
Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 1

MODULE -1

OVERVIEW OF DIGITAL DESIGN WITH VERILOG HDL

1.1 : Objectives

➢ Understand the importance and trends of HDL.

➢ Understand the design flow and design methodologies for digital design.

➢ Explain the difference between modules and module instances in Verilog.

➢ Describe four levels of abstraction and define stimulus block and design block.

1.2 Evolution of Computer-Aided Digital Design

In early days digital circuits were designed with vacuum tubes and transistor. Then integrated circuits chips

were invented which consists of logic gates embed on them. As technology advances from SSI (Small Scale

Integration), MSI (Medium Scale Integration), LSI (Large Scale Integration), designers could implement

thousands of gates on a single chip. So the testing of circuits and designing became complicated hence

Electronic Design Automation (EDA) techniques to verify functionality of building blocks were one.

The advances in semiconductor technology continue to increase the power and complexity of digital

systems with the invent of VLSI (very Large Scale Integration) with more than 10000 transistors. Because of

the complexity of circuit, breadboard design became impossible and gave rise to computer aided techniques to

design and verify VLSI digital circuits. These computer aided programs and tools allow us to design, do

automatic placement and routing and Abe to develop hierarchical based development and hence prototype

development by downloading of programmable chips (like - ASIC, FPGA, CPLD) before fabrication.

1.3 Emergence of HDLs

In the field of digital design, the complexity in designing a circuit gave birth to standard languages to describe

digital circuits (ie. Hardware Description Languages - HDL). HDL is a Computer Aided design (CAD) tool

for the modern design and synthesis of digital systems. HDLs were been used to model hardware elements

very concurrently. Verilog HDL and VHDL are most popular HDLs.

In initial days of HDL, designing and verification were done using tool but synthesis (ie translation of

RTL to schematic circuit) used to be done manually which become tediously as technology advances. Later

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 2

tool is automated to generate the schematic of RTL developed.

Digital circuits are described at Registers Transfer Level (RTL) by using HDL. Then logic synthesis

tool will generate details of gates and interconnection to implement circuits. This synthesized result can be

used for fabrication by having placement and routing details. Verify functionality using simulation. HDLs are

used for system-level design - simulation of system boards, interconnect buses, FPGAs and PALs. Verilog

HDL is IEEE standard - IEEE 1364-2001.

Note: RTL - designer has to specify how the data flows between registers and how the design

processes the data.

1.4 Typical Design Flow

A typical design flow (HDL flow) for designing VLSI IC circuits is as shown in figure 1.1

Figure: 1.1: Typical design flow

The design flow in any design, specifications are written first. Specifications describe abstractly the

functionality, interface, and overall architecture of the digital circuit to be designed. At this point, the architects

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 3

do not need to think about how they will implement this circuit. A behavioral description is then created to

analyze the design in terms of functionality, performance, and compliance to standards, and other high-level

issues. Behavioral descriptions are often written with HDLs.

New EDA tools have emerged to simulate behavioral descriptions of circuits. These tools combine the

powerful concepts from HDLs and object oriented languages such as C++. These tools can be used instead of

writing behavioral descriptions in Verilog HDL. The behavioral description is manually converted to an RTL

description in an HDL. The designer has to describe the data flow that will implement the desired digital

circuit. From this point onward, the design process is done with the assistance of EDA tools.

Logic synthesis tools convert the RTL description to a gate-level net list. Logic synthesis tools ensure

that the gate-level net list meets timing, area, and power specifications.

A gate-level net list is a description of the circuit in terms of gates and connections between them. The

gate-level net list is input to an Automatic Place and Route tool, which creates a layout.

The layout is verified and then fabricated on a chip.

Thus, most digital design activity is concentrated on manually optimizing the RTL description of the

circuit. After the RTL description is frozen, EDA tools are available to assist the designer in further

processes. Designing at the RTL level has shrunk the design cycle times from years to a few months. It is also

possible to do many design iterations in a short period of time.

Behavioral synthesis tools have begun to emerge recently. These tools can create RTL descriptions

from a behavioral or algorithmic description of the circuit. As these tools mature, digital circuit design will

become similar to high-level computer programming. Designers will simply implement the algorithm in an

HDL at a very abstract level. EDA tools will help the designer convert the behavioral description to a final IC

chip.

1.5 Importance of HDLs

HDLs have many advantages that help in developing large digital circuits reaching the optimized circuit

design.

• Designs can be described at a very abstract level by use of HDLs. Designers can write their RTL

description without choosing a specific fabrication technology. Logic synthesis tools can automatically

convert the design to any fabrication technology. If a new technology emerges, designers do not need

to redesign their circuit. They simply input the RTL description to the logic synthesis tool and create a

new gate-level netlist, using the new fabrication technology. The logic synthesis tool will optimize the

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 4

circuit in area and timing for the new technology.

• By describing designs in HDLs, functional verification of the design can be done early in the design

cycle. Since designers work at the RTL level, they can optimize and modify the RTL description until

it meets the desired functionality. Most design bugs are eliminated at this point. This cuts down

design cycle time significantly because the probability of hitting a functional bug at a later time in

the gate-level netlist or physical layout is minimized.

• Designing with HDLs is similar to computer programming. A textual description with comments is

an easier way to develop and debug circuits. This also provides a concise representation of the design,

compared to gate-level schematics. Gate-level schematics are almost incomprehensible for very

complex designs.

• Verilog HDL is a general-purpose hardware description language that is easy to learn and easy to

use. It is similar in syntax to the C programming language. Designers with C programming

experience will find it easy to learn Verilog HDL.

• Verilog HDL allows different levels of abstraction to be mixed in the same model. Thus, a designer

can define a hardware model in terms of switches, gates, RTL, or behavioral code. Also, a designer

needs to learn only one language for stimulus and hierarchical design. Most popular logic

synthesis tools support Verilog HDL. This makes it the language of choice for designers.

• All fabrication vendors provide Verilog HDL libraries for post-logic synthesis simulation.

Thus, designing a chip in Verilog HDL allows the widest choice of vendors.

• The Programming Language Interface (PLI) is a powerful feature that allows the user to write custom C

code to interact with the internal data structures of Verilog. Designers can customize a Verilog HDL

simulator to their needs with the PLI.

1.6 Trends in HDLs

Increase in speed and complexity go digital circuits will complicate the designer job, but EDA tools make the

job easy for designer. Designer has to do high level abstraction designing and need to take care of

functionality of the design and EDA tools take care of implementation, and can achieve a almost optimum

design.

Digital circuits are designed in HDL at an RTL level, so that logic synthesis tools can create gate level net

lists. Behavioral synthesis allowed designers to directly design in terms of algorithms and the behavior of the

circuit EDA tool is then used to translate and optimize at each phase of design. Verilog HDL is also used widely

for verification. Formal verification uses mathematical techniques to verify the correctness of Verilog HDL

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 5

descriptions and to establish equivalency between RTL and gate level net lists. Assertion checking is done to

check the transition and important parts of a design.

1.7 Design Methodologies

There are two basic types of digital design methodologies: a top-down design methodology and a bottom-up

design methodology.

1.7.1 Top-down design methodology:

This designing approach allows early testing, easy change of different technologies, a well structures system

design and offers many other advantages.

Figure: 1.2: Top-down Design Methodology

In this method, top-level block is defined and sub-blocks necessary to build the top-level block are

identified. We further subdivide, sub-blocks until cells cannot be further divided, we call these cells as leaf

cells is as shown in figure 1.2.

1.7.2 Bottom-up design methodology:

We first identify the available building blocks and try to build bigger cells out of these, and continue process

until we reach the top-level block of the design is as shown in figure 1.3

Most of the time, the combination of these two design methodologies are used to design. Logic designers

decide the structure of design and break up the functionality into blocks and sub blocks. And designer will

design a optimized circuit for leaf cell and using these will design top level design.

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 6

Figure 1-3. Bottom-up Design Methodology

A hierarchical modeling concept is illustrated with an example of 4-bit Ripple Carry Counter.

The ripple carry counter shown in Figure 1.4 is made up of negative edge-triggered toggle flip-flops (T_FF).

Each of the T_FFs can be made up from negative edge-triggered D-flip-flops (D_FF) and inverters

(assuming q_bar output is not available on the D_FF), as shown in Figure 1.5.

Figure 1.4: Ripple Carry Counter

Figure 1-5: T-flip-flop

Thus, the ripple carry counter is built in a hierarchical fashion by using building blocks. The diagram for the

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 7

design hierarchy is shown in Figure 1.6.

Figure 1.6. Design Hierarchy

In a top-down design methodology, we first have to specify the functionality of the ripple carry

counter, which is the top-level block. Then, we implement the counter with T_FFs. We build the T_FFs

from the D_FF and an additional inverter gate. Thus, we break bigger blocks into smaller building sub-

blocks until we decide that we cannot break up the blocks any further.

A bottom-up methodology flows in the opposite direction. We combine small building blocks and

build bigger blocks; e.g., we could build D_FF from and/ or gates, or we could build a custom D_FF

from transistors. Thus, the bottom-up flow meets the top-down flow at the level of the D_FF.

1.8 Modules

Verilog provides the concept of a module. A module is the basic building block in Verilog. A module can be an

element or a collection of lower-level design blocks. Typically, elements are grouped into modules to provide

common functionality that is used at many places in the design. A module provides the necessary

functionality to the higher-level block through its port interface (inputs and outputs), but hides the internal

implementation. This allows the designer to modify module internals without affecting the rest of the design.

In Verilog, a module is declared by the keyword module. A corresponding keyword endmodule must appear

at the end of the module definition.

module <module_name> (<module_terminal_list>);

...
<module internals>
...
... endmodule

Specifically, the T-flipflop could be defined as a module as follows:
module T_FF (q, clock, reset);

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 8

.

.
<functionality of T-flipflop>
.
.
endmodule

Verilog is both a behavioral and a structural language. Internals of each module can be defined at four levels

of abstraction, depending on the needs of the design. The levels are defined below.

• Behavioral or algorithmic level: This is the highest level of abstraction provided by Verilog HDL. A

module can be implemented in terms of the desired design algorithm without concern for the hardware

implementation details. Designing at this level is very similar to C programming.

• Dataflow level: At this level, the module is designed by specifying the data flow. The designer is aware of

how data flows between hardware registers and how the data is processed in the design.

• Gate level: The module is implemented in terms of logic gates and interconnections between these gates.

Design at this level is similar to describing a design in terms of a gate-level logic diagram.

• Switch level: This is the lowest level of abstraction provided by Verilog. A module can be implemented in

terms of switches, storage nodes, and the interconnections between them. Design at this level requires

knowledge of switch-level implementation details.

Verilog allows the designer to mix and match all four levels of abstractions in a design.

1.9 Module Instances:

A module provides a template from which you can create actual objects. When a module is invoked, Verilog

creates a unique object from the template. Each object has its own name, variables, parameters, and I/O

interface. The process of creating objects from a module template is called instantiation, and the objects are

called instances.

In Example of 4 bit ripple carry counter, the top-level block creates four instances from the T-flipflop (T_FF)

template. Each T_FF instantiates a D_FF and an inverter gate. Each instance must be given a unique name.

Note that // is used to denote single-line comments.

Example of Module Instantiation

// Define the top-level module called ripple carry

// counter. It instantiates 4 T-flipflops. Interconnections areshown in figure 1.4 :4-bit Ripple Carry Counter.

module

ripple_carry_counter(q, clk, reset);

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 9

output [3:0] q; //I/O signals and vector declarations

input clk, reset; //I/O signals will be explained later.

//Four instances of the module T_FF are created. Each has a unique name.

//Each instance is passed a set of signals. Notice, that each instance is a copy of the module T_FF.

T_FF tff0(q[0],clk, reset);

T_FF tff1(q[1],q[0], reset);

T_FF tff2(q[2],q[1], reset);

T_FF tff3(q[3],q[2], reset);

endmodule

// Define the module T_FF. It instantiates a D-flipflop.

//We assumed that module D-flipflop is defined elsewhere in the design.

//Refer to Figure 1-5 for interconnections.

module T_FF(q, clk, reset);

output q;

input clk, reset;

wire d;

D_FF dff0(q, d, clk, reset); // Instantiate D_FF. Call it dff0.

not n1(d, q); // not gate is a Verilog primitive.

endmodule

In Verilog, it is illegal to nest modules. One module definition cannot contain another module definition

within the module and endmodule statements.

Example below shows an illegal module nesting where the module T_FF is defined inside the module

definition of the ripple carry counter.

Example for Illegal Module Nesting

// Define the top-level module called ripple carry counter.

// It is illegal to define the module T_FF inside this module.

module ripple_carry_counter(q, clk, reset);

output [3:0] q;

input clk, reset;

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 10

module T_FF(q, clock, reset);// ILLEGAL MODULE NESTING

...

<module T_FF internals>

...

endmodule // END OF ILLEGAL MODULE NESTING

endmodule

1.20 Components of a Simulation

Once a design block is completed, it must be tested. The functionality of the design block can be tested by

applying stimulus and checking results. We call such a block the stimulus block. It is good practice to keep the

stimulus and design blocks separate. The stimulus block can be written in Verilog. A separate language is not

required to describe stimulus. The stimulus block is also commonly called a test bench. Different test benches

can be used to thoroughly test the design block.

Two styles of stimulus application are possible. In the first style, the stimulus block instantiates the design

block and directly drives the signals in the design block. In Figure 1-7, the stimulus block becomes the top-level

block. It manipulates signals clk and reset, and it checks and displays output signal q.

Figure 1.7. Stimulus Block Instantiates Design Block

The second style of applying stimulus is to instantiate both the stimulus and design blocks in a top- level

dummy module. The stimulus block interacts with the design block only through the interface. This style of

applying stimulus is shown in Figure 1-8. The stimulus module drives the signals d_clk and d_reset, which are

connected to the signals clk and reset in the design block.It also checks and displays signal c_q, which is

connected to the signal q in the design block. The function of top-level block is simply to instantiate the design

and stimulus blocks. Either stimulus style can be used effectively.

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 11

Figure 1.8. Stimulus Block and Design Block Instantiated in a dummy toplevel module

1.21 Example

Consider the example of simulation of a ripple carry counter. We will define the design block and the stimulus

block. We will apply stimulus to the design block and monitor the outputs.

1.21.1 Design Block

Consider a top-down design methodology. First, we write the Verilog description of the top-level design block

which is the ripple carry counter.

Example of Ripple Carry Counter Top Block

module ripple_carry_counter(q, clk, reset);

output [3:0] q;

input clk, reset;

//4 instances of the module T_FF are created.

T_FF tff0(q[0],clk, reset);

T_FF tff1(q[1],q[0], reset);

T_FF tff2(q[2],q[1], reset);

T_FF tff3(q[3],q[2], reset);

endmodule

In the above module, four instances of the module T_FF (T-flipflop) are used. Therefore, we must now

define the internals of the module T_FF.

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 12

Example for Flipflop T_FF

module T_FF(q, clk, reset);

output q;

input clk, reset;

wire d;

D_FF dff0(q, d, clk, reset);

not n1(d, q); // not is a Verilog-provided primitive. case sensitive

endmodule

Since T_FF instantiates D_FF, we must now define (Example 1-5) the internals of module D_FF. We assume

asynchronous reset for the D_FFF.

Example for Flipflop D_F

// module D_FF with synchronous reset

module D_FF(q, d, clk, reset);

output q;

input d, clk, reset;

reg q;

// Lots of new constructs. Ignore the functionality of the

// constructs.

// Concentrate on how the design block is built in a top-down fashion. always

@(posedge reset or negedge clk)

if (reset)

q <= 1'b0;

else

q <= d;

endmodule

All modules have been defined down to the lowest-level leaf cells in the design methodology. The design

block is now complete.

1.21.2 Stimulus Block

We need to write the stimulus block to check if the ripple carry counter design is functioning correctly.

In this case, we must control the signals clk and reset so that the regular function of the ripple carry counter

and the asynchronous reset mechanism are both tested. Consider the waveforms shown in Figure 1-9 to test

the design. Waveforms for clk, reset, and 4-bit output q are shown. The cycle time for clk is 10 units; the

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 13

reset signal stays up from time 0 to 15 and then goes up again from time 195 to 205. Output q counts from 0

to 15.

Figure 1.9: Stimulus and Output Waveforms

Example 1-6 Stimulus Block

module stimulus;

reg clk;

reg reset;

wire[3:0] q;

// instantiate the design block

ripple_carry_counter r1(q, clk, reset);

// Control the clk signal that drives the design block. Cycle time = 10

initial

clk = 1'b0; //set clk to 0 always

#5 clk = ~clk; //toggle clk every 5 time units

// Control the reset signal that drives the design block

// reset is asserted from 0 to 20 and from 200 to 220.

initial

begin

reset = 1'b1;

#15 reset = 1'b0;

#180 reset = 1'b1;

#10 reset = 1'b0;

#20 $finish; //terminate the simulation

end

// Monitor the outputs

initial

$monitor($time, " Output q = %d", q);

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 14

endmodule

Once the stimulus block is completed, we are ready to run the simulation and verify the functional correctness

of the design block.

The output obtained when stimulus and design blocks are simulated is shown in Example 1-7.

Example for an Output of the Simulation

0 Output q = 0

20 Output q = 1

30 Output q = 2

40 Output q = 3

50 Output q = 4

60 Output q = 5

70 Output q = 6

80 Output q = 7

90 Output q = 8

100 Output q = 9

110 Output q = 10

120 Output q = 11

130 Output q = 12

140 Output q = 13

150 Output q = 14

160 Output q = 15

170 Output q = 0

180 Output q = 1

190 Output q = 2

195 Output q = 0

210 Output q = 1

220 Output q = 2

Verilog HDL [18EC56]

Dept. of ECE,SJBIT Page 15

1.22 : Outcomes

After completion of the module the students are able to:

➢ Understand the importance, trends of HDL and design flow and design methodologies for digital design.

➢ Differentiate the modules and module instances in Verilog with an example.

➢ Define stimulus block and design block

1.23 : Recommended questions

1. Discuss in brief about the evolution of CAD tools and HDLs used in digital system design.

2. Explain the typical VLSI IC design flow with the help of flow chart.

3. Discuss the trends in HDLs?

4. Why Verilog HDL has evolved as popular HDL in digital circuit design?

5. Explain the advantages of using HDLs over traditional schematic based design.

6. Describe the digital system design using hierarchical design methodologies with an example.

7. Apply the top-down design methodology to demonstrate the design of ripple carry counter.

8. Apply the bottom-up design methodology to demonstrate the design of 4-bit ripple carry adder.

9. Write Verilog HDL program to describe the 4-bit ripple carry counter.

10. Define Module and an Instance. Describe 4 different description styles of Verilog HDL.

11. Differentiate simulation and synthesis. What is stimulus?

12. Write test bench to test the 4-bit ripple carry counter.

13. Write a test bench to test the 4-bit ripple carry adder.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 16

MODULE-2

BASIC CONCEPTS AND MODULES AND PORTS

2.1 : Objectives

➢ Understand the lexical conventions and define the logic value set and data type.

➢ Identify useful system tasks and basic compiler directives.

➢ Identify and understanding of components of a Verilog module definition.

➢ Understand the port connection rules and connection to external signals by ordered list and by name.

2.2 Lexical conventions

The basic lexical conventions used by Verilog HDL are similar to those in the C programming

language. Verilog contains a stream of tokens. Tokens can be comments, delimiters, numbers, strings,

identifiers, and keywords. Verilog HDL is a case-sensitive language. All keywords are in lowercase.

2.2.1 Whitespace

Blank spaces (\b), tabs (\t) and newlines (\n) comprise the whitespace. Whitespace is ignored by Verilog

except when it separates tokens. Whitespace is not ignored in strings.

2.2.2 Comments

Comments can be inserted in the code for readability and documentation. There are two ways to write

comments. A one-line comment starts with "//". Verilog skips from that point to the end of line. A multiple-

line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be nested. However, one-line

comments can be embedded in multiple-line comments.

a = b && c; // This is a one-line comment

/* This is a multiple line comment

*/

/* This is /* an illegal */ comment */

/* This is //a legal comment */

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 17

2.2.3 Operators

Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. Binary operators

appear between two operands. Ternary operators have two separate operators that separate three operands.

a = ~ b; // ~ is a unary operator. b is the operand

a = b && c; // && is a binary operator. b and c are operands

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands

2.2.4 Number Specification

There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as <size> '<base format> <number>.

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are

decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The number is specified as

consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a

particular base. Uppercase letters are legal for number specification.

