also write queries that return
no results. Reasons for this include specifying too much information or including
modifiers or prepositional terms in the verb field such as: “cyber attack,” “led by,”
and “go to.” In many cases users would be successful by just entering the verb. In
some cases, users get lots of fact search results, but lack the experience to refine
their query, so they simply go back to keyword search. We should try to communi-
cate how queries can be modified further if there are too many results, perhaps by
adding an ontology tag, or a context operator to the query syntax. For instance, the
query “Bush > meet > [person]” could yield a large number of irrelevant results, if



5 A Case Study in Natural Language Based Web Search 87

a user is only interested in a list of diplomatic meetings. The query can be refined
as “Bush >meet > [person/name].” In this case, the addition of an ontology tag
restricts the number of meetings to those that are likely to involve named political
personalities of some relevance. If the user is primarily interested in meeting that
involve talks on nuclear arms control, the query can be further refined as “Bush >
meet > [person/name] ∼ nuclear arms control.” Similarly, the query “[country] >
produce > uranium” can be turned into the query “[country] > produce >[numeric]
uranium” if a user is after quantities of uranium that are being produced around
the world. In general, we observe that users accustomed to keyword search believe
that specifying more terms translates into more accurate results. In moving these
users to Fact Search we must encourage them to start as simple as possible, since
the IQL can express in two words what would take 20 lines using Boolean language.

Fig. 5.11. Queries/day vs day of operation (June 22, 2005, to November 30, 2005).

Finally, Figure 5.11 shows overall query volumes (keyword search and Fact
Search) as a function of day from the first day of operation (June 22 to Novem-
ber 30, 2005). The cyclic nature of the graph derives from the fact that most user
access the site during the working week. Figure 5.12, which displays query volumes
vs week of operation, clearly shows a positive trend: overall traffic to the site has
increased by almost 40% ever since we introduced InFact search. The most inter-
esting metrics relate to the percentage of users that derive value from Fact Search.
The most effective mechanism to promote natural language search, as we have seen,
are the tips. Figure 5.13 shows a 60% increase in the number of users that click on
the tips automatically generated by InFact’s advanced linguistic analysis over our
entire period of operation. The overall percentage has increased from 4% to 10%.
Our analysis also suggests that the best way to teach users how to write good queries
is to first expose them to the summary result displays that ensues from a natural
language query. The sooner users become aware of the type of results that a natural
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language query can yield, the higher the chances that they learn how to use the new
search functions correctly. This reinforces the idea that the result display may be a
driver of Fact Search.

Fig. 5.12. Queries/week vs week of operation (June to November, 2005).

Fig. 5.13. Percentage of tips clicked (June to November, 2005).
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5.5 Conclusion

We deployed a natural language based search to a community of Web users, and
measured its popularity relative to conventional keyword search. Our work addressed
criticisms of NLP approaches to search to the effect that they are not scalable and are
too complex to be usable by average end-users. Our approach rests on a sophisticated
index parameterization of text content, that captures syntactic and semantic roles,
in addition to keyword counts, and enables interactive search and retrieval of events
patterns based on a combination of keyword distributions and natural language
attributes. Our distributed indexing and search services are designed to scale to
large document collections and large numbers of users. We successfully deployed on
a Web site that serves a community of 100,000 users. An analysis of query logs shows
that, during the first six months of operation, traffic has increased by almost 40%.
Even more significantly, we are encountering some success in promoting natural
language searches. Our study demonstrates that the percentage of users that avail
themselves of guided fact navigation based on natural language understanding has
increased from 4% to 10% during the first six months of operation. Going forward,
we will focus on increasing this percentage with a more innovative UI.
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Evaluating Self-Explanations in iSTART:
Word Matching, Latent Semantic Analysis,
and Topic Models

Chutima Boonthum, Irwin B. Levinstein, and Danielle S. McNamara

6.1 Introduction

iSTART (Interactive Strategy Trainer for Active Reading and Thinking) is a web-
based, automated tutor designed to help students become better readers via multi-
media technologies. It provides young adolescent to college-aged students with a pro-
gram of self-explanation and reading strategy training [19] called Self-Explanation
Reading Training, or SERT [17, 21, 24, 25]. The reading strategies include (a) com-
prehension monitoring, being aware of one’s understanding of the text; (b) para-
phrasing, or restating the text in different words; (c) elaboration, using prior knowl-
edge or experiences to understand the text (i.e., domain-specific knowledge-based
inferences) or common sense, using logic to understand the text (i.e., domain-general
knowledge based inferences); (d) predictions, predicting what the text will say next;
and (e) bridging, understanding the relation between separate sentences of the text.
The overall process is called “self-explanation” because the reader is encouraged to
explain difficult text to him- or herself. iSTART consists of three modules: Intro-
duction, Demonstration, and Practice. In the last module, students practice using
reading strategies by typing self-explanations of sentences. The system evaluates
each self-explanation and then provides appropriate feedback to the student. If the
explanation is irrelevant or too short, the student is required to add more informa-
tion. Otherwise, the feedback is based on the level of overall quality.

