

Sri AdichunchanagiriShikshana Trust (R)

SJB Institute of Technology

(Affiliated to Visvesvaraya Technological University, Belagavi& Approved by AICTE, New Delhi)

Department of CIVIL ENGINEERING

Course Title: Urban Trans	Course Code: 18CV745			
Semester: VII	Academic Year:2021 – 22	Total hrs.: 40	Hrs./Week: 03	
Int. Exam Hrs: 1hr 30min Internal Evaluation Max. Marks: 40				
Ext. Exam Hrs.: 03hr	Exam Hrs.: 03hr Ext. Exam Max. Marks: 60			
Lesson Plan Author / Desig	gn. / Dept.: Nisarga P, Assista	nt Professor		

Course Objectives:

- 1. Understand and apply basic concepts and methods of urban transportation planning.
- Apprise about the methods of designing, conducting and administering surveys to provide the data required for transportation planning.
- 3. Understand the process of developing an organized mathematical modelling approach to solve select urban transportation planning problem.
- 4. Excel in use of various types of models used for travel forecasting, prediction of future travel patterns

Course Outcomes:

- CO1. Identify urban transport problems and conduct necessary surveys to provide the data required for transportation planning.
- CO2. Develop travel demand models to determine future trip generation rate, trip distribution and model split for specific types of land use development.
- CO3. Identify urban transport corridors and validate the developed model for long term transportation plan.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C.1	3											1
C.2	2	2				1						1
C.3	2	2				1						1
AVG	2.3	2				1						1

Syllabus

Course Title: URBAN TRANSPORT PLANNING

Module: I		
Urban transport planning: Urbanization, urban class groups, transportation problems and		
identification, impacts of transportation, urban transport system planning process, modeling	8	
techniques in planning. Urban mass transportation systems: urban transit problems, travel		
demand, types of transit systems, public, private, para-transit transport, mass and rapid		
transit systems, BRTS and Metro rails, capacity, merits and comparison of systems,	*	
coordination, types of coordination.		
Blooms Taxonomy: L1 – Remembering, L2 – Understanding, L3 – Applying		

Course code: 18CV745

Module: II	Teaching Hours
Data Collection and Inventories: Collection of data - Organization of surveys and	
Analysis, Study Area, Zoning, Types and Sources of Data, Road Side Interviews, Home	
Interview Surveys, Commercial Vehicle Surveys, Sampling Techniques, Expansion	
Factors, Accuracy Checks, Use of Secondary Sources, Economic data - Income -	
Population – Employment – Vehicle Owner Ship	
Blooms Taxonomy: L1 – Remembering, L2 – Understanding, L3 – Applying	• ;

Module: III	Teaching Hours
Trip Generation & Distribution: UTPS Approach, Trip Generation Analysis: Zonal	
Models, Category Analysis, Household Models, Trip Attraction models, Commercial Trip	
Rates; Trip Distribution by Growth Factor Methods. Problems on above	
Blooms Taxonomy: L3 – Applying, L4 – Analysing	

Module: IV	Teaching Hours
Trip Distribution : Gravity Models, Opportunity Models, Time Function Iteration Models.	
Travel demand modeling: gravity model, opportunity models, Desire line diagram. Modal	
split analysis. Problems on above	8
Blooms Taxonomy: L2 – Understanding, L3 – Applying, L4 – Analysing, L5:	

Module: V	Teaching Hours
Traffic Assignment: Diversion Curves; Basic Elements of Transport Networks, Coding,	
Route Properties, Path Building Criteria, Skimming Tree, All-or-Nothing Assignment,	
Capacity Restraint Techniques, Reallocation of Assigned Volumes, Equilibrium	
Assignment. Introduction to land use planning models, land use and transportation interaction.	8
Blooms Taxonomy: L2 – Understanding, L3 – Applying, L4 – Analysing, L5:	

Module Wise Plan

MODULE	HOUR NO. Subject Topics						
	Urban transport planning						
	1	Urbanization: Urbanization & Urban Class Group					
1	2	Transportation Problem, Identification & Impact					
	3	Transport Planning Urban: Transport System Planning					
	4	Modelling Techniques in Planning	CO1				
	5	Mass Transport System: Unban Transit Problems & Travel Demand	CO1				
	6	Rapid Transit System, BRTS	CO1				
	7	Metro Rails- Capacity, merits	CO1				
	8	Comparison of System & Co-ordination	CO1				
	Data Collection and Inventories						
	9	Data Collection: Study area, Zoning	CO1				
	10	Types and source of data	CO1				
2	11	Road side Interview Survey	CO1				
	12	Home Interview Survey, Commercial Vehicle Survey	CO1				
	13	Registration Plate Number, Tags on Vehicle Survey	CO1				
	14	Sampling Technique Expansion factor	CO1				
	15	Use of Secondary data : Economic-Income-Population-	CO1				
	16	Employment-Vehicle owner ship	CO1				
3	Trip Generation & Distribution						
	17	Trip Generation: UTPS approach	CO2				
	18	Trip generation Analysis: Factors affecting trip generation	CO2				

	19	Zonal Models	CO2				
	20	Category analysis	CO2				
	21	Trip Distribution: Growth Factor Methods: Uniform Growth Factor	CO2				
	22	Average Growth Factor	CO2				
	23	Fractor method	CO2				
	24	Furness Method .	CO2				
	Trip Distribution						
	25	Trip Distribution: Synthetic models	CO2				
	26	Gravity Model	CO2				
	27	Opportunity Models	CO2				
	28	Travel Demand Modelling: Time Function Iteration Models	CO2				
4	29	Gravity Models	CO2				
	30	Opportunity Models	CO2				
	31	Desire line Diagram	CO2				
	32	Modal Split Analysis	CO3				
	Trip Assignment						
	33	Trip Assignment: Diversion curves, Basic elements of transport networks	CO3				
	34	Coding & Route properties	CO3				
_	35	Path Building Criteria: Skimming tree	CO3				
5	36	All or nothing assignment	CO3				
	37	Capacity Restraint Technique	CO3				
	38	Equilibrium assignment	CO3				
	39	Land Use Planning models: Introduction	CO3				
	40	Land use and Transportation interaction	CO3				

Text/ Reference Books:

- 1. Kadiyali.L.R., 'Traffic Engineering and Transportation Planning', Khanna Publishers, New Delhi
- 2. Hutchinson, B.G, 'Introduction to Urban System Planning', McGraw Hill.
- 3. Khisty C.J., 'Transportation Engineering An Introduction' Prentice Hall.
- 4. Papacostas, 'Fundamentals of Transportation Planning', Tata McGraw Hill.
- 5. Bruton M.J., 'Introduction to Transportation Planning', Hutchinson of London.

Faculty In-Charge

Head of the Department

Head of Department

Department of Civil Engineering

S J B Instit te of Technology

Uttarahalli Road, Kangeti Bengalia ** (. 190)