4'b1111 // This is a 4-bit binary number

12'habc // This is a 12-bit hexadecimal number

16'd255 // This is a 16-bit decimal number

Unsized numbers

Numbers that are specified without a <base format> specification are decimal numbers by default. Numbers

that are written without a <size> specification have a default number of bits that is simulator- and machine-

specific (must be at least 32).

23456 // This is a 32-bit decimal number by default

'hc3 // This is a 32-bit hexadecimal number

'o21 // This is a 32-bit octal number

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 18

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very important for

modeling real circuits. An unknown value is denoted by an x. A high impedance value is denoted by z.

12'h13x // This is a 12-bit hex number; 4 least significant bits unknown

6'hx // This is a 6-bit hex number

32'bz // This is a 32-bit high impedance number

An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base and one bit

for a number in the binary base. If the most significant bit of a number is 0, x, or z, the number is

automatically extended to fill the most significant bits, respectively, with 0, x, or z.

This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is also zero

extended.

Negative numbers

Negative numbers can be specified by putting a minus sign before the size for a constant number. Size

constants are always positive. It is illegal to have a minus sign between <base format> and <number>. An

optional signed specifier can be added for signed arithmetic.

6'd3 // 8-bit negative number stored as 2's complement of 3

-6'sd3 // Used for performing signed integer math

4'd-2 // Illegal specification

Underscore characters and question marks

An underscore character "_" is allowed anywhere in a number except the first character. Underscore characters

are allowed only to improve readability of numbers and are ignored by Verilog. A question mark "?" is the

Verilog HDL alternative for z in the context of numbers. The ? is used to enhance readability in the casex and

casez statements.

2.2.5 Strings

A string is a sequence of characters that are enclosed by double quotes. The restriction on a string is that it

must be contained on a single line, that is, without a carriage return. It cannot be on multiple lines. Strings are

treated as a sequence of one-byte ASCII values.

"Hello Verilog World" // is a string

"a / b" // is a string

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 19

2.2.6 Identifiers and Keywords

Keywords are special identifiers reserved to define the language constructs. Keywords are in lowercase.

Identifiers are names given to objects so that they can be referenced in the design. Identifiers are made up of

alphanumeric characters, the underscore (_), or the dollar sign ($). Identifiers are case sensitive. Identifiers

start with an alphabetic character or an underscore. They cannot start with a digit or a $ sign (The $ sign as the

first character is reserved for system tasks)

reg value; // reg is a keyword; value is an identifier

input clk; // input is a keyword, clk is an identifier

2.2.7 Escaped Identifiers

Escaped identifiers begin with the backslash (\) character and end with whitespace (space, tab, or newline).

All characters between backslash and whitespace are processed literally. Any printable ASCII character can be

included in escaped identifiers.

Neither the backslash nor the terminating whitespace is considered to be a part of the identifier.

\a+b-c

my_name

2.3 Data Types

This section discusses the data types used in Verilog.

2.3.1 Value Set

Verilog supports four values and eight strengths to model the functionality of real hardware. The four

value levels are listed in Table 2-1.

Table 2-1. Value Levels

In addition to logic values, strength levels are often used to resolve conflicts between drivers of different

strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in Table2-2.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 20

Table 2-2. Strength Levels

If two signals of unequal strengths are driven on a wire, the stronger signal prevails. For example, if two

signals of strength strong1 and weak0 contend, the result is resolved as a strong1. If two signals of equal

strengths are driven on a wire, the result is unknown. If two signals of strength strong1 and strong0 conflict,

the result is an x.

2.3.2 Nets

Nets represent connections between hardware elements. Just as in real circuits, nets have values continuously

driven on them by the outputs of devices that they are connected to. In Figure 2.1 net a is connected to the

output of and gate g1. Net a will continuously assume the value computed at the output of gate g1, which is b

& c.

Figure 2.1. Example of Nets

Nets are declared primarily with the keyword wire. Nets are one-bit values by default unless they are declared

explicitly as vectors. The terms wire and net are often used interchangeably. The default value of a net is z

(except the trireg net, which defaults to x). Nets get the output value of their drivers.

If a net has no driver, it gets the value z.

wire a; // Declare net a for the above circuit

wire b,c; // Declare two wires b,c for the above circuit

wire d = 1'b0; // Net d is fixed to logic value 0 at declaration.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 21

2.3.3 Registers

Registers represent data storage elements. Registers retain value until another value is placed onto them. In

Verilog, the term register merely means a variable that can hold a value. Unlike a net, a register does not need

a driver. Verilog registers do not need a clock as hardware registers do. Values of registers can be changed

anytime in a simulation by assigning a new value to the register.

Register data types are commonly declared by the keyword reg.

Example 3-1 Example of Register

reg reset; // declare a variable reset that can hold its value

initial // keyword to specify the initial value of reg.

reset = 1'b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1'b0; // after 100 time units reset is deasserted.

end

Example 2-2 Signed Register Declaration

reg signed [63:0] m; // 64 bit signed value

integer i; // 32 bit signed value

2.3.4 Vectors

Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not specified, the default

is scalar (1-bit).

wire a; // scalar net variable, default

wire [7:0] bus; // 8-bit bus

wire [31:0] busA,busB,busC; // 3 buses of 32-bit width.

reg clock; // scalar register, default

reg [0:40] virtual_addr; // Vector register, virtual address 41 bits wide

Vectors can be declared at [high# : low#] or [low# : high#], but the left number in the squared brackets is always

the most significant bit of the vector. In the example shown above, bit 0 is the most significant bit of vector

virtual_addr.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 22

Vector Part Select

For the vector declarations shown above, it is possible to address bits or parts of vectors.

busA[7] // bit # 7 of vector busA

bus[2:0] // Three least significant bits of vector bus,

// using bus[0:2] is illegal because the significant bit shouldalways be on the left of a range specification

virtual_addr[0:1] // Two most significant bits of vector virtual_addr

Variable Vector Part Select

Another ability provided in Verilog HDL is to have variable part selects of a vector. This allows part selects to

be put in for loops to select various parts of the vector. There are two special part-select operators:

[<starting_bit>+:width] - part-select increments from starting bit.

[<starting_bit>-:width] - part-select decrements from starting bit.

The starting bit of the part select can be varied, but the width has to be constant. The following example

shows the use of variable vector part select:

reg [255:0] data1; //Little endian notation

reg [0:255] data2; //Big endian notation

reg [7:0] byte;

//Using a variable part select, one can choose parts

byte = data1[31-:8]; //starting bit = 31, width =8 => data[31:24]

byte = data1[24+:8]; //starting bit = 24, width =8 => data[31:24]

byte = data2[31-:8]; //starting bit = 31, width =8 => data[24:31]

byte = data2[24+:8]; //starting bit = 24, width =8 => data[24:31]

//The starting bit can also be a variable. The width has to be constant.

//Therefore, one can use the variable part select

//in a loop to select all bytes of the vector.

for (j=0; j<=31; j=j+1)

byte = data1[(j*8)+:8]; //Sequence is [7:0], [15:8]... [255:248]

//Can initialize a part of the vector

data1[(byteNum*8)+:8] = 8'b0; //If byteNum = 1, clear 8 bits [15:8]

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 23

2.3.5 Integer , Real, and Time Register Data Types

Integer, real, and time register data types are supported in Verilog.

Integer

An integer is a general purpose register data type used for manipulating quantities. Integers are declared

by the keyword integer. Although it is possible to use reg as a general-purpose variable, it is more convenient

to declare an integer variable for purposes such as counting. The default width for an integer is the host-

machine word size, which is implementation-specific but is at least 32 bits. Registers declared as data type reg

store values as unsigned quantities, whereas integers store values as signed quantities.

integer counter; // general purpose variable used as a counter.

initial

counter = -1; // A negative one is stored in the counter

Real

Real number constants and real register data types are declared with the keyword real. They can be specified in

decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 106). Real numbers cannot have a

range declaration, and their default value is 0. When a real value is assigned to an integer, the real number is

rounded off to the nearest integer.

real delta; // Define a real variable called delta initial

begin

delta = 4e10; // delta is assigned in scientific notation

delta = 2.13; // delta is assigned a value 2.13 end

integer i; // Define an integer i

initial

i = delta; // i gets the value 2 (rounded value of 2.13)

Time

Verilog simulation is done with respect to simulation time. A special time register data type is used in Verilog

to store simulation time. A time variable is declared with the keyword time. The width for time register data

types is implementation-specific but is at least 64 bits.The system function $time is invoked to get the

current simulation time.

time save_sim_time; // Define a time variable save_sim_time

initial

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 24

save_sim_time = $time; // Save the current simulation time

Arrays

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types. Multi-

dimensional arrays can also be declared with any number of dimensions. Arrays of nets can also be used to

connect ports of generated instances. Each element of the array can be used in the same fashion as a scalar or

vector net. Arrays are accessed by <array_name>[<subscript>]. For multi- dimensional arrays, indexes need to

be provided for each dimension.

integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables time

chk_point[1:100]; // Array of 100 time checkpoint variables reg [4:0]

port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide

integer matrix[4:0][0:255]; // Two dimensional array of integers

reg [63:0] array_4d [15:0][7:0][7:0][255:0]; //Four dimensional array

wire [7:0] w_array2 [5:0]; // Declare an array of 8 bit vector wire

wire w_array1[7:0][5:0]; // Declare an array of single bit wires.

It is important not to confuse arrays with net or register vectors. A vector is a single element that is n-bits

wide. On the other hand, arrays are multiple elements that are 1-bit or n-bits wide.

Examples of assignments to elements of arrays discussed above are shown below:

count[5] = 0; // Reset 5th element of array of count variables

chk_point[100] = 0; // Reset 100th time check point value

port_id[3] = 0; // Reset 3rd element (a 5-bit value) of port_id array.

matrix[1][0] = 33559; // Set value of element indexed by [1][0] to 33559

port_id = 0; // Illegal syntax - Attempt to write the entire array

matrix [1] = 0; // Illegal syntax - Attempt to write [1][0]..[1][255]

2.3.6 Memories

In digital simulation, one often needs to model register files, RAMs, and ROMs. Memories are modeled in

Verilog simply as a one-dimensional array of registers. Each element of the array is known as an element or

word and is addressed by a single array index. Each word can be one or more bits. It is important to

differentiate between n 1-bit registers and one n-bit register. A particular word in memory is obtained by using

the address as a memory array subscript.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 25

reg mem1bit[0:1023]; // Memory mem1bit with 1K 1-bit words

reg [7:0] membyte[0:1023]; // Memory membyte with 1K 8-bit words(bytes)

membyte[511] // Fetches 1 byte word whose address is 511.

2.3.7 Parameters

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be used as

variables. Parameter values for each module instance can be overridden individually at compile time. This

allows the module instances to be customized. This aspect is discussed later. Parameter types and sizes can also

be defined.

parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Constant defines width of cache line

parameter signed [15:0] WIDTH; // Fixed sign and range for parameter WIDTH

2.3.8 Strings

Strings can be stored in reg. The width of the register variables must be large enough to hold the string. Each

character in the string takes up 8 bits (1 byte). If the width of the register is greater than the size of the string,

Verilog fills bits to the left of the string with zeros. If the register width is smaller than the string width, Verilog

truncates the leftmost bits of the string. It is always safe to declare a string that is slightly wider than necessary.

reg [8*18:1] string_value; // Declare a variable that is 18 bytes wide initial

string_value = "Hello Verilog World"; // String can be stored in variable

Special characters serve a special purpose in displaying strings, such as newline, tabs, and displaying argument

values. Special characters can be displayed in strings only when they are preceded by escape characters, as

shown in Table 2-3

Table 2-3. Special Characters

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 26

2.4 System Tasks and Compiler Directives

In this section, we introduce two special concepts used in Verilog: system tasks and compiler directives.

2.4.1 System Tasks

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the form

$<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping, and finishing

are done by system tasks.

Displaying information

$display is the main system task for displaying values of variables or strings or expressions. This is one of the

most useful tasks in Verilog.

Usage: $display(p1, p2, p3,. , pn);

p1, p2, p3,..., pn can be quoted strings or variables or expressions. The format of $display is very similar to

printf in C. A $display inserts a newline at the end of the string by default. A $display without any arguments

produces a newline.

Monitoring information

Verilog provides a mechanism to monitor a signal when its value changes. This facility is provided by the

$monitor task.

Usage: $monitor(p1,p2,p3,. ,pn);

The parameters p1, p2, ... , pn can be variables, signal names, or quoted strings. A format similar to the

$display task is used in the $monitor task. $monitor continuously monitors the values of the variables or

signals specified in the parameter list and displays all parameters in the list whenever the value of any one

variable or signal changes. Unlike $display, $monitor needs to be invoked only once. Only one monitoring list

can be active at a time.

If there is more than one $monitor statement in your simulation, the last $monitor statement will be the active

statement. The earlier $monitor statements will be overridden.

Two tasks are used to switch monitoring on and off.

Usage:

$monitoron;

$monitoroff;

The $monitoron tasks enables monitoring, and the $monitoroff task disables monitoring during a simulation.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 27

Example of Monitor Statement

//Monitor time and value of the signals clock and reset

//Clock toggles every 5 time units and reset goes down at 10 time units

initial

begin

$monitor ($time," Value of signals clock = %b reset = %b", clock,reset);

end

Partial output of the monitor statement:

-- 0 Value of signals clock = 0 reset = 1

-- 5 Value of signals clock = 1 reset = 1

-- 10 Value of signals clock = 0 reset = 0

Stopping and finishing in a simulation

The task $stop is provided to stop during a simulation.

Usage: $stop;

The $stop task puts the simulation in an interactive mode. The designer can then debug the design from the

interactive mode. The $stop task is used whenever the designer wants to suspend the simulation and

examine the values of signals in the design.

The $finish task terminates the simulation.

Usage: $finish;

Examples of $stop and $finish are given below

Example of Stop and Finish Tasks

// Stop at time 100 in the simulation and examine the results

// Finish the simulation at time 1000.

initial

begin

clock = 0;

reset = 1;

#100 $stop; // This will suspend the simulation at time = 100

#900 $finish; // This will terminate the simulation at time = 1000

end

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 28

2.4.2 Compiler Directives

Compiler directives are provided in Verilog. All compiler directives are defined by using the

`<keyword> construct. The two most useful compiler directives are

`define

The `define directive is used to define text macros in Verilog .The Verilog compiler substitutes the text of the

macro wherever it encounters a `<macro_name>. This is similar to the #define construct in C. The defined

constants or text macros are used in the Verilog code by preceding them with a ` (back tick).

Example for `define Directive

//define a text macro that defines default word size

//Used as 'WORD_SIZE in the code

'define WORD_SIZE 32

//define an alias. A $stop will be substituted wherever 'S appears

'define S $stop;

//define a frequently used text string

'define WORD_REG reg [31:0]

`include

The `include directive allows you to include entire contents of a Verilog source file in another Verilog file

during compilation. This works similarly to the #include in the C programming language.

Example for `include Directive

// Include the file header.v, which contains declarations in themain verilog file design.v.

'include header.v

...

...

<Verilog code in file design.v>

...

...

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 29

2.5 Modules

Module is a basic building block in Verilog. A module definition always begins with the keyword module.

The module name, port list, port declarations, and optional parameters must come first in a module

definition. Port list and port declarations are present only if the module has any ports to interact

with the external environment.

The five components within a module are: variable declarations, dataflow statements, instantiation of

lower modules, behavioral blocks, and tasks or functions. These components can be in any order and at any

place in the module definition.

The endmodule statement must always come last in a module definition. All components except

module, module name, and endmodule are optional and can be mixed and matched as per design needs.

Verilog allows multiple modules to be defined in a single file. The modules can be defined in any order in the

file.

Figure 2.2.:Components of a Verilog Module

Consider a simple example of an SR latch, as shown in Figure 2.3

Figure 2-3. SR Latch

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 30

The SR latch has S and R as the input ports and Q and Qbar as the output ports. The SR latch and its stimulus

can be modeled as shown in Example.

Example of Components of SR Latch

// This example illustrates the different components of a module

// Module name and port list

// SR_latch module

module SR_latch(Q, Qbar, Sbar, Rbar);

//Port declarations

output Q, Qbar;

input Sbar, Rbar;

// Instantiate lower-level modules

// In this case, instantiate Verilog primitive nand gates

// Note how the wires are connected in a cross-coupled fashion. nand n1(Q, Sbar, Qbar);

nand n2(Qbar, Rbar, Q);

// endmodule statement

endmodule

// Module name and port list

// Stimulus module

module Top;

// Declarations of wire, reg, and other variables

reg set, reset;

// Instantiate lower-level modules

// In this case, instantiate SR_latch Feed inverted set and reset signals to the SR latch

SR_latch m1(q, qbar, ~set, ~reset);

// Behavioral block, initial

initial

begin

$monitor($time, " set = %b, reset= %b, q= %b\n",set,reset,q);

set = 0; reset = 0;

#5 reset = 1;

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 31

#5 reset = 0;

#5 set = 1;

end

// endmodule statement

endmodule

From the above example following characteristics are noticed:

• In the SR latch definition above ,all components described in Figure 2-2 need not be present in a module.

We do not find variable declarations, dataflow (assign) statements, or behavioral blocks (always or initial).

• However, the stimulus block for the SR latch contains module name, wire, reg, and variable

declarations, instantiation of lower level modules, behavioral block (initial), and endmodule

statement but does not contain port list, port declarations, and data flow (assign) statements.

• Thus, all parts except module, module name, and endmodule are optional and can be mixed and

matched as per design needs.

2.6 Ports

Ports provide the interface by which a module can communicate with its environment. For example, the

input/output pins of an IC chip are its ports. The environment can interact with the module only through its

ports. The internals of the module are not visible to the environment. This provides a very powerful

flexibility to the designer. The internals of the module can be changed without affecting the environment as

long as the interface is not modified. Ports are also referred to as terminals.

2.6.1 List of Ports

A module definition contains an optional list of ports. If the module does not exchange any signals with

the environment, there are no ports in the list. Consider a 4-bit full adder that is instantiated inside a top-

level module Top. The diagram for the input/output ports is shown in Figure 2-4.

Figure 2-4. I/O Ports for Top and Full Adder

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 32

From the above figure, the module Top is a top-level module. The module fulladd4 is instantiated

below Top. The module fulladd4 takes input on ports a, b, and c_in and produces an output on ports

sum and c_out. Thus, module fulladd4 performs an addition for its environment. The module Top is a top-

level module in the simulation and does not need to pass signals to or receive signals from the

environment. Thus, it does not have a list of ports. The module names and port lists for both module

declarations in Verilog are as shown in below example.

Example of List of Ports

module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports

module Top; // No list of ports, top-level module in simulation

2.6.2 Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared as follows:

input -Input port

output- Output port

inout- Bidirectional port

Each port in the port list is defined as input, output, or inout, based on the direction of the port signal. Thus,

for the example of the the port declarations will be as shown in example below.

Example for Port Declarations

module fulladd4(sum, c_out, a, b, c_in);

//Begin port declarations section

output[3:0] sum;

output c_cout;

input [3:0] a, b;

input c_in;

//End port declarations section

...

<module internals>

... endmodule

All port declarations are implicitly declared as wire in Verilog. Thus, if a port is intended to be a wire, it is

sufficient to declare it as output, input, or inout. Input or inout ports are normally declared as wires.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 33

However, if output ports hold their value, they must be declared as reg. Ports of the type input and inout

cannot be declared as reg because reg variables store values and input ports should not store values but

simply reflect the changes in the external signals they are connected to.

Alternate syntax for port declaration is shown in below example. This syntax avoids the duplication of

naming the ports in both the module definition statement and the module port list definitions. If a port is

declared but no data type is specified, then, under specific circumstances, the signal will default to a wire

data type.

Example for ANSI C Style Port Declaration Syntax

module fulladd4(output reg [3:0] sum,

output reg c_out,

input [3:0] a, b, //wire by default

input c_in); //wire by default

...

<module internals>

...

endmodule

2.6.3 Port Connection Rules

A port as consisting of two units, one unit that is internal to the module and another that is external to the

module. The internal and external units are connected. There are rules governing port connections when

modules are instantiated within other modules. The Verilog simulator complains if any port connection rules

are violated. These rules are summarized in Figure2.5

Figure 2-5. Port Connection Rules

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 34

Inputs

Internally, input ports must always be of the type net. Externally, the inputs can be connected to a variable

which is a reg or a net.

Outputs

Internally, outputs ports can be of the type reg or net. Externally, outputs must always be connected to a net.

They cannot be connected to a reg.

Inouts

Internally, inout ports must always be of the type net. Externally, inout ports must always be

connected to a net.