The computational challenge here is to provide appropriate feedback to the stu-
dents concerning their self-explanations. To do so requires capturing some sense of
both the meaning and quality of the self-explanation. Interpreting text is critical for
intelligent tutoring systems, such as iSTART, that are designed to interact meaning-
fully with, and adapt to, the users’ input. iSTART was initially proposed as using
Latent Semantic Analysis (LSA; [13]) to capture the meanings of texts and to assess
the students’ self-explanation; however, while the LSA algorithms were being built,
iSTART used simple word matching algorithms. In the course of integrating the
LSA algorithms, we found that a combination of word-matching and LSA provided
better results than either separately [18].

Our goal in evaluating the adequacy of the algorithms has been to imitate ex-
perts’ judgments of the quality of the self-explanations. The current evaluation sys-
tem predicts the score that a human gives on a 4-point scale, where 0 represents an
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evaluation of the explanation as irrelevant or too short; 1, minimally acceptable; 2,
better but including primarily the local textual context; and 3, oriented to a more
global comprehension. Depending on the text, population, and LSA space used, our
results have ranged from 55 to 70 percent agreement with expert evaluations using
that scale. We are currently attempting to improve the effectiveness of our algo-
rithms by incorporating Topic Models (TM) either in place of or in conjunction
with LSA and by using more than one LSA space from different genres (science,
narrative, and general TASA corpus). We present some of the results of these efforts
in this chapter.

Our algorithms are constrained by two major requirements, speedy response
times and speedy introduction of new texts. Since the trainer operates in real time,
the server that calculates the evaluation must respond in 4 to 5 seconds. Further-
more the algorithms must not require any significant preparation of new texts, a
requirement precisely contrary to our plans when the project began. In order to
accommodate the needs of the teachers whose classes use iSTART, the trainer must
be able to use texts that the teachers wish their students to use for practice within
a day or two. This time limit precludes us from significantly marking up the text or
gathering related texts to incorporate into an LSA corpus.

In addition to the overall 4-point quality score, we are attempting to expand
our evaluation to include an assessment of the presence of various reading strategies
in the student’s explanation so that we can generate more specific feedback. If the
system were able to detect whether the explanation uses paraphrasing, bridging, or
elaboration we could provide more detailed feedback to the students, as well as an
individualized curriculum based on a more complete model of the student. For ex-
ample, if the system were able to assess that the student only paraphrased sentences
while self-explaining, and never used strategies such as making bridging inferences
or knowledge-based elaborations, then the student could be provided additional
training to generate more inference-based explanations.

This chapter describes how we employ word matching, LSA, and TM in the
iSTART feedback systems and the performance of these techniques in producing
both overall quality and reading strategy scores.

6.2 iSTART: Feedback Systems

iSTART was intended from the outset to employ LSA to determine appropriate
feedback. The initial goal was to develop one or more benchmarks for each of the
SERT strategies relative to each of the sentences in the practice texts and to use
LSA to measure the similarity of a trainee’s explanation to each of the benchmarks.
A benchmark is simply a collection of words, in this case, words chosen to represent
each of the strategies (e.g., words that represent the current sentence, words that
represent a bridge to a prior sentence). However, while work toward this goal was
progressing, we also developed a preliminary “word-based” (WB) system to provide
feedback in our first version of iSTART [19] so that we could provide a complete
curriculum for use in experimental situations. The second version of iSTART has
integrated both LSA and WB in the evaluation process; however, the system still
provides only overall quality feedback. Our current investigations aim to provide
feedback based on identifying specific reading strategies.
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6.2.1 Word Matching Feedback Systems

Word matching is a very simple and intuitive way to estimate the nature of a self-
explanation. In the first version of iSTART, several hand-coded components were
built for each practice text. For example, for each sentence in the text, the “im-
portant words” were identified by a human expert and a length criterion for the
explanation was manually estimated. Important words were generally content words
that were deemed important to the meaning of the sentence and could include words
not found in the sentence. For each important word, an association list of synonyms
and related terms was created by examining dictionaries and existing protocols as
well as by human judgments of what words were likely to occur in a self-explanation
of the sentence. In the sentence “All thunderstorms have a similar life history,” for
example, important words are thunderstorm, similar, life, and history. An associa-
tion list for thunderstorm would include storms, moisture, lightning, thunder, cold,
tstorm, t-storm, rain, temperature, rainstorms, and electric-storm. In essence, the
attempt was made to imitate LSA.

A trainee’s explanation was analyzed by matching the words in the explanation
against the words in the target sentence and words in the corresponding association
lists. This was accomplished in two ways: (1) Literal word matching and (2) Soundex
matching.