Width matching

It is legal to connect internal and external items of different sizes when making intermodule port

connections. However, a warning is typically issued that the widths do not match.

Unconnected ports

Verilog allows ports to remain unconnected. For example, certain output ports might be simply for debugging,

and you might not be interested in connecting them to the external signals. You can let a port remain

unconnected by instantiating a module as shown below

fulladd4 fa0 (SUM, , A, B, C_IN); // Output port c_out is unconnected

Example of illegal port connection

To illustrate port connection rules, assume that the module fulladd4 Example is instantiated in the

stimulus block Top. Below example shows an illegal port connection

Example 2-14 Illegal Port Connection

module Top;

//Declare connection variables reg

[3:0]A,B;

reg C_IN;

reg [3:0] SUM;

wire C_OUT;

//Instantiate fulladd4, call it fa0

fulladd4 fa0(SUM, C_OUT, A, B, C_IN);

//Illegal connection because output port sum in module fulladd4

//is connected to a register variable SUM in module Top.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 35

.

.

<stimulus>

.

. endmodule

This problem is rectified if the variable SUM is declared as a net (wire).

2.7 Connecting Ports to External Signals

There are two methods of making connections between signals specified in the module instantiation and the

ports in a module definition. These two methods cannot be mixed. These methods are

Connecting by ordered list

The signals to be connected must appear in the module instantiation in the same order as the ports in the port list

in the module definition. Consider the module fulladd4.To connect signals in module Top by ordered list, the

Verilog code is shown in below example. Notice that the external signals SUM, C_OUT, A, B, and C_IN appear

in exactly the same order as the ports sum, c_out, a, b, and c_in in module definition of fulladd4.

Example 2-15 Connection by Ordered List

module Top;

//Declare connection variables

reg [3:0]A,B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

//Instantiate fulladd4, call it fa_ordered.

//Signals are connected to ports in order (by position)

fulladd4 fa_ordered (SUM, C_OUT, A, B, C_IN);

...

<stimulus>

... endmodule

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 36

module fulladd4(sum, c_out, a, b, c_in);

output[3:0] sum; output c_cout; input [3:0] a, b; input c_in;

...

<module internals>

... endmodule

Connecting ports by name

For large designs where modules have, say, 50 ports, remembering the order of the ports in the

module definition is impractical and error-prone. Verilog provides the capability to connect external signals

to ports by the port names, rather than by position. We could connect the ports by name in above example

by instantiating the module fulladd4, as follows. Note that you can specify the port connections in any

order as long as the port name in the module definition correctly matches the external signal.

// Instantiate module fa_byname and connect signals to ports by name

fulladd4 fa_byname(.c_out(C_OUT), .sum(SUM), .b(B), .c_in(C_IN), .a(A),);

Note that only those ports that are to be connected to external signals must be specified in port connection

by name. Unconnected ports can be dropped. For example, if the port c_out were to be kept unconnected,

the instantiation of fulladd4 would look as follows. The port c_out is simply dropped from the port list.

// Instantiate module fa_byname and connect signals to ports by

name fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), .a(A),);

Another advantage of connecting ports by name is that as long as the port name is not changed, the order of

ports in the port list of a module can be rearranged without changing the port connections in module

instantiations.

2.8 Hierarchical Names

Every module instance, signal, or variable is defined with an identifier. A particular identifier has a unique

place in the design hierarchy. Hierarchical name referencing allows us to denote every identifier in the

design hierarchy with a unique name. A hierarchical name is a list of identifiers separated by dots (".") for

each level of hierarchy. Thus, any identifier can be addressed from any place in the design by simply

specifying the complete hierarchical name of that identifier. The top-level module is called the root module

because it is not instantiated anywhere. It is the starting point.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 37

To assign a unique name to an identifier, start from the top-level module and trace the path along the design

hierarchy to the desired identifier.

Consider the simulation of SR latch Example. The design hierarchy is shown in Figure 2.6.

Figure 2-6. Design Hierarchy for SR Latch Simulation

For this simulation, stimulus is the top-level module. Since the top-level module is not instantiated

anywhere, it is called the root module. The identifiers defined in this module are q, qbar, set, and reset.

The root module instantiates m1, which is a module of type SR_latch. The module m1 instantiates

nand gates n1 and n2. Q, Qbar, S, and R are port signals in instance m1. Hierarchical name referencing

assigns a unique name to each identifier. To assign hierarchical names, use the module name for root

module and instance names for all module instances below the root module.

Example

stimulus

stimulus.q

stimulus.qbar

timulus.set

stimulus.reset

stimulus.m1

stimulus.m1.Q

stimulus.m1.Qbar

stimulus m1.S

stimulus.m1.R

stimulus.n1

stimulus.n2

Each identifier in the design is uniquely specified by its hierarchical path name. To display the level of

hierarchy, use the special character %m in the $display task.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 38

2.9 : Outcomes

After completion of the module the students are able to:

➢ Understand the lexical conventions and different data types of verilog.

➢ Identify useful system tasks such as $display and $monitor and basic compiler directives.

➢ Understand different components of a Verilog module definition

➢ Understand the port connection rules and connection to external signals by ordered list and by name

2.10 : Recommended questions

1. Describe the lexical conventions used in Verilog HDL with examples.

2. Explain different data types of Verilog HDL with examples

3. What are system tasks and compiler directives?

4. What are the uses of $monitor, $display and $finish system tasks? Explain with examples.

5. Explain `define and `include compiler directives.

6. Explain the components of Verilog HDL module.

7. What are the components of SR latch? Write Verilog HDL module of SR latch.

8. Explain the different types of ports supported by Verilog HDL with examples.

9. Explain the port connection rules of Verilog HDL with examples.

10. How hierarchical names helps in addressing any identifier used in the design from any other level of

hierarchy? Explain with examples.

11. What are the basic components of a module? Which components are mandatory?

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 39

MODULE -3

GATE LEVEL MODELING AND DATA FLOW MODELING

3.1 : Objectives

 Identify logic gate primitives provided in Verilog.

 Understand instantiation of gates, gate symbols, and truth tables for and/or and buf/not type gates.

 Understand how to construct a Verilog description from the logic diagram of the circuit.

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays

in the gate-level design

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the

implicit continuous assignment statement.

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous

assignment statements and Define expressions, operators, and operands.

 Use dataflow constructs to model practical digital circuits in Verilog

3.2 Gate Types

A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates as predefined

primitives. These primitives are instantiated like modules except that they are predefined in Verilog and do not

need a module definition. All logic circuits can be designed by using basic gates. There are two classes of basic

gates: and/or gates and buf/not gates.

3.2.1 And/Or Gates

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate terminals is

an output and the other terminals are inputs. The output of a gate is evaluated as soon as one of the inputs

changes. The and/or gates available in Verilog are: and, or, xor, nand, nor, xnor.

The corresponding logic symbols for these gates are shown in Figure 3-1. Consider the gates with two inputs.

The output terminal is denoted by out. Input terminals are denoted by i1 and i2.

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are shown

below. In Example 3-1, for all instances, OUT is connected to the output out, and IN1 and IN2 are

connected to the two inputs i1 and i2 of the gate primitives. Note that the instance name does not need to be

specified for primitives. This lets the designer instantiate hundreds of gates without giving them a name.

More than two inputs can be specified in a gate instantiation. Gates with more than two inputs are

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 40

instantiated by simply adding more input ports in the gate instantiation. Verilog automatically instantiates

the appropriate gate.

Figure 3-1. Basic Gates

wire OUT, IN1, IN2;

Example 3-1 Gate Instantiation of And/Or Gates

// basic gate instantiations.

and a1(OUT, IN1, IN2);

nand na1(OUT, IN1, IN2);

or or1(OUT, IN1, IN2);

nor nor1(OUT, IN1, IN2);

xor x1(OUT, IN1, IN2);

xnor nx1(OUT, IN1, IN2);

// More than two inputs; 3 input nand gate

nand na1_3inp(OUT, IN1, IN2, IN3);

// gate instantiation without instance name

and (OUT, IN1, IN2); // legal gate instantiation

The truth tables for these gates define how outputs for the gates are computed from the inputs. Truth tables are

defined assuming two inputs. The truth tables for these gates are shown in Table 3-1. Outputs of gates with

more than two inputs are computed by applying the truth table iteratively.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 41

Table 3-1. Truth Tables for And/Or

3.2.2 Buf/Not Gates

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in the port list is connected

to the input. Other terminals are connected to the outputs. We will discuss gates that have one input and one

output. Two basic buf/not gate primitives are provided in Verilog.

The symbols for these logic gates are shown in Figure 3-2.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 42

Figure 3-2. Buf/not Gates

These gates are instantiated in Verilog as shown Example 3-2. Notice that these gates can have multiple

outputs but exactly one input, which is the last terminal in the port list.

Example 3-2 Gate Instantiations of Buf/Not Gates

// basic gate instantiations.

buf b1(OUT1, IN);

not n1(OUT1, IN);

// More than two outputs

buf b1_2out(OUT1, OUT2, IN);

// gate instantiation without instance name

not (OUT1, IN); // legal gate instantiation

Truth tables for gates with one input and one output are shown in Table 3-2.

Table 3-2. Truth Tables for Buf/Not Gates

Bufif/notif

Gates with an additional control signal on buf and not gates are also available.

bufif1 notif1

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 43

bufif0 notif0

These gates propagate only if their control signal is asserted. They propagate z if their control signal is

deasserted. Symbols for bufif/notif are shown in Figure 3-3.

Figure 3-3. Bufif/notif Gates

The truth tables for these gates are shown in Table 3-3

Table 3-3. Truth Tables for Bufif/Notif Gates

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 44

These gates are used when a signal is to be driven only when the control signal is asserted. Such a situation is

applicable when multiple drivers drive the signal. These drivers are designed to drive the signal on mutually

exclusive control signals. Example 3-3 shows examples of instantiation of bufif and notif gates.

Example 3-3 Gate Instantiations of Bufif/Notif Gates

//Instantiation of bufif gates.

bufif1 b1 (out, in, ctrl);

bufif0 b0 (out, in, ctrl);

//Instantiation of notif gates

notif1 n1 (out, in, ctrl);

notif0 n0 (out, in, ctrl);

3.2.3 Array of Instances

There are many situations when repetitive instances are required. These instances differ from each other only by

the index of the vector to which they are connected. To simplify specification of such instances, Verilog HDL

allows an array of primitive instances to be defined. Example3-4 shows an example of an array of instances.

Example 3-4 Simple Array of Primitive Instances

wire [7:0] OUT, IN1, IN2;

// basic gate instantiations.

nand n_gate[7:0](OUT, IN1, IN2);

// This is equivalent to the following 8 instantiations

nand n_gate0(OUT[0], IN1[0], IN2[0]);

nand n_gate1(OUT[1], IN1[1], IN2[1]);

nand n_gate2(OUT[2], IN1[2], IN2[2]);

nand n_gate3(OUT[3], IN1[3], IN2[3]);

nand n_gate4(OUT[4], IN1[4], IN2[4]);

nand n_gate5(OUT[5], IN1[5], IN2[5]);

nand n_gate6(OUT[6], IN1[6], IN2[6]);

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 45

nand n_gate7(OUT[7], IN1[7], IN2[7]);

3.1.4 Examples

Having understood the various types of gates available in Verilog, consider the real examples that illustrates

design of gate-level digital circuits.

Gate-level multiplexer

Consider the design of 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful purpose in logic

design. They can connect two or more sources to a single destination. They can also be used to implement

Boolean functions. We will assume for this example that signals s1 and s0 do not get the value x or z. The I/O

diagram and the truth table for the multiplexer are shown in Figure 3-4. The I/O diagram will be useful in

setting up the port list for the multiplexer.

Figure 3-4. 4-to-1 Multiplexer

Implement the logic for the multiplexer using basic logic gates. The logic diagram for the multiplexer is shown

in Figure 3-5.

Figure 3-5. Logic Diagram for Multiplexer

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 46

The logic diagram has a one-to-one correspondence with the Verilog description. The Verilog description for

the multiplexer is shown in Example 3-5. Two intermediate nets, s0n and s1n, are created; they are

complements of input signals s1 and s0. Internal nets y0, y1, y2, y3 are also required. Note that instance names

are not specified for primitive gates, not, and, and or. Instance names are optional for Verilog primitives but are

mandatory for instances of user-defined modules.

Example 3-5 Verilog Description of Multiplexer

// Module 4-to-1 multiplexer. Port list is taken exactly from

// the I/O diagram.

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

// Internal wire declarations

wire s1n, s0n;

wire y0, y1, y2, y3;

// Gate instantiations

// Create s1n and s0n signals.

not (s1n, s1);

not (s0n, s0);

// 3-input and gates instantiated

and (y0, i0, s1n, s0n);

and (y1, i1, s1n, s0);

and (y2, i2, s1, s0n);

and (y3, i3, s1, s0);

// 4-input or gate instantiated

or (out, y0, y1, y2, y3);

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 47

endmodule

This multiplexer can be tested with the stimulus shown in Example 3-6. The stimulus checks that each

combination of select signals connects the appropriate input to the output. The signal OUTPUT is displayed

one time unit after it changes. System task $monitor could also be used to display the signals when they

change values.

Example 3-6 Stimulus for Multiplexer

// Define the stimulus module (no ports)

module stimulus;

// Declare variables to be connected

// to inputs

reg IN0, IN1, IN2, IN3;

reg S1, S0;

// Declare output wire

wire OUTPUT;

// Instantiate the multiplexer

mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0);

// Stimulate the inputs

// Define the stimulus module (no ports)

initial

begin

// set input lines

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0;

#1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3);

// choose IN0

S1 = 0; S0 = 0;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN1

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 48

S1 = 0; S0 = 1;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN2

S1 = 1; S0 = 0;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN3

S1 = 1; S0 = 1;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

end

endmodule

The output of the simulation is shown below. Each combination of the select signals is tested.

IN0= 1, IN1= 0, IN2= 1, IN3= 0

S1 = 0, S0 = 0, OUTPUT = 1

S1 = 0, S0 = 1, OUTPUT = 0

S1 = 1, S0 = 0, OUTPUT = 1

S1 = 1, S0 = 1, OUTPUT = 0

4-bit Ripple Carry Full Adder

Consider the design of a 4-bit full adder whose port list was defined in, List of Ports. We use primitive

logic gates, and we apply stimulus to the 4-bit full adder to check functionality. For the sake of simplicity,

we will implement a ripple carry adder. The basic building block is a 1-bit full adder. The mathematical

equations for a 1-bit full adder are shown below.

sum = (a b cin)

cout = (a b) + cin (a b)

The logic diagram for a 1-bit full adder is shown in Figure 3-6.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 49

Figure 3-6. 1-bit Full Adder

This logic diagram for the 1-bit full adder is converted to a Verilog description, shown in Example 3-7.

Example 3-7 Verilog Description for 1-bit Full Adder

// Define a 1-bit full adder

module fulladd(sum, c_out, a, b, c_in);

// I/O port declarations

output sum, c_out;

input a, b, c_in;

// Internal nets

wire s1, c1, c2;

// Instantiate logic gate primitives

xor (s1, a, b);

and (c1, a, b);

xor (sum, s1, c_in);

and (c2, s1, c_in);

xor (c_out, c2, c1);

endmodule

A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown in Figure 3-7. Notice that

fa0, fa1, fa2, and fa3 are instances of the module fulladd (1-bit full adder).

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 50

Figure 3-7. 4-bit Ripple Carry Full Adder

This structure can be translated to Verilog as shown in Example 3-8. Note that the port names used in a 1-bit

full adder and a 4-bit full adder are the same but they represent different elements. The element sum in a 1-bit

adder is a scalar quantity and the element sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps

names local to a module.

Names are not visible outside the module unless hierarchical name referencing is used. Also note that instance

names must be specified when defined modules are instantiated, but when instantiating Verilog primitives, the

instance names are optional.

Example 3-8 Verilog Description for 4-bit Ripple Carry Full Adder

// Define a 4-bit full adder

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Internal nets

wire c1, c2, c3;

// Instantiate four 1-bit full adders.

fulladd fa0(sum[0], c1, a[0], b[0], c_in);

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 51

fulladd fa1(sum[1], c2, a[1], b[1], c1);

fulladd fa2(sum[2], c3, a[2], b[2], c2);

fulladd fa3(sum[3], c_out, a[3], b[3], c3);

endmodule

Finally, the design must be checked by applying stimulus, as shown in Example 3-9. The module stimulus

stimulates the 4-bit full adder by applying a few input combinations and monitors the results.

Example 3-9 Stimulus for 4-bit Ripple Carry Full Adder

// Define the stimulus (top level module)

module stimulus;

// Set up variables

reg [3:0] A, B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

// Instantiate the 4-bit full adder. call it FA1_4

fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN);

// Set up the monitoring for the signal values

initial

begin

$monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM= %b\n",

A, B, C_IN, C_OUT, SUM);

end

// Stimulate inputs

initial

begin

A = 4'd0; B = 4'd0; C_IN = 1'b0;

#5 A = 4'd3; B = 4'd4;

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 52

#5 A = 4'd2; B = 4'd5;

#5 A = 4'd9; B = 4'd9;

#5 A = 4'd10; B = 4'd15;

#5 A = 4'd10; B = 4'd5; C_IN = 1'b1;

end

endmodule

The output of the simulation is shown below.

0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 0000

5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 0111

10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 0111

15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 0010

20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 1001

25 A= 1010, B=0101, C_IN= 1,--- C_OUT= 1, SUM= 0000

3.3 Gate Delays

Until now, circuits are described without any delays (i.e., zero delay). In real circuits, logic gates have delays

associated with them. Gate delays allow the Verilog user to specify delays through the logic circuits. Pin-to-pin

delays can also be specified in Verilog.

3.3.1 Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate.

Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 53

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value (z) from another

value. If the value changes to x, the minimum of the three delays is considered.

Three types of delay specifications are allowed. If only one delay is specified, this value is used for all

transitions. If two delays are specified, they refer to the rise and fall delay values. The turn-off delay is the

minimum of the two delays. If all three delays are specified, they refer to rise, fall, and turn-off delay values. If

no delays are specified, the default value is zero. Examples of delay specification are shown in Example 3-10.

Example 3-10 Types of Delay Specification

// Delay of delay_time for all transitions

and #(delay_time) a1(out, i1, i2);

// Rise and Fall Delay Specification.

and #(rise_val, fall_val) a2(out, i1, i2);

// Rise, Fall, and Turn-off Delay Specification

bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control);

Examples of delay specification are shown below.

and #(5) a1(out, i1, i2); //Delay of 5 for all transitions

and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off= 5

3.3.2 Min/Typ/Max Values

Verilog provides an additional level of control for each type of delay mentioned above. For each type of

delay?rise, fall, and turn-off?three values, min, typ, and max, can be specified. Any one value can be chosen at

the start of the simulation. Min/typ/max values are used to model devices whose delays vary within a minimum

and maximum range because of the IC fabrication process variations.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 54

Min value

The min value is the minimum delay value that the designer expects the gate to have.

Typ val

The typ value is the typical delay value that the designer expects the gate to have.

Max value

The max value is the maximum delay value that the designer expects the gate to have. Min, typ, or max values

can be chosen at Verilog run time. Method of choosing a min/typ/max value may vary for different simulators

or operating systems. (For Verilog- XL , the values are chosen by specifying options +maxdelays, +typdelays,

and +mindelays at run time. If no option is specified, the typical delay value is the default).

This allows the designers the flexibility of building three delay values for each transition into their design. The

designer can experiment with delay values without modifying the design.

Examples of min, typ, and max value specification for Verilog-XL are shown in Example3-11.

Example 3-11 Min, Max, and Typical Delay Values

// One delay

// if +mindelays, delay= 4

// if +typdelays, delay= 5

// if +maxdelays, delay= 6

and #(4:5:6) a1(out, i1, i2);

// Two delays

// if +mindelays, rise= 3, fall= 5, turn-off = min(3,5)

// if +typdelays, rise= 4, fall= 6, turn-off = min(4,6)

// if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7)

and #(3:4:5, 5:6:7) a2(out, i1, i2);

// Three delays

// if +mindelays, rise= 2 fall= 3 turn-off = 4

// if +typdelays, rise= 3 fall= 4 turn-off = 5

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 55

// if +maxdelays, rise= 4 fall= 5 turn-off = 6

and #(2:3:4, 3:4:5, 4:5:6) a3(out, i1,i2);

Examples of invoking the Verilog-XL simulator with the command-line options are shown below. Assume that

the module with delays is declared in the file test.v.