Literal word matching - Words are compared character by character and if
there is a match of the first 75% of the characters in a word in the target sentence
(or its association list) then we call this a literal match. This also includes removing
suffix -s, -d, -ed, -ing, and -ion at the end of each words. For example, if the trainee’s
self-explanation contains ‘thunderstom’ (even with the misspelling), it still counts
as a literal match with words in the target sentence since the first nine characters
are exactly the same. On the other hand, if it contains ‘thunder,’ it will not get a
match with the target sentence, but rather with a word on the association list.

Soundex matching - This algorithm compensates for misspellings by mapping
similar characters to the same soundex symbol [1, 5]. Words are transformed to their
soundex code by retaining the first character, dropping the vowels, and then con-
verting other characters into soundex symbols. If the same symbol occurs more than
once consecutively, only one occurrence is retained. For example, ‘thunderstorm’ will
be transformed to ‘t8693698’; ‘communication’ to ‘c8368.’ Note that the later exam-
ple was originally transformed to ‘c888368’ and two 8s were dropped (‘m’ and ‘n’
are both mapped to ‘8’). If the trainee’s self-explanation contains ‘thonderstorm’ or
‘tonderstorm,’ both will be matched with ‘thunderstorm’ and this is called a soundex
match. An exact soundex match is required for short words (i.e., those with fewer
than six alpha-characters) due to the high number of false alarms when soundex is
used. For longer words, a match on the first four soundex symbols suffices. We are
considering replacing this rough and ready approach with a spell-checker.

A formula based on the length of the sentence, the length of the explanation, the
length criterion mentioned below, the number of matches to the important words,
and the number of matches to the association lists produces a rating of 0 (inad-
equate), 1 (barely adequate), 2 (good), or 3 (very good) for the explanation. The
rating of 0 or inadequate is based on a series of filtering criteria that assesses whether
the explanation is too short, too similar to the original sentence, or irrelevant. Length
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is assessed by a ratio of the number of words in the explanation to the number in
the target sentence, taking into consideration the length criterion. For example, if
the length of the sentence is 10 words and the length priority is 1, then the required
length of the self-explanation would be 10 words. If the length of the sentence is 30
words and the length priority is 0.5, then the self-explanation would require a min-
imum of 15 words. Relevance is assessed from the number of matches to important
words in the sentence and words in the association lists. Similarity is assessed in
terms of a ratio of the sentence and explanation lengths and the number of matching
important words. If the explanation is close in length to the sentence, with a high
percentage of word overlap, the explanation would be deemed too similar to the tar-
get sentence. If the explanation failed any of these three criteria (Length, Relevance,
and Similarity), the trainee would be given feedback corresponding to the problem
and encouraged to revise the self-explanation.

Once the explanation passes the above criteria, then it is evaluated in terms of
its overall quality. The three levels of quality that guide feedback to the trainee are
based on two factors: 1) the number of words in the explanation that match either
the important words or association-list words of the target sentence compared to
the number of important words in the sentence and 2) the length of the explanation
in comparison with the length of the target sentence. This algorithm will be referred
as WB-ASSO, which stands for word-based with association list.

This first version of iSTART (word-based system) required a great deal of human
effort per text, because of the need to identify important words and, especially, to
create an association list for each important word. However, because we envisioned
a scaled-up system rapidly adaptable to many texts, we needed a system that re-
quired relatively little manual effort per text. Therefore, WB-ASSO was replaced.
Instead of lists of important and associated words we simply used content words
(nouns, verbs, adjectives, adverbs) taken literally from the sentence and the entire
text. This algorithm is referred to as WB-TT, which stands for word-based with to-
tal text. The content words were identified using algorithms from Coh-Metrix, an
automated tool that yields various measures of cohesion, readability, other charac-
teristics of language [9, 20]. The iSTART system then compares the words in the
self-explanation to the content words from the current sentence, prior sentences,
and subsequent sentences in the target text, and does a word-based match (both lit-
eral and soundex) to determine the number of content words in the self-explanation
from each source in the text. While WB-ASSO is based on a richer corpus of words
than WB-TT, the replacement was successful because the latter was intended for
use together with LSA which incorporates the richness of a corpus of hundreds of
documents. In contrast, WB-ASSO was used on its own.

Some hand-coding remained in WB-TT because the length criterion for an expla-
nation was calculated based on the average length of explanations of that sentence
collected from a separate pool of participants and on the importance of the sentence
according to a manual analysis of the text. Besides being relatively subjective, this
process was time consuming because it required an expert in discourse analysis as
well as the collection of self-explanation protocols. Consequently, the hand-coded
length criterion was replaced with one that could be determined automatically from
the number of words and content words in the target sentence (we called this word-
based with total text and automated criteria, or WB2-TT ). The change from WB-TT
to WB2-TT affected only the screening process of the length and similarity criteria.
Its lower-bound and upper-bound lengths are entirely based on the target sentence’s
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length. The overall quality of each self-explanation (1, 2, or 3) is still computed with
the same formula used in WB-TT.

6.2.2 Latent Semantic Analysis (LSA) Feedback Systems

Latent Semantic Analysis (LSA; [13, 14]) uses statistical computations to extract
and represent the meaning of words. Meanings are represented in terms of their
similarity to other words in a large corpus of documents. LSA begins by finding
the frequency of terms used and the number of co-occurrences in each document
throughout the corpus and then uses a powerful mathematical transformation to
find deeper meanings and relations among words. When measuring the similarity
between text-objects, LSA’s accuracy improves with the size of the objects. Hence,
LSA provides the most benefit in finding similarity between two documents. The
method, unfortunately, does not take into account word order; hence, very short
documents may not be able to receive the full benefit of LSA.

To construct an LSA corpus matrix, a collection of documents are selected. A
document may be a sentence, a paragraph, or larger unit of text. A term-document-
frequency (TDF) matrix X is created for those terms that appear in two or more
documents. The row entities correspond to the words or terms (hence the W ) and
the column entities correspond to the documents (hence the D). The matrix is
then analyzed using Singular Value Decomposition (SVD; [26]), that is the TDF
matrix X is decomposed into the product of three other matrices: (1) vectors of
derived orthogonal factor values of the original row entities W, (2) vectors of derived
orthogonal factor values of the original column entities D, and (3) scaling values
(which is a diagonal matrix) S. The product of these three matrices is the original
TDF matrix.

{X} = {W}{S}{D} (6.1)

The dimension (d) of {S} significantly affects the effectiveness of the LSA space
for any particular application. There is no definite formula for finding an optimal
number of dimensions; the dimensionality can be determined by sampling the results
of using the matrix {W}{S} to determine the similarity of previously-evaluated
document pairs for different dimensionalities of {S}. The optimal size is usually in
the range of 300-400 dimensions.

The similarity of terms is computed by taking the cosine of the corresponding
term vectors. A term vector is the row entity of that term in the matrix W. In
iSTART, the documents are sentences from texts and trainees’ explanations of those
sentences. These documents consist of terms, which are represented by term vectors;
hence, the document can be represented as a document vector which is computed
as the sum of the term vectors of its terms:

Di =

n∑
t=1

Tti (6.2)

where Di is the vector for the ith document D, Tti is the term vector for the term t
in Di, and n is number of terms in D. The similarity between two documents (i.e.,
the cosine between the two document vectors) is computed as
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Sim(D1, D2) =

∑d

i=1
(D1i × D2i)∑d

i=1
(D1i)2 ×

∑d

i=1
(D2i)2

(6.3)

Since the first versions of iSTART were intended to improve students’ compre-
hension of science texts, the LSA space was derived from a collection of science texts
[11]. This corpus consists of 7,765 documents containing 13,502 terms that were used
in two or more documents. By the time the first version of the LSA-based system
was created (referred to as LSA1 ), the original goal of identifying particular strate-
gies in an explanation had been replaced with the less ambitious one of rating the
explanation as belonging one of three levels [22]. The highest level of explanation,
called “global-focused,” integrates the sentence material in a deep understanding of
the text. A “local-focused” explanation explores the sentence in the context of its
immediate predecessors. Finally, a “sentence-focused” explanation goes little beyond
paraphrasing. To assess the level of an explanation, it is compared to four bench-
marks or bags of words. The rating is based on formulae that use weighted sums of
the four LSA cosines between the explanation and each of the four benchmarks.

The four benchmarks include: 1) the words in the title of the passage (“title”),
2) the words in the sentence (“current sentence”), 3) words that appear in prior
sentences in the text that are causally related to the sentence (“prior text”), and
4) words that did not appear in the text but were used by two or more subjects
who explained the sentence during experiments (“world knowledge”). While the title
and current sentence benchmarks are created automatically, the prior-text bench-
mark depends on a causal analysis of the conceptual structure of the text, relating
each sentence to previous sentences. This analysis requires both time and expertise.
Furthermore, the world-knowledge benchmark requires the collection of numerous
explanations of each text to be used. To evaluate the explanation of a sentence, the
explanation is compared to each benchmark, using the similarity function mentioned
above. The result is called a cosine value between the self-explanation (SE) and the
benchmark. For example, Sim(SE, Title) is called the title LSA cosine. Discriminant
Analysis was used to construct the formulae that categorized the overall quality as
being a level 1, 2, or 3 [23]. A score is calculated for each of the levels using these
formulae. The highest of the three scores determines the predicted level of the expla-
nation. For example, the overall quality score of the explanation is a 1 if the level-1
score is higher than both the level-2 and level-3 scores.