//invoke simulation with maximum delay

> verilog test.v +maxdelays

//invoke simulation with minimum delay

> verilog test.v +mindelays

//invoke simulation with typical delay

> verilog test.v +typdelays

3.3.3 Delay Example

Let us consider a simple example to illustrate the use of gate delays to model timing in the logic circuits. A

simple module called D implements the following logic equations:

out = (a b) + c

The gate-level implementation is shown in Module D (Figure 3-8). The module contains two gates with delays

of 5 and 4 time units.

Figure 3-8. Module D

The module D is defined in Verilog as shown in Example 3-12.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 56

Example 3-12 Verilog Definition for Module D with Delay

// Define a simple combination module called D

module D (out, a, b, c);

// I/O port declarations

output out;

input a,b,c;

// Internal nets

wire e;

// Instantiate primitive gates to build the circuit

and #(5) a1(e, a, b); //Delay of 5 on gate a1

or #(4) o1(out, e,c); //Delay of 4 on gate o1

endmodule

This module is tested by the stimulus file shown in Example 3-13.

Example 3-13 Stimulus for Module D with Delay

// Stimulus (top-level module)

module stimulus;

// Declare variables

reg A, B, C;

wire OUT;

// Instantiate the module D

D d1(OUT, A, B, C);

// Stimulate the inputs. Finish the simulation at 40 time units.

initial

begin

A= 1'b0; B= 1'b0; C= 1'b0;

#10 A= 1'b1; B= 1'b1; C= 1'b1;

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 57

#10 A= 1'b1; B= 1'b0; C= 1'b0;

#20 $finish;

end

endmodule

The waveforms from the simulation are shown in Figure 3-9 to illustrate the effect of specifying delays on

gates. The waveforms are not drawn to scale. However, simulation time at each transition is specified below the

transition.

1. The outputs E and OUT are initially unknown.

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay of 4 time units and E

changes value to 1 after 5 time units.

3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and OUT transitions to 0, 4 time

units after E changes.

Figure 3-9. Waveforms for Delay Simulation of module D

It is a useful exercise to understand how the timing for each transition in the above waveform corresponds to the

gate delays shown in Module D.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 58

3.4 Dataflow Modeling

For small circuits, the gate-level modeling approach works very well because the number of gates is limited and

the designer can instantiate and connects every gate individually. Also, gate-level modeling is very intuitive to a

designer with a basic knowledge of digital logic design. However, in complex designs the number of gates is

very large. Thus, designers can design more effectively if they concentrate on implementing the function at a

level of abstraction higher than gate level. Dataflow modeling provides a powerful way to implement a design.

Verilog allows a circuit to be designed in terms of the data flow between registers and how a design processes

data rather than instantiation of individual gates.

3.4.1 Continuous Assignments

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value onto a net. This

assignment replaces gates in the description of the circuit and describes the circuit at a higher level of abstraction.

The assignment statement starts with the keyword assign. The syntax of an assign statement is as follows.

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

The default value for drive strength is strong1 and strong0. The delay value is also optional and can be used to

specify delay on the assign statement. This is like specifying delays for gates. Continuous assignments have the

following characteristics:

1. The left hand side of an assignment must always be a scalar or vector net or a concatenation of scalar and vector

nets. It cannot be a scalar or vector register.

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one of the right-

hand-side operands changes and the value is assigned to the left-hand-side net.

3. The operands on the right-hand side can be registers or nets or function calls. Registers or nets can be scalars or

vectors.

4. Delay values can be specified for assignments in terms of time units. Delay values are used to control the time

when a net is assigned the evaluated value. This feature is similar to specifying delays for gates. It is very useful in

modeling timing behavior in real circuits.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 59

Examples of continuous assignments are shown below. Operators such as &, ^, |, {, } and + used in the examples, At

this point, concentrate on how the assign statements are specified.

Example 3-14 Examples of Continuous Assignment

// Continuous assign. out is a net. i1 and i2 are nets.

assign out = i1 & i2;

// Continuous assign for vector nets. addr is a 16-bit vector net

// addr1 and addr2 are 16-bit vector registers.

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0];

// Concatenation. Left-hand side is a concatenation of a scalar

// net and a vector net.

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

3.4.2 Implicit Continuous Assignment

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a shortcut by which

a continuous assignment can be placed on a net when it is declared. There can be only one implicit declaration

assignment per net because a net is declared only once.

In the example below, an implicit continuous assignment is contrasted with a regular continuous assignment.

//Regular continuous assignment

wire out;

assign out = in1 & in2;

//Same effect is achieved by an implicit continuous assignment

wire out = in1 & in2;

Implicit Net Declaration

If a signal name is used to the left of the continuous assignment, an implicit net declaration will be inferred for that

signal name. If the net is connected to a module port, the width of the inferred net is equal to the width of the module

port.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 60

// Continuous assign. out is a net.

wire i1, i2;

assign out = i1 & i2; //Note that out was not declared as a wire

//but an implicit wire declaration for out

//is done by the simulator

3.5 Delays

Delay values control the time between the change in a right-hand-side operand and when the new value is assigned

to the left-hand side. Three ways of specifying delays in continuous assignment statements are regular assignment

delay, implicit continuous assignment delay, and net declaration delay.

3.5.1 Regular Assignment Delay

The first method is to assign a delay value in a continuous assignment statement. The delay value is specified after

the keyword assign. Any change in values of in1 or in2 will result in a delay of 10 time units before re-computation

of the expression in1 & in2, and the result will be assigned to out. If in1 or in2 changes value again before 10 time

units when the result propagates to out, the values of in1 and in2 at the time of re-computation are considered. This

property is called inertial delay. An input pulse that is shorter than the delay of the assignment statement does not

propagate to the output.

assign #10 out = in1 & in2; // Delay in a continuous assign

1. When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 30).

2. When in1 goes low at 60, out changes to low at 70.

3. However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed.

4. Hence, at the time of re-computation, 10 units after time 80, in1 is 0. Thus, out gets the value 0. A pulse of width

less than the specified assignment delay is no propagated to the output.

Figure 3-10. Waveforms for Delay Simulation

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 61

Inertial delays also apply to gate delays,

Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay and an assignment on the

net.

//implicit continuous assignment delay

wire #10 out = in1 & in2;

//same as

wire out;

assign #10 out = in1 & in2;

The declaration above has the same effect as defining a wire out and declaring a continuous assignment on out.

Net Declaration Delay

A delay can be specified on a net when it is declared without putting a continuous assignment on the net. If a delay is

specified on a net out, then any value change applied to the net out is delayed accordingly. Net declaration delays

can also be used in gate-level modeling.

//Net Delays

wire # 10 out;

assign out = in1 & in2;

//The above statement has the same effect as the following.

wire out;

assign #10 out = in1 & in2;

3.5 Expressions, Operators, and Operands

Dataflow modeling describes the design in terms of expressions instead of primitive gates. Expressions, operators,

and operands form the basis of dataflow modeling.

Expressions are constructs that combine operators and operands to produce a result.

// Examples of expressions. Combines operands and operators

a ^ b

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 62

addr1[20:17] + addr2[20:17]

in1 | in2

Operands can be any one of the data types defined, Data Types. Some constructs will take only certain types of

operands. Operands can be constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector net or

a vector register), part-select (selected bits of the vector net or register vector), and memories or function calls

integer count, final_count;

final_count = count + 1;//count is an integer operand

real a, b, c;

c = a - b; //a and b are real operands

reg [15:0] reg1, reg2;

reg [3:0] reg_out;

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are

//part-select register operands

reg ret_value;

ret_value = calculate_parity(A, B);//calculate_parity is a

//function type operand

Operators

Operators act on the operands to produce desired results. Verilog provides various types of operators. Operator

Types d1 && d2 // && is an operator on operands d1 and d2.

!a[0] // ! is an operator on operand a[0]

B >> 1 // >> is an operator on operands B and 1

Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical, relational, equality, bitwise,

reduction, shift, concatenation, or conditional. Some of these operators are similar to the operators used in the C

programming language. Each operator type is denoted by a symbol. Table shows the complete listing of operator

symbols classified by category.

.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 63

Table 3-4 Operator Types and Symbols

Examples

A design can be represented in terms of gates, data flow, or a behavioral description. Consider the 4-to-1 multiplexer

and 4-bit full adder described earlier. Previously, these designs were directly translated from the logic diagram into a

gate-level Verilog description. Here, we describe the same designs in terms of data flow. We also discuss two

additional examples: a 4-bit full adder using carry look ahead and a 4-bit counter using negative edge-triggered D-

flip-flops.

4-to-1 Multiplexer

Gate-level modeling of a 4-to-1 multiplexer, Example. The logic diagram for the multiplexer is given in Figure 3.4

and the gate-level Verilog description is shown in Example. We describe the multiplexer, using dataflow statements.

Compare it with the gate-level description. We show two methods to model the multiplexer by using dataflow

statements.

Method 1: logic equation

We can use assignment statements instead of gates to model the logic equations of the multiplexer. Notice that

everything is same as the gate-level Verilog description except that computation of out is done by specifying one

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 64

logic equation by using operators instead of individual gate instantiations. I/O ports remain the same. This important

so that the interface with the environment does not change. Only the internals of the module change.

Example 4-to-1 Multiplexer, Using Logic Equations

// Module 4-to-1 multiplexer using data flow. logic equation

// Compare to gate-level model

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

//Logic equation for out

assign out = (~s1 & ~s0 & i0)|

(~s1 & s0 & i1) |

(s1 & ~s0 & i2) |

(s1 & s0 & i3) ;

endmodule

Method 2: conditional operator

There is a more concise way to specify the 4-to-1 multiplexers.

Example of 4-to-1 Multiplexer, Using Conditional Operators

// Module 4-to-1 multiplexer using data flow. Conditional operator.

// Compare to gate-level model

module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 65

// Use nested conditional operator

assign out = s1 ? (s0 ? i3 : i2) : (s0 ? i1 : i0) ;

endmodule

In the simulation of the multiplexer, the gate-level module can be substituted with the dataflow multiplexer modules

described above. The stimulus module will not change. The simulation results will be identical. By encapsulating

functionality inside a module, we can replace the gate-level module with a dataflow module without affecting the

other modules in the simulation. This is a very powerful feature of Verilog.

4 bit Full Adder

The 4-bit full adder in, Examples, was designed by using gates; the logic diagram is shown in Figure 3.7. In this

section, we write the dataflow description for the 4-bit adder. In gates, we had to first describe a 1-bit full adder.

Then we built a 4-bit full ripple carry adder. We again illustrate two methods to describe a 4-bit full adder by means

of dataflow statements.

Method 1: dataflow operators

A concise description of the adder is defined with the + and { } operators.

Example 4-bit Full Adder, Using Dataflow Operators

// Define a 4-bit full adder by using dataflow statements.

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Specify the function of a full adder

assign {c_out, sum} = a + b + c_in;

endmodule

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest of the modules will not

change. The simulation results will be identical.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 66

Method 2: full adder with carry lookahead

In ripple carry adders, the carry must propagate through the gate levels before the sum is available at the output

terminals. An n-bit ripple carry adder will have 2n gate levels. The propagation time can be a limiting factor on the

speed of the circuit. One of the most popular methods to reduce delay is to use a carry lookahead mechanism. Logic

equations for implementing the carry lookahead mechanism can be found in any logic design book. The propagation

delay is reduced to four gate levels, irrespective of the number of bits in the adder. The Verilog description for a

carry lookahead adder. This module can be substituted in place of the full adder modules described before without

changing any other component of the simulation. The simulation results will be unchanged.

Example 4-bit Full Adder with Carry Lookahead

module fulladd4(sum, c_out, a, b, c_in);

// Inputs and outputs

output [3:0] sum;

output c_out;

input [3:0] a,b;

input c_in;

// Internal wires

wire p0,g0, p1,g1, p2,g2, p3,g3;

wire c4, c3, c2, c1;

// compute the p for each stage

assign p0 = a[0] ^ b[0],

p1 = a[1] ^ b[1],

p2 = a[2] ^ b[2],

p3 = a[3] ^ b[3];

// compute the g for each stage

assign g0 = a[0] & b[0],

g1 = a[1] & b[1],

g2 = a[2] & b[2],

g3 = a[3] & b[3];

// compute the carry for each stage

// Note that c_in is equivalent c0 in the arithmetic equation for

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 67

// carry lookahead computation

assign c1 = g0 | (p0 & c_in),

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in),

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in),

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) |

(p3 & p2 & p1 & p0 & c_in);

// Compute Sum

assign sum[0] = p0 ^ c_in,

sum[1] = p1 ^ c1,

sum[2] = p2 ^ c2,

sum[3] = p3 ^ c3;

// Assign carry output

assign c_out = c4;

endmodule

Ripple Counter

Consider the design of a 4-bit ripple counter by using negative edge-triggered flipflops. This example was discussed

at a very abstract level, Hierarchical Modeling Concepts. We design it using Verilog dataflow statements and test it

with a stimulus module. The diagrams for the 4-bit ripple carry counter modules are show the counter being built

with four T-flipflops.

Figure 3.11 4 bit ripple counter

.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 68

Figure 3.12 T-flipflop is built with one D-flipflop and an inverter gate

Figure 3.13 shows the D-flipflop constructed from basic logic gates.

Figure 3.13 Negative Edge-Triggered D-flipflop with Clear

Given the above diagrams, we write the corresponding Verilog, using dataflow statements in a top-down fashion.

First we design the module counter. The code is shown in. The code contains instantiation of four T_FF modules.

Example: Verilog Code for Ripple Counter

// Ripple counter

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 69

module counter(Q , clock, clear);

// I/O ports

output [3:0] Q;

input clock, clear;

// Instantiate the T flipflops

T_FF tff0(Q[0], clock, clear);

T_FF tff1(Q[1], Q[0], clear);

T_FF tff2(Q[2], Q[1], clear);

T_FF tff3(Q[3], Q[2], clear);

endmodule

Example :Verilog Code for T-flipflop

// Edge-triggered T-flipflop. Toggles every clock

// cycle.

module T_FF(q, clk, clear);

// I/O ports

output q;

input clk, clear;

// Instantiate the edge-triggered DFF

// Complement of output q is fed back.

// Notice qbar not needed. Unconnected port.

edge_dff ff1(q, ,~q, clk, clear);

endmodule

Verilog Code for Edge-Triggered D-flipflop

// Edge-triggered D flipflop

module edge_dff(q, qbar, d, clk, clear);

// Inputs and outputs

output q,qbar;

input d, clk, clear;

// Internal variables

wire s, sbar, r, rbar,cbar;

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 70

// dataflow statements

//Create a complement of signal clear

assign cbar = ~clear;

// Input latches; A latch is level sensitive. An edge-sensitive

// flip-flop is implemented by using 3 SR latches.

assign sbar = ~(rbar & s),

s = ~(sbar & cbar & ~clk),

r = ~(rbar & ~clk & s),

rbar = ~(r & cbar & d);

// Output latch

assign q = ~(s & qbar),

qbar = ~(q & r & cbar);

endmodule

Stimulus Module for Ripple Counter

// Top level stimulus module

module stimulus;

// Declare variables for stimulating input

reg CLOCK, CLEAR;

wire [3:0] Q;

initial

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR);

// Instantiate the design block counter

counter c1(Q, CLOCK, CLEAR);

// Stimulate the Clear Signal

initial

begin

CLEAR = 1'b1;

#34 CLEAR = 1'b0;

#200 CLEAR = 1'b1;

#50 CLEAR = 1'b0;

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 71

end

// Set up the clock to toggle every 10 time units

initial

begin

CLOCK = 1'b0;

forever #10 CLOCK = ~CLOCK;

end

// Finish the simulation at time 400

initial

begin

#400 $finish;

end

endmodule

The output of the simulation is shown below. Note that the clear signal resets the count

to zero.

0 Count Q = 0000 Clear= 1

34 Count Q = 0000 Clear= 0

40 Count Q = 0001 Clear= 0

60 Count Q = 0010 Clear= 0

80 Count Q = 0011 Clear= 0

100 Count Q = 0100 Clear= 0

120 Count Q = 0101 Clear= 0

140 Count Q = 0110 Clear= 0

160 Count Q = 0111 Clear= 0

180 Count Q = 1000 Clear= 0

200 Count Q = 1001 Clear= 0

220 Count Q = 1010 Clear= 0

234 Count Q = 0000 Clear= 1

284 Count Q = 0000 Clear= 0

300 Count Q = 0001 Clear= 0

320 Count Q = 0010 Clear= 0

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 72

340 Count Q = 0011 Clear= 0

360 Count Q = 0100 Clear= 0

380 Count Q = 0101 Clear= 0

3.6 : Outcomes

After completion of the module the students are able to:

 Identify logic gate primitives provided in Verilog and Understand instantiation of gates, gate

symbols, and truth tables for and/or and buf/not type gates.

 Understand how to construct a Verilog description from the logic diagram of the circuit.

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays

in the gate-level design

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the

implicit continuous assignment statement.

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous

assignment statements and Define expressions, operators, and operands.

 Use dataflow constructs to model practical digital circuits in Verilog

3.7 : Recommended questions

1. Write the truth table of all the basic gates. Input values consisting of ‘0’, ‘1’, ‘x’, ‘z’.

2. What are the primitive gates supported by Verilog HDL? Write the Verilog HDL statements to

instantiate all the primitive gates.

3. Use gate level description of Verilog HDL to design 4 to 1 multiplexer. Write truth table, top-level

block, logic expression and logic diagram. Also write the stimulus block for the same.

4. Explain the different types of buffers and not gates with the help of truth table, logic symbol, logic

expression

5. Use gate level description of Verilog HDL to describe the 4-bit ripple carry counter. Also write a

stimulus block for 4-bit ripple carry adder.

6. How to model the delays of a logic gate using Verilog HDL? Give examples. Also explain the

different delays associated with digital circuits.

7. Write gate level description to implement function y = a.b + c, with 5 and 4 time units of gate delay for

AND and OR gate respectively. Also write the stimulus block and simulation waveform.

8. With syntax describe the continuous assignment statement.

Verilog HDL [18EC56]

Dept.of ECE, SJBIT Page 73

9. Show how different delays associated with logic circuit are modelled using dataflow description.

10. Explain different operators supported by Verilog HDL.

11. What is an expression associated with dataflow description? What are the different types of operands

in an expression?

12. Discuss the precedence of operators.

13. Use dataflow description style of Verilog HDL to design 4:1 multiplexer with and without using

conditional operator.

14. Use dataflow description style of Verilog HDL to design 4-bitadder

using i. Ripple carry logic.

ii. Carry look ahead logic.

15. Use dataflow description style, gate level description of Verilog HDL to design 4-bit ripple carry

counter. Also write the stimulus block to verify the same.

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 74

MODULE -4

BEHAVIORAL MODELING

4.1 Objectives

• To Explain the significance of structured procedures always and initial in behavioral modeling.

• To Define blocking and nonblocking procedural assignments.

• To Understand delay-based timing control mechanism in behavioral modeling. Use regular delays,

intra-assignment delays, and zero delays.

• To Describe event-based timing control mechanism in behavioral modeling. Use regular event

control, named event control, and event OR control.

• To Use level-sensitive timing control mechanism in behavioral modeling.

• To Explain conditional statements using if and else.

• To Describe multiway branching, using case, casex, and casez statements.

• To Understand looping statements such as while, for, repeat, and forever.

• To Define sequential and parallel blocks.

4.2 Structured Procedures

There are two structured procedure statements in Verilog: always and initial. These statements are the two most

basic statements in behavioral modeling. All other behavioral statements can appear only inside these structured

procedure statements. Verilog is a concurrent programming language unlike the C programming language,

which is sequential in nature.

Activity flows in Verilog run in parallel rather than in sequence. Each always and initial statement represents a

separate activity flow in Verilog. Each activity flow starts at simulation time 0. The statements always and

initial cannot be nested. The fundamental difference between the two statements is explained in the following

sections

4.2.1 Initial Statement

All statements inside an initial statement constitute an initial block. An initial block starts at time 0, executes

exactly once during a simulation, and then does not execute again. If there are multiple initial blocks, each

block starts to execute concurrently at time 0. Each block finishes execution independently of other blocks.

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 75

Multiple behavioral statements must be grouped, typically using the keywords begin and end. If there is only

one behavioral statement, grouping is not necessary. This is similar to the begin-end blocks in Pascal

programming language or the { } grouping in the C programming language. Example 4.1 illustrates the use of

the initial statement.