Further investigation showed that the LSA1 cosines and the factors used in
the WB-ASSO approach could be combined in a discriminant analysis that re-
sulted in better predictions of the values assigned to explanations by human experts.
However, the combined approach was less than satisfactory. Like WB-ASSO, LSA1
was not suitable for an iSTART program that would be readily adaptable to new
practice texts. Therefore, we experimented with formulae that would simplify the
data gathering requirements to develop LSA2. Instead of the four benchmarks men-
tioned above, we discarded the world knowledge benchmark entirely and replaced
the benchmark based on causal analysis of prior-text with one that simply consisted
of the words in the previous two sentences. We could do this because the texts
were taken from science textbooks whose argumentation tends to be highly linear
argumentation in science texts; consequently the two immediately prior sentences
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worked well as stand-ins for the set of causally related sentences. It should be noted
that this approach may not succeed so well with other genres, such as narrative or
history texts.

We tested several systems that combined the use of word-matching and LSA2
and the best one is LSA2/WB2-TT. In these combinatory systems, we combine
a weighted sum of the factors used in the fully automated word-based systems
and LSA2. These combinations allowed us to examine the benefits of using the
world knowledge benchmark (in LSA1) when LSA was combined with a fully auto-
mated word-based system and we found that world knowledge benchmark could be
dropped. Hence, only three benchmarks are used for LSA-based factors: 1) the words
in the title of the passage, 2) the words in the sentence, and 3) the words in the two
immediately prior sentences. From the word-based values we include 4) the number
of content words matched in the target sentence, 5) the number of content words
matched in the prior sentences, 6) the number of content words matched in the
subsequent sentences, and 7) the number of content words that were not matched in
4, 5, or 6. One further adjustment was made because we noticed that the LSA ap-
proach alone was better at predicting higher values correctly, while the word-based
approach was better at predicting lower values. Consequently, if the formulae of the
combined system predicted a score of 2 or 3, that value is used. However, if the sys-
tem predicted a 1, a formula from the word-based system is applied. Finally, level 0
was assigned to explanations that had negligible cosine matches with all three LSA
benchmarks.

6.2.3 Topic Models (TM) Feedback System

The Topic Models approach (TM; [10, 27]) applies a probabilistic model in finding
a relationship between terms and documents in terms of topics. A document is
conceived of as having been generated probabilistically from a number of topics and
each topic consists of number of terms, each given a probability of selection if that
topic is used. By using a TM matrix, we can estimate the probability that a certain
topic was used in the creation of a given document. If two documents are similar,
the estimates of the topics they probably contain should be similar. TM is very
similar to LSA, except that a term-document frequency matrix is factored into two
matrices instead of three.

{Xnormalized} = {W}{D} (6.4)

The dimension of matrix {W} is W x T , where W is the number of words in the
corpus and T is number of topics. The number of topics varies, more or less, with the
size of corpus; for example, a corpus of 8,000 documents may require only 50 topics
while a corpus of 40,000 documents could require about 300 topics. We use the TM
Toolbox [28] to generate the {W} or TM matrix, using the same science corpus as
we used for the LSA matrix. In this construction, the matrix {X} is for all terms in
the corpus, not just those appearing in two different documents. Although matrix
{X} is supposed to be normalized, the TM toolbox takes care of this normalization
and outputs for each topic, the topic probability, and a list of terms in this topic
along with their probabilities in descending order (shown in Table 6.1). This output
is easily transformed into the term-topic-probability matrix.
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Table 6.1. Results from Topic Models Toolbox: science corpus, 50 topics, seed 1,
500 iteration, default alpha and beta.

TOPIC 2 0.0201963151 TOPIC 38 0.0214418635
earth 0.1373291184 light 0.1238061875

sun 0.0883152826 red 0.0339683946
solar 0.0454833721 color 0.0307797075

atmosphere 0.0418036547 white 0.0262046347
moon 0.0362104843 green 0.0230159476

surface 0.0181062747 radiation 0.0230159476
planet 0.0166343877 wavelengths 0.0230159476
center 0.0148681234 blue 0.0184408748
bodies 0.0147209347 dark 0.0178863206

tides 0.0139849912 visible 0.0170544891
planets 0.0133962364 spectrum 0.0151135492

gravitational 0.0125131042 absorbed 0.0149749106
system 0.0111884060 colors 0.0148362720
appear 0.0110412173 rays 0.0116475849

mass 0.0100108964 eyes 0.0108157535
core 0.0083918207 yellow 0.0105384764

space 0.0083918207 absorption 0.0102611992
times 0.0079502547 eye 0.0095680064
orbit 0.0073614999 pigment 0.0092907293

... ...

To measure the similarity between documents based on TM, the Kullback Liebler
distance (KL-distance: [27]) between two documents is recommended, rather than
the cosine (which, nevertheless, can be used). A document can be represented by a
set of probabilities that this document could contain topic i using the following

Dt =

n∑
i=1

Tit (6.5)

where Dt is the probability of topic t in the document D, Tit is the probability of
topic t of the term i in the document D, and n is number of terms appearing in the
document D. The KL-distance between two documents (the similarity) is computed
as follows:

KL(D1, D2) =
1

2

T∑
t=1

D1tlog2(D1t/D2t) +
1

2

T∑
t=1

D2tlog2(D2t/D1t) (6.6)

Constructing a TM matrix involves making choices regarding a number of fac-
tors, such as the number of topics, the seed for random number generation, alpha,
beta, and the number of iterations. We have explored these factors and constructed
a number of TM matrices in an effort to optimize the resulting matrix; however, for
this preliminary evaluation, we use a TM matrix of 50 topics and a seed of 1.

The first TM-based system we tried was simply used in place of the LSA-based
factors in the combined-system. The three benchmarks are still the same but sim-
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ilarity is computed in two ways: (1) using cosines — comparing the explanation
and the benchmark using the cosine formula (Referred as TM1) and (2) using KL
distances — comparing the explanation and the benchmark using the KL distance
(Referred as TM2). As before, formulae are constructed using Discriminant Analysis
in order to categorize the quality of explanation as Levels 1, 2, or 3.

6.2.4 Metacognitive Statements

The feedback systems include a metacognitive filter that searches the trainees’ self-
explanations for patterns indicating a description of the trainee’s mental state such
as “now I see ...” or “I don’t understand this at all.” While the main purpose of
the filter is to enable the system to respond to such non-explanatory content more
appropriately, we also used the same filter to remove “noise” such as “What this
sentence is saying is ...” from the explanation before further processing. We have
examined the effectiveness of the systems with and without the filter and found
that they all perform slightly better with than without it. Thus, the systems in this
chapter all include the metacognitive filter.

The metacognitive filter also benefits the feedback system. When a metacogni-
tive pattern is recognized, its category is noted. If the self-explanation contains only
a metacognitive statement, the system will respond to a metacognitive category such
as understanding, not-understanding, confirmation, prediction, or boredom instead
of responding irrelevantly. Regular expressions are used to define multiple patterns
for each metacognitive category. If any pattern is matched in the self-explanation,
words matching the pattern are removed before evaluation. Examples of regular ex-
pression are shown below:

NOTUNDERSTAND :i(?:.?m|\W+am)(?:\W+\w+)?\W+\W+(?:(?:not
(?:\W+\w+)?\W+(?:sure|certain|clear))|
un(?:sure|certain|clear))

UNDERSTAND :now\W+i\W+(?:know|knew|underst(?:an|oo)d|
remember(?:ed)?|recall(?:ed)?|recogniz(?:ed)?|get|
got|see)

CONF :(?:so\W+)?i\W+(?:was|got\W+it)\W+(?:right|correct)

The first pattern will include “I’m not sure,” “I am uncertain”; second pattern
includes “Now I understand,” “Now I remembered”; and the last pattern includes
“So, I was right.” We originally constructed over 60 patterns. These were reduced
to 45 by running them on a large corpus of explanations and eliminating those that
failed to match and adding those that were missed.

6.3 iSTART: Evaluation of Feedback Systems

Two experiments were used to evaluate the performance of various systems of al-
gorithms that vary as a function of approach (word-based, LSA, combination of
word-based and LSA, and combination of word-based TM). In Experiment 1, we
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compare all eight systems in terms of the overall quality score by applying each sys-
tem to a database of self-explanation protocols produced by college students. The
protocols had been evaluated by a human expert on overall quality. In Experiment 2,
we investigated two systems using a database of explanations produced by middle-
school students. These protocols were scored to identify particular reading strategies.

6.3.1 Experiment 1

Self-Explanations. The self-explanations were collected from college students who
were provided with SERT training and then tested with two texts, Thunderstorm
and Coal. Both texts consisted of 20 sentences. The Thunderstorm text was self-
explained by 36 students and the Coal text was self-explained by 38 students. The
self-explanations were coded by an expert according to the following 4-point scale: 0
= vague or irrelevant; 1 = sentence-focused (restatement or paraphrase of the sen-
tence); 2 = local-focused (includes concepts from immediately previous sentences);
3 = global-focused (using prior knowledge).

The coding system was intended to reveal the extent to which the participant
elaborated the current sentence. Sentence-focused explanations do not provide any
new information beyond the current sentence. Local-focused explanations might
include an elaboration of a concept mentioned in the current or immediately prior
sentence, but there is no attempt to link the current sentence to the theme of the
text. Self-explanations that linked the sentence to the theme of the text with world
knowledge were coded as “global-focused.” Global-focused explanations tend to use
multiple reading strategies, and indicate the most active level of processing.