Example 4.1:Initial Statement

module stimulus;

reg x,y, a,b, m;

initial

m = 1'b0; //single statement; does not need to be grouped

initial

begin

#5 a = 1'b1; //multiple statements; need to be grouped

#25 b = 1'b0;

end

initial

begin

#10 x = 1'b0;

#25 y = 1'b1;

end

initial

128

#50 $finish;

endmodule

In the above example, the three initial statements start to execute in parallel at time 0. If a delay #<delay> is

seen before a statement, the statement is executed <delay> time units after the current simulation time. Thus,

the execution sequence of the statements inside the initial blocks will be as follows.

time statement executed

0 m = 1'b0;

5 a = 1'b1;

10 x = 1'b0;

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 76

30 b = 1'b0;

35 y = 1'b1;

50 $finish;

The initial blocks are typically used for initialization, monitoring, waveforms and other processes that must be

executed only once during the entire simulation run. The following subsections discussion how to initialize

values using alternate shorthand syntax. The use of such shorthand syntax has the same effect as an initial block

combined with a variable declaration.

Combined Variable Declaration and Initialization

Variables can be initialized when they are declared. Example 4-2 shows such a declaration.

Example 4-2 Initial Value Assignment

//The clock variable is defined first

reg clock;

//The value of clock is set to 0

initial clock = 0;

//Instead of the above method, clock variable

//can be initialized at the time of declaration

//This is allowed only for variables declared

//at module level.

reg clock = 0;

Combined Port/Data Declaration and Initialization

The combined port/data declaration can also be combined with an initialization. Example 4-3 shows such a

declaration.

Example 4-3 Combined Port/Data Declaration and Variable Initialization

module adder (sum, co, a, b, ci);

output reg [7:0] sum = 0; //Initialize 8 bit output sum

output reg co = 0; //Initialize 1 bit output co

input [7:0] a, b;

input ci;

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 77

--

--

endmodule

Combined ANSI C Style Port Declaration and Initialization

ANSI C style port declaration can also be combined with an initialization. Example 4-4 shows such a

declaration.

Example 4-4 Combined ANSI C Port Declaration and Variable Initialization

module adder (output reg [7:0] sum = 0, //Initialize 8 bit output

output reg co = 0, //Initialize 1 bit output co

input [7:0] a, b,

input ci

);

--

--

endmodule

4.2.2 Always Statement

All behavioral statements inside an always statement constitute an always block. The always statement starts at

time 0 and executes the statements in the always block continuously in a looping fashion. This statement is used

to model a block of activity that is repeated continuously in a digital circuit. An example is a clock generator

module that toggles the clock signal every half cycle. In real circuits, the clock generator is active from time 0

to as long as the circuit is powered on. Example 4-5 illustrates one method to model a clock generator in

Verilog.

Example 4-5 always Statement

module clock_gen (output reg clock);

//Initialize clock at time zero

initial

clock = 1'b0;

//Toggle clock every half-cycle (time period = 20)

always

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 78

#10 clock = ~clock;

initial

#1000 $finish;

endmodule

In Example 4-5, the always statement starts at time 0 and executes the statement clock = ~clock every 10 time

units. Notice that the initialization of clock has to be done inside a separate initial statement. If we put the

initialization of clock inside the always block, clock will be initialized every time the always is entered. Also,

the simulation must be halted inside an initial statement. If there is no $stop or $finish statement to halt the

simulation, the clock generator will run forever. C programmers might draw an analogy between the always

block and an infinite loop.

But hardware designers tend to view it as a continuously repeated activity in a digital circuit starting from

power on. The activity is stopped only by power off ($finish) or by an interrupt ($stop).

4.3 Procedural Assignments

Procedural assignments update values of reg, integer, real, or time variables. The value placed on a variable will

remain unchanged until another procedural assignment updates the variable with a different value. These are

unlike continuous assignments, Dataflow Modeling, where one assignment statement can cause the value of

the right-hand-side expression to be continuously placed onto the left-hand-side net. The

syntax for the simplest form of procedural assignment is shown below.

assignment ::= variable_lvalue = [delay_or_event_control] expression

The left-hand side of a procedural assignment <lvalue> can be one of the following:

• A reg, integer, real, or time register variable or a memory element

• A bit select of these variables (e.g., addr[0])

• A part select of these variables (e.g., addr[31:16])

• A concatenation of any of the above

The right-hand side can be any expression that evaluates to a value. In behavioral modeling, all operators can be

used in behavioral expressions.

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 79

There are two types of procedural assignment statements: blocking and nonblocking.

4.3.1 Blocking Assignments

Blocking assignment statements are executed in the order they are specified in a sequential block. A blocking

assignment will not block execution of statements that follow in a parallel block. The = operator is used to

specify blocking assignments.

Example 4-6 Blocking Statements

reg x, y, z;

reg [15:0] reg_a, reg_b;

integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x = 0; y = 1; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg_a = 16'b0; reg_b = reg_a; //initialize vectors

#15 reg_a[2] = 1'b1; //Bit select assignment with delay

#10 reg_b[15:13] = {x, y, z} //Assign result of concatenation to part select of a vector

count = count + 1; //Assignment to an integer (increment)

end

In Example 4-6, the statement y = 1 is executed only after x = 0 is executed. The behavior in a particular block

is sequential in a begin-end block if blocking statements are used, because the statements can execute only in

sequence. The statement count = count + 1 is executed last. The simulation times at which the statements are

executed are as follows:

• All statements x = 0 through reg_b = reg_a are executed at time 0

• Statement reg_a[2] = 0 at time = 15

• Statement reg_b[15:13] = {x, y, z} at time = 25

• Statement count = count + 1 at time = 25

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 80

• Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be executed at time = 25

units

Note that for procedural assignments to registers, if the right-hand side has more bits than the register variable,

the right-hand side is truncated to match the width of the register variable. The least significant bits are selected

and the most significant bits are discarded. If the right-hand side has fewer bits, zeros are filled in the most

significant bits of the register variable.

4.3.2 Nonblocking Assignments

Nonblocking assignments allow scheduling of assignments without blocking execution of the statements that

follow in a sequential block. A <= operator is used to specify nonblocking assignments. Note that this operator

has the same symbol as a relational operator, less_than_equal_to. The operator <= is interpreted as a relational

operator in an expression and as an assignment operator in the context of a nonblocking assignment. To

illustrate the behavior of nonblocking statements and its difference from blocking statements, let us consider

Example 4-7, where we convert some blocking assignments to nonblocking assignments, and observe the

behavior.

Example 4-7 Nonblocking Assignments

reg x, y, z;

reg [15:0] reg_a, reg_b;

integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x = 0; y = 1; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg_a = 16'b0; reg_b = reg_a; //Initialize vectors

reg_a[2] <= #15 1'b1; //Bit select assignment with delay

reg_b[15:13] <= #10 {x, y, z}; //Assign result of concatenation

//to part select of a vector

count <= count + 1; //Assignment to an integer (increment)

end

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 81

In this example, the statements x = 0 through reg_b = reg_a are executed sequentially at time 0. Then the three

nonblocking assignments are processed at the same simulation time.

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15)

2. reg_b[15:13] = {x, y, z} is scheduled to execute after 10 time units (i.e., time = 10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0) Thus, the simulator schedules

a non blocking assignment statement to execute and continues to the next statement in the block without waiting

for the non blocking statement to complete execution. Typically, nonblocking assignment statements are

executed last in the time step in which they are scheduled, that is, after all the blocking assignments in that time

step are executed.

In the example above, we mixed blocking and non blocking assignments to illustrate their behavior. However, it

is recommended that blocking and non blocking assignments not be mixed in the same always block.

Application of non blocking assignments

Having described the behavior of non blocking assignments, it is important to understand why they are used in

digital design. They are used as a method to model several concurrent data transfers that take place after a

common event. Consider the following example where three concurrent data transfers take place at the positive

edge of clock.

always @(posedge clock)

begin

reg1 <= #1 in1;

reg2 <= @(negedge clock) in2 ^ in3;

reg3 <= #1 reg1; //The old value of reg1

end

At each positive edge of clock, the following sequence takes place for the non blocking assignments.

1. A read operation is performed on each right-hand-side variable, in1, in2, in3, and reg1, at the positive edge of

clock. The right-hand-side expressions are evaluated, and the results are stored internally in the simulator.

2. The write operations to the left-hand-side variables are scheduled to be executed at the time specified by the

intra-assignment delay in each assignment, that is, schedule "write" to reg1 after 1 time unit, to reg2 at the next

negative edge of clock, and to reg3 after 1 time unit.

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 82

3. The write operations are executed at the scheduled time steps. The order in which the write operations are

executed is not important because the internally stored right-hand-side expression values are used to assign to

the left-hand-side values. For example, note that reg3 is assigned the old value of reg1 that was stored after the

read operation, even if the write operation wrote a new value to reg1 before the write operation to reg3 was

executed.

Thus, the final values of reg1, reg2, and reg3 are not dependent on the order in which the assignments are

processed.

To understand the read and write operations further, consider Example 4-8, which is intended to swap the

values of registers a and b at each positive edge of clock, using two concurrent always blocks.

Example 4-8 Nonblocking Statements to Eliminate Race Conditions

//Illustration 1: Two concurrent always blocks with blocking

//statements

always @(posedge clock)

a = b;

always @(posedge clock)

b = a;

135

//Illustration 2: Two concurrent always blocks with nonblocking

//statements

always @(posedge clock)

a <= b;

always @(posedge clock)

b <= a;

In Example 4-8, in Illustration 1, there is a race condition when blocking statements are used. Either a = b

would be executed before b = a, or vice versa, depending on the simulator implementation. Thus, values of

registers a and b will not be swapped. Instead, both registers will get the same value (previous value of a or b),

based on the Verilog simulator implementation.

However, nonblocking statements used in Illustration 2 eliminate the race condition. At the positive edge of

clock, the values of all right-hand-side variables are "read," and the right-hand-side expressions are evaluated

and stored in temporary variables. During the write operation, the values stored in the temporary variables are

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 83

assigned to the left-handside variables. Separating the read and write operations ensures that the values of

registers a and b are swapped correctly, regardless of the order in which the write operations are performed.

Example 4-9 shows how nonblocking assignments shown in Illustration 2 could be emulated using blocking

assignments.

Example 4-9 Implementing Nonblocking Assignments using Blocking Assignments

//Emulate the behavior of nonblocking assignments by

//using temporary variables and blocking assignments

always @(posedge clock)

begin

//Read operation

//store values of right-hand-side expressions in temporary variables

temp_a = a;

temp_b = b;

//Write operation

//Assign values of temporary variables to left-hand-side variables

a = temp_b;

b = temp_a;

end

For digital design, use of nonblocking assignments in place of blocking assignments is highly recommended in

places where concurrent data transfers take place after a common event. In such cases, blocking assignments

can potentially cause race conditions because the final result depends on the order in which the assignments are

evaluated. Nonblocking assignments can be used effectively to model concurrent data transfers because the

final result is not dependent on the order in which the assignments are evaluated. Typical applications of

nonblocking assignments include pipeline modeling and modeling of several mutually exclusive data transfers.

On the downside, nonblocking assignments can potentially cause degradation in the simulator performance and

increase in memory usage.

4.4 Timing Controls

Various behavioral timing control constructs are available in Verilog. In Verilog, if there are no timing control

statements, the simulation time does not advance. Timing controls provide a way to specify the simulation time

at which procedural statements will execute.

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 84

There are three methods of timing control: delay-based timing control, event-based timing control, and level-

sensitive timing control.

4.4.1 Delay-Based Timing Control

Delay-based timing control in an expression specifies the time duration between when the statement is

encountered and when it is executed. We used delay-based timing control statements when writing few modules

in the preceding chapters but did not explain them in detail. In this section, we will discuss delay-based timing

control statements. Delays are specified by the symbol #. Syntax for the delay-based timing control statement is

shown below.

delay3 ::= # delay_value | # (delay_value [, delay_value [,

delay_value]])

delay2 ::= # delay_value | # (delay_value [, delay_value])

delay_value ::=

unsigned_number

| parameter_identifier

| specparam_identifier

| mintypmax_expression

Delay-based timing control can be specified by a number, identifier, or a mintypmax_expression. There are

three types of delay control for procedural assignments: regular delay control, intra-assignment delay control,

and zero delay control.

Regular delay control

Regular delay control is used when a non-zero delay is specified to the left of a procedural assignment. Usage of

regular delay control is shown in Example 4-10.

Example 4-10 Regular Delay Control

//define parameters

parameter latency = 20;

parameter delta = 2;

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 85

//define register variables

reg x, y, z, p, q;

initial

begin

x = 0; // no delay control

#10 y = 1; // delay control with a number. Delay execution of

// y = 1 by 10 units

#latency z = 0; // Delay control with identifier. Delay of 20

units

#(latency + delta) p = 1; // Delay control with expression

#y x = x + 1; // Delay control with identifier. Take value of y.

#(4:5:6) q = 0; // Minimum, typical and maximum delay values.

//Discussed in gate-level modeling chapter.

end

In Example 4-10, the execution of a procedural assignment is delayed by the number specified by the delay

control. For begin-end groups, delay is always relative to time when the statement is encountered. Thus, y =1 is

executed 10 units after it is encountered in the activity flow.

Intra-assignment delay control

Instead of specifying delay control to the left of the assignment, it is possible to assign a delay to the right of the

assignment operator. Such delay specification alters the flow of activity in a different manner. Example 4-11

shows the contrast between intra-assignment delays and regular delays.

Example 4-11 Intra-assignment Delays

//define register variables

reg x, y, z;

//intra assignment delays

initial

begin

x = 0; z = 0;

y = #5 x + z; //Take value of x and z at the time=0, evaluate

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 86

//x + z and then wait 5 time units to assign value to y.

end

//Equivalent method with temporary variables and regular delay control

initial

begin

x = 0; z = 0;

temp_xz = x + z;

#5 y = temp_xz; //Take value of x + z at the current time and

//store it in a temporary variable. Even though x and z might change between 0 and 5,

//the value assigned to y at time 5 is unaffected.

end

Note the difference between intra-assignment delays and regular delays. Regular delays defer the execution of

the entire assignment. Intra-assignment delays compute the righthand- side expression at the current time and

defer the assignment of the computed value to the left-hand-side variable. Intra-assignment delays are like using

regular delays with a temporary variable to store the current value of a right-hand-side expression.

Zero delay control

Procedural statements in different always-initial blocks may be evaluated at the same simulation time. The order

of execution of these statements in different always-initial blocks is nondeterministic. Zero delay control is a

method to ensure that a statement is executed last, after all other statements in that simulation time are executed.

This is used to eliminate race conditions. However, if there are multiple zero delay statements, the order

between them is nondeterministic. Example 4-12 illustrates zero delay control.

Example 4-12 Zero Delay Control

initial

begin

x = 0;

y = 0;

end

initial

begin

#0 x = 1; //zero delay control

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 87

#0 y = 1;

end

In Example 4-12, four statements?x = 0, y = 0, x = 1, y = 1?are to be executed at simulation time 0. However,

since x = 1 and y = 1 have #0, they will be executed last. Thus, at the end of time 0, x will have value 1 and y

will have value 1. The order in which x = 1 and y = 1 are executed is not deterministic. The above example was

used as an illustration. However, using #0 is not a recommended practice.

4.4.2 Event-Based Timing Control

An event is the change in the value on a register or a net. Events can be utilized to trigger execution of a

statement or a block of statements. There are four types of event-based timing control: regular event control,

named event control, event OR control, and level sensitive timing control.

Regular event control

The @ symbol is used to specify an event control. Statements can be executed on changes in signal value or at a

positive or negative transition of the signal value. The keyword posedge is used for a positive transition, as

shown in Example 4-13.

Example 4-13 Regular Event Control

@(clock) q = d; //q = d is executed whenever signal clock changes value

@(posedge clock) q = d; //q = d is executed whenever signal clock does

//a positive transition (0 to 1,x or z,

// x to 1, z to 1)

@(negedge clock) q = d; //q = d is executed whenever signal clock does

//a negative transition (1 to 0,x or z,

//x to 0, z to 0)

q = @(posedge clock) d; //d is evaluated immediately and assigned

//to q at the positive edge of clock

Named event control

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 88

Verilog provides the capability to declare an event and then trigger and recognize the occurrence of that event

(see Example 4-14). The event does not hold any data. A named event is declared by the keyword event. An

event is triggered by the symbol ->. The triggering of the event is recognized by the symbol @.

Example 4-14 Named Event Control

//This is an example of a data buffer storing data after the

//last packet of data has arrived.

event received_data; //Define an event called received_data

always @(posedge clock) //check at each positive clock edge

begin

if(last_data_packet) //If this is the last data packet

->received_data; //trigger the event received_data

end

always @(received_data) //Await triggering of event received_data

//When event is triggered, store all four

//packets of received data in data buffer

//use concatenation operator { }

data_buf = {data_pkt[0], data_pkt[1], data_pkt[2],

data_pkt[3]};

Event OR Control

Sometimes a transition on any one of multiple signals or events can trigger the execution of a statement or a

block of statements. This is expressed as an OR of events or signals. The list of events or signals expressed as

an OR is also known as a sensitivity list. The keyword or is used to specify multiple triggers, as shown in

Example 4-15.

Example 4-15 Event OR Control (Sensitivity List)

//A level-sensitive latch with asynchronous reset

always @(reset or clock or d)

//Wait for reset or clock or d to

change

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 89

begin

if (reset) //if reset signal is high, set q to 0.

q = 1'b0;

else if(clock) //if clock is high, latch input

q = d;

end

Sensitivity lists can also be specified using the "," (comma) operator instead of the or operator. Example 4-16

shows how the above example can be rewritten using the comma operator. Comma operators can also be

applied to sensitivity lists that have edge-sensitive triggers.

Example 4-16 Sensitivity List with Comma Operator

//A level-sensitive latch with asynchronous reset

always @(reset, clock, d)

//Wait for reset or clock or d to

change

begin

if (reset) //if reset signal is high, set q to 0.

q = 1'b0;

else if(clock) //if clock is high, latch input

q = d;

end

//A positive edge triggered D flipflop with asynchronous falling

//reset can be modeled as shown below

always @(posedge clk, negedge reset) //Note use of comma operator

if(!reset)

q <=0;

else

q <=d;

When the number of input variables to a combination logic block are very large, sensitivity lists can become

very cumbersome to write. Moreover, if an input variable is missed from the sensitivity list, the block will not

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 90

behave like a combinational logic block. To solve this problem, Verilog HDL contains two special symbols: @*

and @(*). Both symbols exhibit identical behavior. These special symbols are sensitive to a change on any

signal that may be read by the statement group that follows this symbol

Example 4-17 shows an example of this special symbol for combinational logic sensitivity lists.

IEEE Standard Verilog Hardware Description Language document for details and restrictions on the @* and

@(*) symbols.

Example 4-17 Use of @* Operator

//Combination logic block using the or operator

//Cumbersome to write and it is easy to miss one input to the block

always @(a or b or c or d or e or f or g or h or p or m)

begin

out1 = a ? b+c : d+e;

out2 = f ? g+h : p+m;

end

//Instead of the above method, use @(*) symbol

//Alternately, the @* symbol can be used

//All input variables are automatically included in the

//sensitivity list.

always @(*)

begin

out1 = a ? b+c : d+e;

out2 = f ? g+h : p+m;

end

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 91

4.4.3 Level-Sensitive Timing Control

Event control discussed earlier waited for the change of a signal value or the triggering of an event. The symbol

@ provided edge-sensitive control. Verilog also allows level sensitive timing control, that is, the ability to wait

for a certain condition to be true before a statement or a block of statements is executed. The keyword wait is

used for level sensitive constructs.

always

wait (count_enable) #20 count = count + 1;

In the above example, the value of count_enable is monitored continuously. If count_enable is 0, the statement

is not entered. If it is logical 1, the statement count = count + 1 is executed after 20 time units. If count_enable

stays at 1, count will be incremented every 20 time units.

4.5 Conditional Statements

Conditional statements are used for making decisions based upon certain conditions. These conditions are used

to decide whether or not a statement should be executed. Keywords if and else are used for conditional

statements. There are three types of conditional statements. Usage of conditional statements is shown below.

//Type 1 conditional statement. No else statement.

//Statement executes or does not execute.

if (<expression>) true_statement ;

//Type 2 conditional statement. One else statement

//Either true_statement or false_statement is evaluated

if (<expression>) true_statement ; else false_statement ;

//Type 3 conditional statement. Nested if-else-if.

//Choice of multiple statements. Only one is executed.

if (<expression1>) true_statement1 ;

else if (<expression2>) true_statement2 ;

else if (<expression3>) true_statement3 ;

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 92

else default_statement ;

The <expression> is evaluated. If it is true (1 or a non-zero value), the true_statement is executed. However, if it

is false (zero) or ambiguous (x), the false_statement is executed. The <expression> can contain any operators.