Results. Each of the eight systems produces an evaluation comparable to the
human ratings on a 4-point scale. Hence, we calculated the correlations and percent
agreement between the human and system evaluations (see Table 6.2). Additionally,
d primes (d′s) were computed for each strategy level as a measure of how well the
system could discriminate among the different levels of strategy use. The d′s were
computed from hit and false-alarm rates. A hit would occur if the system assigned
the same self-explanation to a category (e.g., global-focused) as the human judges.
A false-alarm would occur if the system assigned the self-explanation to a category
(e.g., global-focused) that was different from the human judges (i.e., it was not a
global-focused strategy). d′s are highest when hits are high and false-alarms are low.
In this context, d′s refer to the correspondence between the human and system in
standard deviation units. A d′ of 0 indicates chance performance, whereas greater
d′s indicate greater correspondence.

One thing to note in Table 6.3 is that there is general improvement according to
all of the measures going from left to right. As might be expected, the systems with
LSA fared far better than those without LSA, and the combined systems were the
most successful. The word-based systems tended to perform worse as the evaluation
level increased (from 0 to 3), but performed relatively well at identifying poor self-
explanations and paraphrases. All of the systems, however, identified the sentence-
focused (i.e., 2’s) explanations less successfully. However, the d′s for the sentence
focused explanations approach 1.0 when LSA is incorporated, particularly when LSA
is combined with the word-based algorithms.

Apart from better performance with LSA than without, the performance is also
more stable with LSA. Whereas the word-based systems did not perform equally
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Table 6.2. Measures of agreement for the Thunderstorm and Coal texts between
the eight system evaluations and the human ratings of the self-explanations in Ex-
periment 1.

Thunderstorm WB- WB-TT WB2-TT LSA1 LSA2 LSA2/ TM1 TM2
Text ASSO WB2-TT

Correlation 0.47 0.52 0.43 0.60 0.61 0.64 0.56 0.58
% Agreement 48% 50% 27% 55% 57% 62% 59% 60%
d’ of 0’s 2.21 2.26 0.97 2.13 2.19 2.21 1.49 2.37
d’ of 1’s 0.84 0.79 0.66 1.32 1.44 1.45 1.27 1.39
d’ of 2’s 0.23 0.36 -0.43 0.47 0.59 0.85 0.74 0.70
d’ of 3’s 1.38 1.52 1.41 1.46 1.48 1.65 1.51 1.41
Avg d’ 1.17 1.23 0.65 1.34 1.43 1.54 1.25 1.23

Coal WB- WB-TT WB2-TT LSA1 LSA2 LSA2/ TM1 TM2
Text ASSO WB2-TT

Correlation 0.51 0.47 0.41 0.66 0.67 0.71 0.63 0.61
% Agreement 41% 41% 29% 56% 57% 64% 61% 61%
d’ of 0’s 4.67 4.73 1.65 2.52 2.99 2.93 2.46 2.05
d’ of 1’s 1.06 0.89 0.96 1.21 1.29 1.50 1.38 1.52
d’ of 2’s 0.09 0.13 -0.37 0.45 0.49 0.94 0.74 0.61
d’ of 3’s -0.16 1.15 1.28 1.59 1.59 1.79 1.60 1.50
Avg d’ 1.42 1.73 0.88 1.44 1.59 1.79 1.54 1.42

well on the Thunderstorm and Coal texts, there is a high-level of agreement for
the LSA-based formulas (i.e., the results are virtually identical in the two tables).
This indicates that if we were to apply the word-based formulas to yet another text,
we have less assurance of finding the same performance, whereas the LSA-based
formulas are more likely to replicate across texts.

Figure 6.1.a provides a closer look at the data for the combined, automated
system, LSA2/WB2-TT and Figure 6.1.b for the TM2 system. As the d′s indi-
cated, both systems’ performance is quite good for explanations that were given
human ratings of 0, 1, or 3. Thus, the system successfully identifies poor explana-
tions, paraphrases, and very good explanations. It is less successful for identifying
explanations that consist of paraphrases in addition to some information from the
previous sentence or from world knowledge. As one might expect, some are classified
as paraphrases and some as global by the system. Although not perfect, we consider
this result a success because so few were misclassified as poor explanations.