Each true_statement or false_statement can be a single statement or a block of multiple statements. A block

must be grouped, typically by using keywords begin and end. A single statement need not be grouped.

Example 4-18 Conditional Statement Examples

//Type 1 statements

if(!lock) buffer = data;

if(enable) out = in;

//Type 2 statements

if (number_queued < MAX_Q_DEPTH)

begin

data_queue = data;

number_queued = number_queued + 1;

end

else

$display("Queue Full. Try again");

//Type 3 statements

//Execute statements based on ALU control signal.

if (alu_control == 0)

y = x + z;

else if(alu_control == 1)

y = x - z;

else if(alu_control == 2)

y = x * z;

else

$display("Invalid ALU control signal");

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 93

4.6 Multiway Branching

Conditional Statements, there were many alternatives, from which one was chosen. The nested if-else-if can

become unwieldy if there are too many alternatives. A shortcut to achieve the same result is to use the case

statement.

4.6.1 case Statement

The keywords case, endcase, and default are used in the case statement..

case (expression)

alternative1: statement1;

alternative2: statement2;

alternative3: statement3;

...

...

default: default_statement;

endcase

Each of statement1, statement2 , default_statement can be a single statement or a block of multiple statements.

A block of multiple statements must be grouped by keywords begin and end. The expression is compared to the

alternatives in the order they are written. For the first alternative that matches, the corresponding statement or

block is executed. If none of the alternatives matches, the default_statement is executed. The default_statement

is optional. Placing of multiple default statements in one case statement is not allowed. The case statements can

be nested. The following Verilog code implements the type 3 conditional statement in Example 4-18.

//Execute statements based on the ALU control signal

reg [1:0] alu_control;

...

...

case (alu_control)

2'd0 : y = x + z;

2'd1 : y = x - z;

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 94

2'd2 : y = x * z;

default : $display("Invalid ALU control signal");

endcase

The case statement can also act like a many-to-one multiplexer. To understand this, let us model the 4-to-1

multiplexer, using case statements. The I/O ports are unchanged. Notice that an 8-to-1 or 16-to-1 multiplexer

can also be easily implemented by case statements.

Example 4-19 4-to-1 Multiplexer with Case Statement

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

reg out;

always @(s1 or s0 or i0 or i1 or i2 or i3)

case ({s1, s0}) //Switch based on concatenation of control signals

2'd0 : out = i0;

2'd1 : out = i1;

2'd2 : out = i2;

2'd3 : out = i3;

default: $display("Invalid control signals");

endcase

endmodule

The case statement compares 0, 1, x, and z values in the expression and the alternative bit for bit. If the

expression and the alternative are of unequal bit width, they are zero filled to match the bit width of the widest

of the expression and the alternative. In Example 4- 20, we will define a 1-to-4 demultiplexer for which outputs

are completely specified, that is, definitive results are provided even for x and z values on the select signal.

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 95

Example 4-20 Case Statement with x and z

module demultiplexer1_to_4 (out0, out1, out2, out3, in, s1, s0);

// Port declarations from the I/O diagram

output out0, out1, out2, out3;

reg out0, out1, out2, out3;

input in;

input s1, s0;

always @(s1 or s0 or in)

case ({s1, s0}) //Switch based on control signals

2'b00 : begin out0 = in; out1 = 1'bz; out2 = 1'bz; out3 =

1'bz; end

2'b01 : begin out0 = 1'bz; out1 = in; out2 = 1'bz; out3 =

1'bz; end

2'b10 : begin out0 = 1'bz; out1 = 1'bz; out2 = in; out3 =

1'bz; end

2'b11 : begin out0 = 1'bz; out1 = 1'bz; out2 = 1'bz; out3 =

in; end

//Account for unknown signals on select. If any select signal is x

//then outputs are x. If any select signal is z, outputs are z.

//If one is x and the other is z, x gets higher priority.

2'bx0, 2'bx1, 2'bxz, 2'bxx, 2'b0x, 2'b1x, 2'bzx :

begin

out0 = 1'bx; out1 = 1'bx; out2 = 1'bx; out3 = 1'bx;

end

2'bz0, 2'bz1, 2'bzz, 2'b0z, 2'b1z :

begin

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 96

out0 = 1'bz; out1 = 1'bz; out2 = 1'bz; out3 = 1'bz;

end

default: $display("Unspecified control signals");

endcase

endmodule

In the demultiplexer shown above, multiple input signal combinations such as 2'bz0, 2'bz1, 2,bzz, 2'b0z, and

2'b1z that cause the same block to be executed are put together with a comma (,) symbol.

4.6.2 casex, casez Keywords

There are two variations of the case statement. They are denoted by keywords, casex and casez.

• casez treats all z values in the case alternatives or the case expression as don't cares. All bit positions with z

can also represented by ? in that position.

• casex treats all x and z values in the case item or the case expression as don't cares.

The use of casex and casez allows comparison of only non-x or -z positions in the case expression and the case

alternatives. Example 4-21 illustrates the decoding of state bits in a finite state machine using a casex statement.

The use of casez is similar. Only one bit is considered to determine the next state and the other bits are ignored.

Example 4-21 casex Use

reg [3:0] encoding;

integer state;

casex (encoding) //logic value x represents a don't care bit.

4'b1xxx : next_state = 3;

4'bx1xx : next_state = 2;

4'bxx1x : next_state = 1;

4'bxxx1 : next_state = 0;

default : next_state = 0;

endcase

Thus, an input encoding = 4'b10xz would cause next_state = 3 to be executed.

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 97

4.7 Loops

There are four types of looping statements in Verilog: while, for, repeat, and forever. The syntax of these loops

is very similar to the syntax of loops in the C programming language. All looping statements can appear only

inside an initial or always block. Loops may contain delay expressions.

4.7.1 While Loop

The keyword while is used to specify this loop. The while loop executes until the while expression is not true. If

the loop is entered when the while-expression is not true, the loop is not executed at all. Each expression can

contain the operators. Any logical expression can be specified with these operators. If multiple statements are to

be executed in the loop, they must be grouped typically using keywords begin and end. Example 4-22 illustrates

the use of the while loop.

Example 4-22 While Loop

//Illustration 1: Increment count from 0 to 127. Exit at count 128.

//Display the count variable.

integer count;

initial

begin

count = 0;

while (count < 128) //Execute loop till count is 127.

//exit at count 128

begin

$display("Count = %d", count);

count = count + 1;

end

end

//Illustration 2: Find the first bit with a value 1 in flag (vector

variable)

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 98

'define TRUE 1'b1';

'define FALSE 1'b0;

reg [15:0] flag;

integer i; //integer to keep count

reg continue;

initial

begin

flag = 16'b 0010_0000_0000_0000;

i = 0;

continue = 'TRUE;

148

while((i < 16) && continue) //Multiple conditions using operators.

begin

if (flag[i])

begin

$display("Encountered a TRUE bit at element number %d", i);

continue = 'FALSE;

end

i = i + 1;

end

end

4.7.2 for Loop

The keyword for is used to specify this loop. The for loop contains three parts:

• An initial condition

• A check to see if the terminating condition is true

• A procedural assignment to change value of the control variable

Verilog HDL [18EC56]

Dept .of ECE, SJBIT Page 99

The counter described in Example 4-22 can be coded as a for loop (Example 4-23). The initialization condition

and the incrementing procedural assignment are included in the for loop and do not need to be specified

separately. Thus, the for loop provides a more compact loop structure than the while loop. Note, however, that

the while loop is more general-purpose than the for loop. The for loop cannot be used in place of the while loop

in all situations.

Example 4-23 For Loop

integer count;

initial

for (count=0; count < 128; count = count + 1)

$display("Count = %d", count);

for loops can also be used to initialize an array or memory, as shown below.

//Initialize array elements

'define MAX_STATES 32

integer state [0: 'MAX_STATES-1]; //Integer array state with elements

0:31

integer i;

initial

begin

for(i = 0; i < 32; i = i + 2) //initialize all even locations with 0

state[i] = 0;

for(i = 1; i < 32; i = i + 2) //initialize all odd locations with 1

state[i] = 1;

end

for loops are generally used when there is a fixed beginning and end to the loop. If the loop is simply looping on

a certain condition, it is better to use the while loop.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 100

4.7.3 Repeat Loop

The keyword repeat is used for this loop. The repeat construct executes the loop a fixed number of times. A

repeat construct cannot be used to loop on a general logical expression. A while loop is used for that purpose. A

repeat construct must contain a number, which can be a constant, a variable or a signal value. However, if the

number is a variable or signal value, it is evaluated only when the loop starts and not during the loop execution.

The counter in Example 4-22 can be expressed with the repeat loop, as shown in

Illustration 1 in Example 4-24. Illustration 2 shows how to model a data buffer that latches data at the positive

edge of clock for the next eight cycles after it receives a data start signal.

Example 4-24 Repeat Loop

//Illustration 1 : increment and display count from 0 to 127

integer count;

initial

begin

count = 0;

repeat(128)

begin

$display("Count = %d", count);

count = count + 1;

end

end

//Illustration 2 : Data buffer module example

//After it receives a data_start signal.

//Reads data for next 8 cycles.

module data_buffer(data_start, data, clock);

parameter cycles = 8;

input data_start;

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 101

input [15:0] data;

input clock;

reg [15:0] buffer [0:7];

integer i;

150

always @(posedge clock)

begin

if(data_start) //data start signal is true

begin

i = 0;

repeat(cycles) //Store data at the posedge of next 8 clock

//cycles

begin

@(posedge clock) buffer[i] = data; //waits till next

// posedge to latch data

i = i + 1;

end

end

end

endmodule

4.7.4 Forever loop

The keyword forever is used to express this loop. The loop does not contain any expression and executes

forever until the $finish task is encountered. The loop is equivalent to a while loop with an expression that

always evaluates to true, e.g., while (1). A forever loop can be exited by use of the disable statement.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 102

A forever loop is typically used in conjunction with timing control constructs. If timing control constructs are

not used, the Verilog simulator would execute this statement infinitely without advancing simulation time and

the rest of the design would never be executed. Example 4-25 explains the use of the forever statement.

Example 4-25 Forever Loop

//Example 1: Clock generation

//Use forever loop instead of always block

reg clock;

initial

begin

clock = 1'b0;

forever #10 clock = ~clock; //Clock with period of 20 units

end

//Example 2: Synchronize two register values at every positive edge of

//clock

reg clock;

reg x, y;

initial

forever @(posedge clock) x = y;

4.8 Sequential and Parallel Blocks

Block statements are used to group multiple statements to act together as one. In previous examples, we used

keywords begin and end to group multiple statements. Thus, we used sequential blocks where the statements in

the block execute one after another. In this section we discuss the block types: sequential blocks and parallel

blocks. We also discuss three special features of blocks: named blocks, disabling named blocks, and nested

blocks.

4.8.1 Block Types

There are two types of blocks: sequential blocks and parallel blocks.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 103

Sequential blocks

The keywords begin and end are used to group statements into sequential blocks.

Sequential blocks have the following characteristics:

• The statements in a sequential block are processed in the order they are specified. A statement is executed

only after its preceding statement completes execution (except for nonblocking assignments with intra-

assignment timing control).

• If delay or event control is specified, it is relative to the simulation time when the previous statement in the

block completed execution.

We have used numerous examples of sequential blocks in this book. Two more examples of sequential blocks

are given in Example 4-26. Statements in the sequential block execute in order. In Illustration 1, the final values

are x = 0, y= 1, z = 1, w = 2 at simulation time 0. In Illustration 2, the final values are the same except that the

simulation time is 35 at the end of the block.

Example 4-26 Sequential Blocks

//Illustration 1: Sequential block without delay

reg x, y;

reg [1:0] z, w;

initial

begin

x = 1'b0;

y = 1'b1;

z = {x, y};

w = {y, x};

end

//Illustration 2: Sequential blocks with delay.

reg x, y;

reg [1:0] z, w;

initial

begin

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 104

x = 1'b0; //completes at simulation time 0

#5 y = 1'b1; //completes at simulation time 5

#10 z = {x, y}; //completes at simulation time 15

#20 w = {y, x}; //completes at simulation time 35

end

Parallel blocks

Parallel blocks, specified by keywords fork and join, provide interesting simulation features. Parallel blocks

have the following characteristics:

• Statements in a parallel block are executed concurrently.

• Ordering of statements is controlled by the delay or event control assigned to each statement.

• If delay or event control is specified, it is relative to the time the block was entered.

Notice the fundamental difference between sequential and parallel blocks. All statements in a parallel block

start at the time when the block was entered. Thus, the order in which the statements are written in the block is

not important.

Let us consider the sequential block with delay in Example 4-26 and convert it to a parallel block. The

converted Verilog code is shown in Example 4-27. The result of simulation remains the same except that all

statements start in parallel at time 0. Hence, the block finishes at time 20 instead of time 35.

Example 4-27 Parallel Blocks

//Example 1: Parallel blocks with delay.

reg x, y;

reg [1:0] z, w;

initial

fork

x = 1'b0; //completes at simulation time 0

#5 y = 1'b1; //completes at simulation time 5

#10 z = {x, y}; //completes at simulation time 10

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 105

#20 w = {y, x}; //completes at simulation time 20

join

Parallel blocks provide a mechanism to execute statements in parallel. However, it is important to be careful

with parallel blocks because of implicit race conditions that might arise if two statements that affect the same

variable complete at the same time. Shown below is the parallel version of Illustration 1 from Example 4-26.

Race conditions have been deliberately introduced in this example. All statements start at simulation time 0.

The order in which the statements will execute is not known. Variables z and w will get values 1 and 2 if x =

1'b0 and y = 1'b1 execute first. Variables z and w will get values 2'bxx and 2'bxx if x = 1'b0 and y = 1'b1

execute last. Thus, the result of z and w is nondeterministic and dependent on the simulator implementation. In

simulation time, all statements in the fork-join block are executed at once. However, in reality, CPUs running

simulations can execute only one statement at a time. Different simulators execute statements in different order.

Thus, the race condition is a limitation of today's simulators, not of the fork-join block.

//Parallel blocks with deliberate race condition

reg x, y;

reg [1:0] z, w;

initial

fork

x = 1'b0;

y = 1'b1;

z = {x, y};

w = {y, x};

join

The keyword fork can be viewed as splitting a single flow into independent flows. The keyword join can be

seen as joining the independent flows back into a single flow. Independent flows operate concurrently.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 106

4.8.2 Special Features of Blocks

We discuss three special features available with block statements: nested blocks, named blocks, and disabling of

named blocks.

Nested blocks

Blocks can be nested. Sequential and parallel blocks can be mixed, as shown in Example 4-28.

Example 4-28 Nested Blocks

//Nested blocks

initial

begin

x = 1'b0;

154

fork

#5 y = 1'b1;

#10 z = {x, y};

join

#20 w = {y, x};

end

Named blocks

Blocks can be given names.

• Local variables can be declared for the named block.

• Named blocks are a part of the design hierarchy. Variables in a named block can be accessed by using

hierarchical name referencing.

• Named blocks can be disabled, i.e., their execution can be stopped.

Example 4-29 shows naming of blocks and hierarchical naming of blocks.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 107

Example 4-29 Named Blocks

//Named blocks

module top;

initial

begin: block1 //sequential block named block1

integer i; //integer i is static and local to block1

// can be accessed by hierarchical name, top.block1.i

...

...

end

initial

fork: block2 //parallel block named block2

reg i; // register i is static and local to block2

// can be accessed by hierarchical name, top.block2.i

...

...

join

Disabling named blocks

The keyword disable provides a way to terminate the execution of a named block. Disable can be used to get

out of loops, handle error conditions, or control execution of pieces of code, based on a control signal. Disabling

a block causes the execution control to be passed to the statement immediately succeeding the block. For C

programmers, this is very similar to the break statement used to exit a loop.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 108

4.9 : Task and Functions

A designer is frequently required to implement the same functionality at many places in a behavioral design.

This means that the commonly used parts should be abstracted into routines and the r outines must be

invoked instead of repeating the code. Most programming languages provide procedures or subroutines to

accomplish this. Verilog provides tasks and functions to break up large behavioral designs into smaller

pieces. Tasks and functions allow the designer to abstract Verilog code that is used at many places in the

design.

Tasks have input, output, and inout arguments; functions have input arguments. Thus, values can be

passed into and out from tasks and functions. Considering the analogy of FORTRAN, tasks are similar to

SUBROUTINE and functions are similar to FUNCTION.

Tasks and functions are included in the design hierarchy. Like named blocks, tasks or functions can be

addressed by means of hierarchical names.

Learning Objectives

 Describe the differences between tasks and functions.

 Identify the conditions required for tasks to be defined. Understand task declaration and invocation.

 Explain the conditions necessary for functions to be defined. Understand function declaration and

invocation.

4.9.1 Differences between Tasks and Functions

Tasks and functions serve different purposes in Verilog. We discuss tasks and functions in greater detail in

the following sections. However, first it is important to understand differences between tasks and functions,

as outlined in Table 8-1.

Table 8-1. Tasks and Functions

Functions Tasks

A function can enable another function but not

another task.

A task can enable other tasks and functions.

Functions always execute in 0 simulation time. Tasks may execute in non-zero simulation time.

Functions must not contain any delay, event, or Tasks may contain delay, event, or timing control

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08table01

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 109

Functions Tasks

timing control statements. statements.

Functions must have at least one input argument.

They can have more than one input.

Tasks may have zero or more arguments of type input,

output, or inout.

Functions always return a single value. They cannot

have output or inout arguments.

Tasks do not return with a value, but can pass multiple

values through output and inout arguments.

 Both task and functions must be defined in a module and are local to the module.

 Tasks are used for common Verilog code that contains delays, timing, event constructs, or multiple output

arguments.

 Functions are used when common Verilog code is purely combinational, executes in zero simulation time

and provides exactly one output

 Functions are typically used for conversions and commonly used calculations.

 Task can have input, output and in-out ports

 Functions can have input ports. In addition they can have local variables, integers, real or events.

 Tasks and functions cannot have wires, they contain behavioral statements only.

 Tasks and functions do not contain always and initial statements but are called form always block, initial

block and other task and functions.

 4.9.2 Task

Tasks are declared with the keywords task and endtask. Tasks must be used if any one of the following

conditions is true for the procedure:

1. There are delay, timing, or event control constructs in the procedure.

2. The procedure has zero or more than one output arguments.

3. The procedure has no input arguments.

 I/O declaration use keywords input, output or input, based on the type of argument declared.

 Input and output arguments are passed into the task.

 Input arguments are processed in the task statements.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 110

 Output and inout argument values are passed back to the variables in the task invocation statement when

the task is completed.

 Task can invoke other tasks or functions.

 Ports are used to connect external signals to the module.

 I/O arguments in a task are used to pass values to and from the task.

4.9.3 Task Declaration and Invocation

Task declaration and task invocation syntax are as follows.

Example 9-1. Syntax for Tasks

task_declaration ::=

 task [automatic] task_identifier ;

 { task_item_declaration }

 statement

 endtask

 | task [automatic] task_identifier (task_port_list) ;

 { block_item_declaration }

 statement

 endtask

task_item_declaration ::=

 block_item_declaration

 | { attribute_instance } tf_input_declaration ;

 | { attribute_instance } tf_output_declaration ;

 | { attribute_instance } tf_inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }

task_port_item ::=

 { attribute_instance } tf_input_declaration

 | { attribute_instance } tf_output_declaration

 | { attribute_instance } tf_inout_declaration

tf_input_declaration ::=

 input [reg] [signed] [range] list_of_port_identifiers

 | input [task_port_type] list_of_port_identifiers

tf_output_declaration ::=

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 111

 output [reg] [signed] [range] list_of_port_identifiers

 | output [task_port_type] list_of_port_identifiers

tf_inout_declaration ::=

 inout [reg] [signed] [range] list_of_port_identifiers

 | inout [task_port_type] list_of_port_identifiers

task_port_type ::=

 time | real | realtime | integer

I/O declarations use keywords input, output, or inout, based on the type of argument declared. Input and inout

arguments are passed into the task. Input arguments are processed in the task statements. Output and inout

argument values are passed back to the variables in the task invocation statement when the task is completed.

Tasks can invoke other tasks or functions.

Although the keywords input, inout, and output used for I/O arguments in a task are the same as the keywords

used to declare ports in modules, there is a difference. Ports are used to connect external signals to the module. I/O

arguments in a task are used to pass values to and from the task.