6.3.2 Experiment 2

Self-Explanations. The self-explanations were collected from 45 middle-school stu-
dents (entering 8th and 9th grades) who were provided with iSTART training and
then tested with two texts, Thunderstorm and Coal. The texts were shortened ver-
sions of the texts used in Experiment 1, consisting of 13 and 12 sentences, respec-
tively. This chapter presents only the data from the Coal text.
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a) LSA2/WB2-TT — LSA with Word-based

b) TM2 — Topic Models with KL distance

Fig. 6.1. Correspondence between human evaluations of the self-explanations and
the combined system (LSA2/WB2-TT and TM2) for Thunderstorm text. Expla-
nations were evaluated by humans as vague or irrelevant (0), sentence-focused (1),
local-focused (2), or global (3).
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The self-explanations from this text were categorized as paraphrases, irrelevant
elaborations, text-based elaborations, or knowledge-based elaborations. Paraphrases
did not go beyond the meaning of the target sentence. Irrelevant elaborations may
have been related to the sentence superficially or tangentially, but were not related
to the overall meaning of the text and did not add to the meaning of the text.
Text-based elaborations included bridging inferences that made links to information
presented in the text prior to the sentence. Knowledge-based elaborations included
the use of prior knowledge to add meaning to the sentence. This latter category is
analogous to, but not the same as, the global-focused category in Experiment 1.

Results. In contrast to the human coding system used in Experiment 1, the cod-
ing system applied to this data was not intended to map directly onto the iSTART
evaluation systems. In this case, the codes are categorical and do not necessarily
translate to a 0-3 quality range. One important goal is to be able to assess (or
discriminate) the use of reading strategies and improve the system’s ability to ap-
propriately respond to the student. This is measured in terms of percent agreement
with human judgments of each reading strategy shown in Table 6.3.

Table 6.3. Percent agreement to expert ratings of the self-explanations to the Coal
text for the LSA2/WB2-TT and TM2 combined systems for each reading strategy
in Experiment 2.

Reading Strategy LSA2/WB2-TT TM2

Paraphrase Only 69.9 65.8
Irrelevant Elaboration Only 71.6 76.0
Current Sentence Elaboration Only 71.9 71.2
Knowledge-Based Elaboration Only 94.6 90.3
Paraphrase + Irrelevant Elaboration 79.7 76.6
Paraphrase + Current Sentence Elaboration 68.2 67.3
Paraphrase + Knowledge-Based Elaboration 84.6 81.2

The results show that both systems perform very well, with an average of 77%
for the LSA2/WB2-TT system and 75% for the TM2 system. This approaches our
criteria of 85% agreement between trained experts who score the self-explanations.
The automated systems could be thought of as ‘moderately trained scorers.’ These
results thus show that either of these systems would guide appropriate feedback to
the student user.

The score for each strategy score (shown in Table 6.3) can be coded either
0=present or 1=present. With the current coding scheme, only one strategy (out of
seven) will be given a value of 1. We are currently redefining the coding scheme so
that each reading strategy will have its own scores. For example, if the explanation
contains both paraphrase and current sentence elaboration, with the current coding
scheme, “Paraphrase + Current Sentence Elaboration” will be coded as a 1. On
the other hand, with the new coding scheme, we will have at least 3 variables:
(1) “Paraphrase” will be coded as a 1 for present, (2) “Elaboration” coded as a
1 for present, and (3) “Source of Elaboration” coded as a 2 for current sentence
elaboration.
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6.4 Discussion

The purpose of this chapter has been to investigate the ability of topic model algo-
rithms to identify the quality of explanations as well as specific reading strategies
in comparison to word-based and LSA-based algorithms. We found in Experiment
1 that TM systems performed comparably to the combined systems, though not
quite as well. In Experiment 2, we found that the TM models performed nearly
as well as the combined system in identifying specific strategies. These results thus
broaden the scope of NLP models that can be applied to problems such as ours —
providing real-time feedback in a tutoring environment. Indeed, the performance of
both systems in Experiment 2 was highly encouraging. These results indicate that
future versions of iSTART will be able to provide specific feedback about reading
comprehension strategy use with relatively high confidence.

Our future work with the TM systems will be to attempt to combine the TM
algorithms with the LSA and word-based algorithms. To venture toward that goal,
we need to first identify the strengths of the TM algorithms so that the combined
algorithm capitalizes on the strengths of the TM — much as we did when we created
the combined word-based and LSA-based system. This will require that we analyze
a greater variety of protocols, including self-explanations from a greater variety of
texts and text genres. We are in the process of completing that work.

These NLP theories and their effectiveness have played important roles in the
development of iSTART. For iSTART to effectively teach reading strategies, it must
be able to deliver valid feedback on the quality of the self-explanations that a student
types during practice. In order to deliver feedback, the system must understand,
at least to some extent, what a student is saying in his or her self-explanation. Of
course, automating natural language understanding has been extremely challenging,
especially for non-restrictive content domains like self-explaining a text in which a
student might say one of any number of things. Algorithms such as LSA opened up
a horizon of possibilities to systems such as iSTART — in essence LSA provided a
‘simple’ algorithm that allowed tutoring systems to provide appropriate feedback to
students (see [14]). The results presented in this chapter show that the topic model
similarly offers a wealth of possibilities in natural language processing.
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