Task Examples

We discuss two examples of tasks. The first example illustrates the use of input and output arguments in tasks.

The second example models an asymmetric sequence generator that generates an asymmetric sequence on the

clock signal.

Use of input and output arguments

Example 9-2 illustrates the use of input and output arguments in tasks. Consider a task called bitwise_oper,

which computes the bitwise and, bitwise or, and bitwise ex-or of two 16-bit numbers. The two 16-bit numbers a

and b are inputs and the three outputs are 16-bit numbers ab_and, ab_or, ab_xor. A parameter delay is also used

in the task.

Example 9-2. Input and Output Arguments in Tasks

//Define a module called operation that contains the task bitwise_oper

module operation;

...

...

parameter delay = 10;

reg [15:0] A, B;

reg [15:0] AB_AND, AB_OR, AB_XOR;

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list02

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 112

always @(A or B) //whenever A or B changes in value

begin

 //invoke the task bitwise_oper. provide 2 input arguments A, B

 //Expect 3 output arguments AB_AND, AB_OR, AB_XOR

 //The arguments must be specified in the same order as they

 //appear in the task declaration.

 bitwise_oper(AB_AND, AB_OR, AB_XOR, A, B);

end

...

...

//define task bitwise_oper

task bitwise_oper;

output [15:0] ab_and, ab_or, ab_xor; //outputs from the task

input [15:0] a, b; //inputs to the task

begin

 #delay ab_and = a & b;

 ab_or = a | b;

 ab_xor = a ^ b;

end

endtask

...

endmodule

In the above task, the input values passed to the task are A and B. Hence, when the task is entered, a = A and b =

B. The three output values are computed after a delay. This delay is specified by the parameter delay, which is 10

units for this example. When the task is completed, the output values are passed back to the calling output

arguments. Therefore, AB_AND = ab_and, AB_OR = ab_or, and AB_XOR = ab_xor when the task is completed.

Another method of declaring arguments for tasks is the ANSI C style. Example 8-3 shows the bitwise_oper task

defined with an ANSI C style argument declaration.

Example 9-3. Task Definition using ANSI C Style Argument Declaration

//define task bitwise_oper

task bitwise_oper (output [15:0] ab_and, ab_or, ab_xor,

 input [15:0] a, b);

begin

 #delay ab_and = a & b;

 ab_or = a | b;

 ab_xor = a ^ b;

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list03

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 113

end

endtask

Asymmetric Sequence Generator

Tasks can directly operate on reg variables defined in the module. Example 8-4 directly operates on the reg

variable clock to continuously produce an asymmetric sequence. The clock is initialized with an initialization

sequence.

Example 9-4. Direct Operation on reg Variables

//Define a module that contains the task asymmetric_sequence

module sequence;

...

reg clock;

...

initial

 init_sequence; //Invoke the task init_sequence

...

always

begin

 asymmetric_sequence; //Invoke the task asymmetric_sequence

end

...

...

//Initialization sequence

task init_sequence;

begin

 clock = 1'b0;

end

endtask

//define task to generate asymmetric sequence

//operate directly on the clock defined in the module.

task asymmetric_sequence;

begin

 #12 clock = 1'b0;

 #5 clock = 1'b1;

 #3 clock = 1'b0;

 #10 clock = 1'b1;

end

endtask

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list04

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 114

...

...

Endmodule

4.10 Functions

Functions are declared with the keywords function and endfunction. Functions are used if all of the following

conditions are true for the procedure:

1. There are no delay, timing, or event control constructs in the procedure.

2. The procedure returns a single value.

3. There is at least one input argument.

4. There are no output or inout arguments.

5. There are no nonblocking assignments.

4.11 Function Declaration and Invocation

The syntax for functions is follows:

Example 9-6. Syntax for Functions

function_declaration ::=

 function [automatic] [signed] [range_or_type]

 function_identifier ;

 function_item_declaration { function_item_declaration }

 function_statement

 endfunction

 | function [automatic] [signed] [range_or_type]

 function_identifier (function_port_list) ;

 block_item_declaration { block_item_declaration }

 function_statement

 endfunction

function_item_declaration ::=

 block_item_declaration

 | tf_input_declaration ;

function_port_list ::= { attribute_instance } tf_input_declaration {,

 { attribute_instance } tf_input_declaration }

range_or_type ::= range | integer | real | realtime | time

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 115

There are some peculiarities of functions. When a function is declared, a register with name function_identifer is

declared implicitly inside Verilog. The output of a function is passed back by setting the value of the register

function_identifer appropriately. The function is invoked by specifying function name and input arguments. At the

end of function execution, the return value is placed where the function was invoked. The optional range_or_type

specifies the width of the internal register. If no range or type is specified, the default bit width is 1. Functions are

very similar to FUNCTION in FORTRAN.

Notice that at least one input argument must be defined for a function. There are no output arguments for

functions because the implicit register function_identifer contains the output value. Also, functions cannot invoke

other tasks. They can invoke only other functions.

4.12 Function Examples

We will discuss two examples. The first example models a parity calculator that returns a 1-bit value. The second

example models a 32-bit left/right shift register that returns a 32-bit shifted value.

Parity calculation

Let us discuss a function that calculates the parity of a 32-bit address and returns the value. We assume even

parity. Example 8-7 shows the definition and invocation of the function calc_parity.

Example 9-7. Parity Calculation

//Define a module that contains the function calc_parity

module parity;

...

reg [31:0] addr;

reg parity;

//Compute new parity whenever address value changes

always @(addr)

begin

 parity = calc_parity(addr); //First invocation of calc_parity

 $display("Parity calculated = %b", calc_parity(addr));

 //Second invocation of calc_parity

end

...

...

//define the parity calculation function

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list07

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 116

function calc_parity;

input [31:0] address;

begin

 //set the output value appropriately. Use the implicit

 //internal register calc_parity.

 calc_parity = ^address; //Return the xor of all address bits.

end

endfunction

...

...

endmodule

Note that in the first invocation of calc_parity, the returned value was used to set the reg parity. In the second

invocation, the value returned was directly used inside the $display task. Thus, the returned value is placed

wherever the function was invoked.

Another method of declaring arguments for functions is the ANSI C style. Example 8-8 shows the calc_parity

function defined with an ANSI C style argument declaration.

Example 9-8. Function Definition using ANSI C Style Argument Declaration

//define the parity calculation function using ANSI C Style arguments

function calc_parity (input [31:0] address);

begin

 //set the output value appropriately. Use the implicit

 //internal register calc_parity.

 calc_parity = ^address; //Return the xor of all address bits.

end

endfunction

Left/right shifter

To illustrate how a range for the output value of a function can be specified, let us consider a function that shifts a

32-bit value to the left or right by one bit, based on a control signal. Example 8-9 shows the implementation of the

left/right shifter.

Example 9-9. Left/Right Shifter

//Define a module that contains the function shift

module shifter;

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list08
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list09

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 117

...

//Left/right shifter

`define LEFT_SHIFT 1'b0

`define RIGHT_SHIFT 1'b1

reg [31:0] addr, left_addr, right_addr;

reg control;

//Compute the right- and left-shifted values whenever

//a new address value appears

always @(addr)

begin

 //call the function defined below to do left and right shift.

 left_addr = shift(addr, `LEFT_SHIFT);

 right_addr = shift(addr, `RIGHT_SHIFT);

end

...

...

//define shift function. The output is a 32-bit value.

function [31:0] shift;

input [31:0] address;

input control;

begin

 //set the output value appropriately based on a control signal.

 shift = (control == `LEFT_SHIFT) ?(address << 1) : (address >> 1);

end

endfunction

...

...

endmodule

4.13 Automatic (Recursive) Functions

Functions are normally used non-recursively . If a function is called concurrently from two locations, the results

are non-deterministic because both calls operate on the same variable space.

However, the keyword automatic can be used to declare a recursive (automatic) function where all function

declarations are allocated dynamically for each recursive calls. Each call to an automatic function operates in an

independent variable space.Automatic function items cannot be accessed by hierarchical references. Automatic

functions can be invoked through the use of their hierarchical name.

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 118

Example 9-10 shows how an automatic function is defined to compute a factorial.

Example 9-10. Recursive (Automatic) Functions

//Define a factorial with a recursive function

module top;

...

// Define the function

function automatic integer factorial;

input [31:0] oper;

integer i;

begin

if (operand >= 2)

 factorial = factorial (oper -1) * oper; //recursive call

else

 factorial = 1 ;

end

endfunction

// Call the function

integer result;

initial

begin

 result = factorial(4); // Call the factorial of 7

 $display("Factorial of 4 is %0d", result); //Displays 24

end

...

...

endmodule

4.14 Constant Functions

A constant function[1] is a regular Verilog HDL function, but with certain restrictions. These functions can be used

to reference complex values and can be used instead of constants.

Example 9-11 shows how a constant function can be used to compute the width of the address bus in a module.

Example 9-11. Constant Functions

//Define a RAM model

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list10
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ftn.ch08fn01
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list11

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 119

module ram (...);

parameter RAM_DEPTH = 256;

input [clogb2(RAM_DEPTH)-1:0] addr_bus; //width of bus computed

 //by calling constant

 //function defined below

 //Result of clogb2 = 8

 //input [7:0] addr_bus;

--

--

//Constant function

function integer clogb2(input integer depth);

begin

 for(clogb2=0; depth >0; clogb2=clogb2+1)

 depth = depth >> 1;

end

endfunction

--

--

endmodule

Signed Functions

Signed functions allow signed operations to be performed on the function return values. Example 8-12 shows an

example of a signed function.

Example 9-12. Signed Functions

module top;

//Signed function declaration

//Returns a 64 bit signed value

function signed [63:0] compute_signed(input [63:0] vector);

--

--

endfunction

--

//Call to the signed function from the higher module

if(compute_signed(vector) < -3)

begin

--

end

endmodule

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch08.html#ch08list12

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 120

4.15 Summary

In this chapter, we discussed tasks and functions used in behavior Verilog modeling.

 Tasks and functions are used to define common Verilog functionality that is used at many places in the

design. Tasks and functions help to make a module definition more readable by breaking it up into

manageable subunits. Tasks and functions serve the same purpose in Verilog as subroutines do in C.

 Tasks can take any number of input, inout, or output arguments. Delay, event, or timing control

constructs are permitted in tasks. Tasks can enable other tasks or functions.

 Re-entrant tasks defined with the keyword automatic allow each task call to operate in an independent

space. Therefore, re-entrant tasks work correctly even with concurrent tasks calls.

 Functions are used when exactly one return value is required and at least one input argument is specified.

Delay, event, or timing control constructs are not permitted in functions. Functions can invoke other

functions but cannot invoke other tasks.

 A register with name as the function name is declared implicitly when a function is declared. The return

value of the function is passed back in this register.

 Recursive functions defined with the keyword automatic allow each function call to operate in an

independent space. Therefore, recursive or concurrent calls to such functions will work correctly.

 Tasks and functions are included in a design hierarchy and can be addressed by hierarchical name

referencing.

Exercises

1: Define a function to calculate the factorial of a 4-bit number. The output is a 32-bit value. Invoke the function

by using stimulus and check results.

2: Define a function to multiply two 4-bit numbers a and b. The output is an 8-bit value. Invoke the function by

using stimulus and check results.

3: Define a function to design an 8-function ALU that takes two 4-bit numbers a and b and computes a 5-bit

result out based on a 3-bit select signal. Ignore overflow or underflow bits.

Select Signal Function Output

3'b000 a

3'b001 a + b

3'b010 a - b

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 121

3'b011 a / b

3'b100 a % 1 (remainder)

3'b101 a << 1

3'b110 a >> 1

3'b111 (a > b) (magnitude compare)

4: Define a task to compute the factorial of a 4-bit number. The output is a 32-bit value. The result is assigned to

the output after a delay of 10 time units.

5: Define a task to compute even parity of a 16-bit number. The result is a 1-bit value that is assigned to the

output after three positive edges of clock. (Hint: Use a repeat loop in the task.)

6: Using named events, tasks, and functions, design the traffic signal controller in Traffic Signal Controller on

page 160.

4.11 Outcomes

After completion of the module the students are able to:

 Explain the significance of structured procedures always and initial in behavioral modeling.

 Define blocking and nonblocking procedural assignments.

 Understand delay-based timing control mechanism in behavioral modeling. Use regular delays, intra-

assignment delays, and zero delays.

 Describe event-based timing control mechanism in behavioral modeling. Use regular event control,

named event control, and event OR control.

 Use level-sensitive timing control mechanism in behavioral modeling.

 Explain conditional statements using if and else.

 Describe multiway branching, using case, casex, and casez statements.

 Understand looping statements such as while, for, repeat, and forever.

 Define sequential and parallel blocks.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch07.html#ch07lev2sec21

Verilog HDL [18EC56]

Dept. of ECE, SJBIT Page 122

4.12 : Recommended Questions

1. Describe the following statements with an example: initial and always

2. What are blocking and non-blocking assignment statements? Explain with examples.

3. With syntax explain conditional, branching and loop statements available in Verilog HDL behavioural

description.

4. Describe sequential and parallel blocks of Verilog HDL.

5. Write Verilog HDL program of 4:1 mux using CASE statement.

6. Write Verilog HDL program of 4:1 mux using If-else statement.

7. Write Verilog HDL program of 4-bit synchronous up counter.

8. Write Verilog HDL program of 4-bit asynchronous down counter.

9. Write Verilog HDL program to simulate traffic signal controller

Dept. of ECE, SJBIT Page 1

Verilog HDL 18EC56

MODULE -5

Useful Modeling Techniques

5.1 : Objectives

 Describe procedural continuous assignment statements assign, deassign, force, and release. Explain their

significance in modeling and debugging.

 Understand how to override parameters by using the defparam statement at the time of module instantiation.

 Explain conditional compilation and execution of parts of the Verilog description.

 Identify system tasks for file output, displaying hierarchy, strobing, random number generation, memory

initialization, and value change dump.

5.2 : Procedural Continuous Assignments

We learned the basic features of Verilog in the preceding modules. In this module we will discuss additional

features that enhance the Verilog language, making it powerful and flexible for modeling and analyzing a

design.

We studied procedural assignments in Section 7.2, Procedural Assignments. Procedural assignments assign a

value to a register. The value stays in the register until another procedural assignment puts another value in

that register. Procedural continuous assignments behave differently. They are procedural statements which

allow values of expressions to be driven continuously onto registers or nets for limited periods of time.

Procedural continuous assignments override existing assignments to a register or net. They provide an useful

extension to the regular procedural assignment statement.

5.3 : Assign and Deassign

The keywords assign and deassign are used to express the first type of procedural continuous assignment. The

left-hand side of procedural continuous assignments can be only be a register or a concatenation of registers. It

cannot be a part or bit select of a net or an array of registers. Procedural continuous assignments override the effect

of regular procedural assignments. Procedural continuous assignments are normally used for controlled periods of

time.A simple example is the negative edge-triggered D-flipflop with asynchronous reset that we modeled in

Example 6-8. In Example 5-1, we now model the same D_FF, using assign and deassign statements.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch07.html#ch07lev1sec2
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch06.html#ch06list08
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list01

Dept. of ECE, SJBIT Page 2

Verilog HDL 18EC56

Example 5-1. D-Flipflop with Procedural Continuous Assignments

// Negative edge-triggered D-flipflop with asynchronous reset

module edge_dff(q, qbar, d, clk, reset);

// Inputs and outputs

output q,qbar;

input d, clk, reset;

reg q, qbar; //declare q and qbar are registers

always @(negedge clk) //assign value of q & qbar at active edge of clock.

begin

 q = d;

 qbar = ~d;

end

always @(reset) //Override the regular assignments to q and qbar

 //whenever reset goes high. Use of procedural continuous

 //assignments.

 if(reset)

 begin //if reset is high, override regular assignments to q with

 //the new values, using procedural continuous assignment.

 assign q = 1'b0;

 assign qbar = 1'b1;

 end

 else

 begin //If reset goes low, remove the overriding values by

 //deassigning the registers. After this the regular

 //assignments q = d and qbar = ~d will be able to change

 //the registers on the next negative edge of clock.

 deassign q;

 deassign qbar;

 end

endmodule

In Example 5-1, we overrode the assignment on q and qbar and assigned new values to them when the reset signal

went high. The register variables retain the continuously assigned value after the deassign until they are changed

by a future procedural assignment. The assign and deassign constructs are now considered to be a bad coding style

and it is recommended that alternative styles be used in Verilog HDL code.

5.4 : Force and Release

Keywords force and release are used to express the second form of the procedural continuous assignments. They

can be used to override assignments on both registers and nets. force and release statements are typically used in

the interactive debugging process, where certain registers or nets are forced to a value and the effect on other

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list01

Dept. of ECE, SJBIT Page 3

Verilog HDL 18EC56

registers and nets is noted. It is recommended that force and release statements not be used inside design blocks.

They should appear only in stimulus or as debug statements.

force and release on registers

A force on a register overrides any procedural assignments or procedural continuous assignments on the register

until the register is released. The register variables will continue to store the forced value after being released, but

can then be changed by a future procedural assignment. To override the values of q and qbar in Example 5-1 for a

limited period of time, we could do the following:

module stimulus;

...

...

//instantiate the d-flipflop

edge_dff dff(Q, Qbar, D, CLK, RESET);

...

...

initial

begin

 //these statements force value of 1 on dff.q between time 50 and

 //100, regardless of the actual output of the edge_dff.

 #50 force dff.q = 1'b1; //force value of q to 1 at time 50.

 #50 release dff.q; //release the value of q at time 100.

end

...

...

endmodule

force and release on nets

force on nets overrides any continuous assignments until the net is released. The net will immediately return to its

normal driven value when it is released. A net can be forced to an expression or a value.

module top;

...

...

assign out = a & b & c; //continuous assignment on net out

...

initial

 #50 force out = a | b & c;

 #50 release out;

end

...

...

endmodule

In the example above, a new expression is forced on the net from time 50 to time 100. From time 50 to time 100,

when the force statement is active, the expression a | b & c will be re-evaluated and assigned to out whenever

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list01

Dept. of ECE, SJBIT Page 4

Verilog HDL 18EC56

values of signals a or b or c change. Thus, the force statement behaves like a continuous assignment except that it

is active for only a limited period of time.

5.5: Overriding Parameters

Parameters can be defined in a module definition, as was discussed earlier in Section 3.2.8, Parameters. However,

during compilation of Verilog modules, parameter values can be altered separately for each module instance. This

allows us to pass a distinct set of parameter values to each module during compilation regardless of predefined

parameter values.

There are two ways to override parameter values: through the defparam statement or through module instance

parameter value assignment.

Defparam Statement

Parameter values can be changed in any module instance in the design with the keyword defparam. The

hierarchical name of the module instance can be used to override parameter values. Consider Example 9-2, which

uses defparam to override the parameter values in module instances.

Example 5-2. Defparam Statement

//Define a module hello_world

module hello_world;

parameter id_num = 0; //define a module identification number = 0

initial //display the module identification number

 $display("Displaying hello_world id number = %d", id_num);

endmodule

//define top-level module

module top;

//change parameter values in the instantiated modules

//Use defparam statement

defparam w1.id_num = 1, w2.id_num = 2;

//instantiate two hello_world modules

hello_world w1();

hello_world w2();

endmodule

In Example 5-2, the module hello_world was defined with a default id_num = 0. However, when the module

instances w1 and w2 of the type hello_world are created, their id_num values are modified with the defparam

statement. If we simulate the above design, we would get the following output:

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch03.html#ch03lev2sec15
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list02
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list02

Dept. of ECE, SJBIT Page 5

Verilog HDL 18EC56

Displaying hello_world id number = 1

Displaying hello_world id number = 2

Multiple defparam statements can appear in a module. Any parameter can be overridden with the defparam

statement. The defparam construct is now considered to be a bad coding style and it is recommended that

alternative styles be used in Verilog HDL code.

Note that the module hello_world can also be defined using an ANSI C style parameter declaration. Figure 5-3

shows the ANSI C style parameter declaration for the module hello_world.

Example 5-3. ANSI C Style Parameter Declaration

//Define a module hello_world

module hello_world #(parameter id_num = 0) ;//ANSI C Style Parameter

initial //display the module identification number

 $display("Displaying hello_world id number = %d", id_num);

endmodule

Module_Instance Parameter Values

Parameter values can be overridden when a module is instantiated. To illustrate this, we will use Example 5-2 and

modify it a bit. The new parameter values are passed during module instantiation. The top-level module can pass

parameters to the instances w1 and w2, as shown below. Notice that defparam is not needed. The simulation

output will be identical to the output obtained with the defparam statement.

//define top-level module

module top;

//instantiate two hello_world modules; pass new parameter values

//Parameter value assignment by ordered list

hello_world #(1) w1; //pass value 1 to module w1

//Parameter value assignment by name

hello_world #(.id_num(2)) w2; //pass value 2 to id_num parameter

 //for module w2

endmodule

If multiple parameters are defined in the module, during module instantiation, they can be overridden by

specifying the new values in the same order as the parameter declarations in the module. If an overriding value is

not specified, the default parameter declaration values are taken. Alternately, one can override specific values by

naming the parameters and the corresponding values. This is called parameter value assignment by name. Consider

Example 9-4.

Example 9-4. Module Instance Parameter Values

//define module with delays

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list02
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list04

Dept. of ECE, SJBIT Page 6

Verilog HDL 18EC56

module bus_master;

parameter delay1 = 2;

parameter delay2 = 3;

parameter delay3 = 7;

...

<module internals>

...

endmodule

//top-level module; instantiates two bus_master modules

module top;

//Instantiate the modules with new delay values

//Parameter value assignment by ordered list

bus_master #(4, 5, 6) b1(); //b1: delay1 = 4, delay2 = 5, delay3 = 6

bus_master #(9, 4) b2(); //b2: delay1 = 9, delay2 = 4, delay3 = 7(default)

//Parameter value assignment by name

bus_master #(.delay2(4), delay3(7)) b3(); //b2: delay2 = 4, delay3 = 7

 //delay1=2 (default)

// It is recommended to use the parameter value assignment by name

// This minimizes the chance of error and parameters can be added

// or deleted without worrying about the order.

endmodule

Module-instance parameter value assignment is a very useful method used to override parameter values and to

customize module instances.

5.6 : Conditional Compilation and Execution

A portion of Verilog might be suitable for one environment but not for another. The designer does not wish to

create two versions of Verilog design for the two environments. Instead, the designer can specify that the particular

portion of the code be compiled only if a certain flag is set. This is called conditional compilation.

A designer might also want to execute certain parts of the Verilog design only when a flag is set at run time. This

is called conditional execution.

Conditional Compilation

Conditional compilation can be accomplished by using compiler directives `ifdef, `ifndef, `else, `elsif, and `endif.

Example 5-5 contains Verilog source code to be compiled conditionally.

Example 5-5. Conditional Compilation

//Conditional Compilation

//Example 1

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list05

Dept. of ECE, SJBIT Page 7

Verilog HDL 18EC56

'ifdef TEST //compile module test only if text macro TEST is defined

module test;

...

...

endmodule

'else //compile the module stimulus as default

module stimulus;

...

...

endmodule

'endif //completion of 'ifdef directive

//Example 2

module top;

bus_master b1(); //instantiate module unconditionally

'ifdef ADD_B2

 bus_master b2(); //b2 is instantiated conditionally if text macro

 //ADD_B2 is defined

'elsif ADD_B3

 bus_master b3(); //b3 is instantiated conditionally if text macro

 //ADD_B3 is defined

'else

 bus_master b4(); //b4 is instantiate by default

'endif

'ifndef IGNORE_B5

 bus_master b5(); //b5 is instantiated conditionally if text macro

 //IGNORE_B5 is not defined

'endif

endmodule

The `ifdef and `ifndef directives can appear anywhere in the design. A designer can conditionally compile

statements, modules, blocks, declarations, and other compiler directives. The `else directive is optional. A

maximum of one `else directive can accompany an `ifdef or `ifndef. Any number of `elsif directives can

accompany an `ifdef or `ifndef. An `ifdef or `ifndef is always closed by a corresponding `endif.

The conditional compile flag can be set by using the `define statement inside the Verilog file. In the example

above, we could define the flags by defining text macros TEST and ADD_B2 at compile time by using the `define

statement. The Verilog compiler simply skips the portion if the conditional compile flag is not set. A Boolean

expression, such as TEST && ADD_B2, is not allowed with the `ifdef statement.

Conditional Execution

Conditional execution flags allow the designer to control statement execution flow at run time. All statements are

compiled but executed conditionally. Conditional execution flags can be used only for behavioral statements. The

system task keyword $test$plusargs is used for conditional execution.

Dept. of ECE, SJBIT Page 8

Verilog HDL 18EC56

Consider Example 5-6, which illustrates conditional execution with $test$plusargs.

Example 5-6. Conditional Execution with $test$plusargs

//Conditional execution

module test;

...

...

initial

begin

 if($test$plusargs("DISPLAY_VAR"))

 $display("Display = %b ", {a,b,c}); //display only if flag is set

 else

//Conditional execution

 $display("No Display"); //otherwise no display

end

endmodule

The variables are displayed only if the flag DISPLAY_VAR is set at run time. Flags can be set at run time by

specifying the option +DISPLAY_VAR at run time.

Conditional execution can be further controlled by using the system task keyword $value$plusargs. This system

task allows testing for arguments to an invocation option. $value$plusargs returns a 0 if a matching invocation

was not found and non-zero if a matching option was found. Example 5-7 shows an example of $value$plusargs.

Example 5-7. Conditional Execution with $value$plusargs

//Conditional execution with $value$plusargs

module test;

reg [8*128-1:0] test_string;

integer clk_period;

...

...

initial

begin

 if($value$plusargs("testname=%s", test_string))

 $readmemh(test_string, vectors); //Read test vectors

 else

 //otherwise display error message

 $display("Test name option not specified");

 if($value$plusargs("clk_t=%d", clk_period))

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list06
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list07

Dept. of ECE, SJBIT Page 9

Verilog HDL 18EC56

 forever #(clk_period/2) clk = ~clk; //Set up clock

 else

 //otherwise display error message

 $display("Clock period option name not specified");

end

//For example, to invoke the above options invoke simulator with

//+testname=test1.vec +clk_t=10

//Test name = "test1.vec" and clk_period = 10

endmodule

5.5: Time Scales

Often, in a single simulation, delay values in one module need to be defined by using certain time unit, e.g., 1 µs,

and delay values in another module need to be defined by using a different time unit, e.g. 100 ns. Verilog HDL

allows the reference time unit for modules to be specified with the `timescale compiler directive.

Usage: `timescale <reference_time_unit> / <time_precision>

The <reference_time_unit> specifies the unit of measurement for times and delays. The <time_precision> specifies

the precision to which the delays are rounded off during simulation. Only 1, 10, and 100 are valid integers for

specifying time unit and time precision. Consider the two modules, dummy1 and dummy2, in Example 5-8.

Example 5-8. Time Scales

//Define a time scale for the module dummy1

//Reference time unit is 100 nanoseconds and precision is 1 ns

`timescale 100 ns / 1 ns

module dummy1;

reg toggle;

//initialize toggle

initial

 toggle = 1'b0;

//Flip the toggle register every 5 time units

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list08

Dept. of ECE, SJBIT Page 10

Verilog HDL 18EC56

//In this module 5 time units = 500 ns = .5 μs

always #5

 begin

 toggle = ~toggle;

 $display("%d , In %m toggle = %b ", $time, toggle);

 end

endmodule

//Define a time scale for the module dummy2

//Reference time unit is 1 microsecond and precision is 10 ns

`timescale 1 us / 10 ns

module dummy2;

reg toggle;

//initialize toggle

initial

 toggle = 1'b0;

//Flip the toggle register every 5 time units

//In this module 5 time units = 5 μs = 5000 ns

always #5

 begin

 toggle = ~toggle;

 $display("%d , In %m toggle = %b ", $time, toggle);

Dept. of ECE, SJBIT Page 11

Verilog HDL 18EC56

 end

endmodule

The two modules dummy1 and dummy2 are identical in all respects, except that the time unit for dummy1 is 100 ns

and the time unit for dummy2 is 1 µs. Thus the $display statement in dummy1 will be executed 10 times for each

$display executed in dummy2. The $time task reports the simulation time in terms of the reference time unit for

the module in which it is invoked. The first few $display statements are shown in the simulation output below to

illustrate the effect of the `timescale directive.

 5 , In dummy1 toggle = 1

 10 , In dummy1 toggle = 0

 15 , In dummy1 toggle = 1

 20 , In dummy1 toggle = 0

 25 , In dummy1 toggle = 1

 30 , In dummy1 toggle = 0

 35 , In dummy1 toggle = 1

 40 , In dummy1 toggle = 0

 45 , In dummy1 toggle = 1

--> 5 , In dummy2 toggle = 1

 50 , In dummy1 toggle = 0

 55 , In dummy1 toggle = 1

Notice that the $display statement in dummy2 executes once for every ten $display statements in dummy1.

Dept. of ECE, SJBIT Page 12

Verilog HDL 18EC56

5.7 Useful System Tasks

In this section, we discuss the system tasks that are useful for a variety of purposes in Verilog. We discuss system

tasks [1] for file output, displaying hierarchy, strobing, random number generation, memory initialization, and

value change dump.

File Output

Output from Verilog normally goes to the standard output and the file verilog.log. It is possible to redirect the

output of Verilog to a chosen file.

Opening a file

A file can be opened with the system task $fopen.

Usage: $fopen("<name_of_file>"); [2]

Usage: <file_handle> = $fopen("<name_of_file>");

The task $fopen returns a 32-bit value called a multichannel descriptor.[3] Only one bit is set in a multichannel

descriptor. The standard output has a multichannel descriptor with the least significant bit (bit 0) set. Standard

output is also called channel 0. The standard output is always open. Each successive call to $fopen opens a new

channel and returns a 32-bit descriptor with bit 1 set, bit 2 set, and so on, up to bit 30 set. Bit 31 is reserved. The

channel number corresponds to the individual bit set in the multichannel descriptor. Example 9-9 illustrates the use

of file descriptors.

Example 9-9. File Descriptors

//Multichannel descriptor

integer handle1, handle2, handle3; //integers are 32-bit values

//standard output is open; descriptor = 32'h0000_0001 (bit 0 set)

initial

begin

 handle1 = $fopen("file1.out"); //handle1 = 32'h0000_0002 (bit 1 set)

 handle2 = $fopen("file2.out"); //handle2 = 32'h0000_0004 (bit 2 set)

 handle3 = $fopen("file3.out"); //handle3 = 32'h0000_0008 (bit 3 set)

end

The advantage of multichannel descriptors is that it is possible to selectively write to multiple files at the same

time. This is explained below in greater detail.

Writing to files

The system tasks $fdisplay, $fmonitor, $fwrite, and $fstrobe are used to write to files.[4] Note that these tasks are

similar in syntax to regular system tasks $display, $monitor, etc., but they provide the additional capability of

writing to files.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ftn.ch09fn01
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ftn.ch09fn02
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ftn.ch09fn03
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list09
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ftn.ch09fn04

Dept. of ECE, SJBIT Page 13

Verilog HDL 18EC56

We will consider only $fdisplay and $fmonitor tasks.

Usage: $fdisplay(<file_descriptor>, p1, p2 ..., pn);

 $fmonitor(<file_descriptor>, p1, p2,..., pn);

p1, p2, …, pn can be variables, signal names, or quoted strings.A file_descriptor is a multichannel descriptor that

can be a file handle or a bitwise combination of file handles. Verilog will write the output to all files that have a 1

associated with them in the file descriptor. We will use the file descriptors defined in Example 9-9 to illustrate the

use of the $fdisplay and $fmonitor tasks.

//All handles defined in Example 9-9

//Writing to files

integer desc1, desc2, desc3; //three file descriptors

initial

begin

 desc1 = handle1 | 1; //bitwise or; desc1 = 32'h0000_0003

 $fdisplay(desc1, "Display 1");//write to files file1.out & stdout

 desc2 = handle2 | handle1; //desc2 = 32'h0000_0006

 $fdisplay(desc2, "Display 2");//write to files file1.out & file2.out

 desc3 = handle3 ; //desc3 = 32'h0000_0008

 $fdisplay(desc3, "Display 3");//write to file file3.out only

end

Closing files

Files can be closed with the system task $fclose.

Usage: $fclose(<file_handle>);

//Closing Files

$fclose(handle1);

A file cannot be written to once it is closed. The corresponding bit in the multichannel descriptor is set to 0. The

next $fopen call can reuse the bit.

Displaying Hierarchy

Hierarchy at any level can be displayed by means of the %m option in any of the display tasks, $display, $write

task, $monitor, or $strobe task, as discussed briefly in Section 4.3, Hierarchical Names. This is a very useful

option. For example, when multiple instances of a module execute the same Verilog code, the %m option will

distinguish from which module instance the output is coming. No argument is needed for the %m option in the

display tasks. See Example 9-10.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list09
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch04.html#ch04lev1sec3
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list10

Dept. of ECE, SJBIT Page 14

Verilog HDL 18EC56

Example 5-10. Displaying Hierarchy

//Displaying hierarchy information

module M;

...

initial

 $display("Displaying in %m");

endmodule

//instantiate module M

module top;

...

M m1();

M m2();

//Displaying hierarchy information

M m3();

endmodule

The output from the simulation will look like the following:

Displaying in top.m1

Displaying in top.m2

Displaying in top.m3

This feature can display full hierarchical names, including module instances, tasks, functions, and named blocks.

Strobing

Strobing is done with the system task keyword $strobe. This task is very similar to the $display task except for a

slight difference. If many other statements are executed in the same time unit as the $display task, the order in

which the statements and the $display task are executed is nondeterministic. If $strobe is used, it is always

executed after all other assignment statements in the same time unit have executed. Thus, $strobe provides a

synchronization mechanism to ensure that data is displayed only after all other assignment statements, which

change the data in that time step, have executed. See Example 5-11.

Example 5-11. Strobing

//Strobing

always @(posedge clock)

begin

 a = b;

 c = d;

end

always @(posedge clock)

 $strobe("Displaying a = %b, c = %b", a, c); // display values at posedge

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list11

Dept. of ECE, SJBIT Page 15

Verilog HDL 18EC56

In Example 9-11, the values at positive edge of clock will be displayed only after statements a = b and c = d

execute. If $display was used, $display might execute before statements a = b and c = d, thus displaying different

values.

Random Number Generation

Random number generation capabilities are required for generating a random set of test vectors. Random testing is

important because it often catches hidden bugs in the design. Random vector generation is also used in

performance analysis of chip architectures. The system task $random is used for generating a random number.

Usage: $random;

 $random(<seed>);

The value of <seed> is optional and is used to ensure the same random number sequence each time the test is run.

The <seed> parameter can either be a reg, integer, or time variable. The task $random returns a 32-bit signed

integer. All bits, bit-selects, or part-selects of the 32-bit random number can be used (see Example 5-12).

Example 5-12. Random Number Generation

//Generate random numbers and apply them to a simple ROM

module test;

integer r_seed;

reg [31:0] addr;//input to ROM

wire [31:0] data;//output from ROM

...

...

ROM rom1(data, addr);

initial

 r_seed = 2; //arbitrarily define the seed as 2.

always @(posedge clock)

 addr = $random(r_seed); //generates random numbers

...

<check output of ROM against expected results>

...

...

endmodule

The random number generator is able to generate signed integers. Therefore, depending on the way the $random

task is used, it can generate positive or negative integers. Example 9-13 shows an example of such generation.

Example 5-13. Generation of Positive and Negative Numbers by $random Task

reg [23:0] rand1, rand2;

rand1 = $random % 60; //Generates a random number between -59 and 59

rand2 = {$random} % 60; //Addition of concatenation operator to

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list11
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list12
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list13

Dept. of ECE, SJBIT Page 16

Verilog HDL 18EC56

 //$random generates a positive value between

 //0 and 59.

Note that the algorithm used by $random is standardized. Therefore, the same simulation test run on different

simulators will generate consistent random patterns for the same seed value.

Initializing Memory from File

We discussed how to declare memories in Section 3.2.7, Memories. Verilog provides a very useful system task to

initialize memories from a data file. Two tasks are provided to read numbers in binary or hexadecimal format.

Keywords $readmemb and $readmemh are used to initialize memories.

Usage: $readmemb("<file_name>", <memory_name>);

 $readmemb("<file_name>", <memory_name>, <start_addr>);

 $readmemb("<file_name>", <memory_name>, <start_addr>,

<finish_addr>);

 Identical syntax for $readmemh.

The <file_name> and <memory_name> are mandatory; <start_addr> and <finish_addr> are optional. Defaults

are start index of memory array for <start_addr> and end of the data file or memory for <finish_addr>. Example

9-14 illustrates how memory is initialized.

Example 9-14. Initializing Memory

module test;

reg [7:0] memory[0:7]; //declare an 8-byte memory

integer i;

initial

begin

 //read memory file init.dat. address locations given in memory

 $readmemb("init.dat", memory);

module test;

 //display contents of initialized memory

 for(i=0; i < 8; i = i + 1)

 $display("Memory [%0d] = %b", i, memory[i]);

end

endmodule

The file init.dat contains the initialization data. Addresses are specified in the data file with @<address>.

Addresses are specified as hexadecimal numbers. Data is separated by whitespaces. Data can contain x or z.

Uninitialized locations default to x. A sample file, init.dat, is shown below.

@002

11111111 01010101

00000000 10101010

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch03.html#ch03lev2sec14
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list14
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list14

Dept. of ECE, SJBIT Page 17

Verilog HDL 18EC56

@006

1111zzzz 00001111

When the test module is simulated, we will get the following output:

Memory [0] = xxxxxxxx

Memory [1] = xxxxxxxx

Memory [2] = 11111111

Memory [3] = 01010101

Memory [4] = 00000000

Memory [5] = 10101010

Memory [6] = 1111zzzz

Memory [7] = 00001111

Value Change Dump File

A value change dump (VCD) is an ASCII file that contains information about simulation time, scope and signal

definitions, and signal value changes in the simulation run. All signals or a selected set of signals in a design can

be written to a VCD file during simulation. Postprocessing tools can take the VCD file as input and visually

display hierarchical information, signal values, and signal waveforms. Many postprocessing tools as well as tools

integrated into the simulator are now commercially available. For simulation of large designs, designers dump

selected signals to a VCD file and use a postprocessing tool to debug, analyze, and verify the simulation output.

The use of VCD file in the debug process is shown in Figure 9-1.

Figure 9-1. Debugging and Analysis of Simulation with VCD File

System tasks are provided for selecting module instances or module instance signals to dump ($dumpvars), name

of VCD file ($dumpfile), starting and stopping the dump process ($dumpon, $dumpoff), and generating

checkpoints ($dumpall). The uses of each task are shown in Example 9-15.

Example 9-15. VCD File System Tasks

//specify name of VCD file. Otherwise,default name is

//assigned by the simulator.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09fig01
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list15

Dept. of ECE, SJBIT Page 18

Verilog HDL 18EC56

initial

 $dumpfile("myfile.dmp"); //Simulation info dumped to myfile.dmp

//Dump signals in a module

initial

 $dumpvars; //no arguments, dump all signals in the design

initial

 $dumpvars(1, top); //dump variables in module instance top.

 //Number 1 indicates levels of hierarchy. Dump one

 //hierarchy level below top, i.e., dump variables in top,

 //but not signals in modules instantiated by top.

initial

 $dumpvars(2, top.m1);//dump up to 2 levels of hierarchy below top.m1

initial

 $dumpvars(0, top.m1);//Number 0 means dump the entire hierarchy

 // below top.m1

//Start and stop dump process

initial

begin

 $dumpon; //start the dump process.

 #100000 $dumpoff; //stop the dump process after 100,000 time units

end

//Create a checkpoint. Dump current value of all VCD variables

initial

 $dumpall;

The $dumpfile and $dumpvars tasks are normally specified at the beginning of the simulation. The $dumpon,

$dumpoff, and $dumpall control the dump process during the simulation.[5]

Postprocessing tools with graphical displays are commercially available and are now an important part of the

simulation and debug process. For large simulation runs, it is very difficult for the designer to analyze the output

from $display or $monitor statements. It is more intuitive to analyze results from graphical waveforms. Formats

other than VCD have also emerged, but VCD still remains the popular dump format for Verilog simulators.

However, it is important to note that VCD files can become very large (hundreds of megabytes for large designs).

It is important to selectively dump only those signals that need to be examined.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ftn.ch09fn05

Dept. of ECE, SJBIT Page 19

Verilog HDL 18EC56

5.8 Logic Synthesis with Verilog HDL

Advances in logic synthesis have pushed HDLs into the forefront of digital design technology. Logic synthesis

tools have cut design cycle times significantly. Designers can design at a high level of abstraction and thus reduce

design time. In this chapter, we discuss logic synthesis with Verilog HDL. Synopsys synthesis products were used

for the examples in this chapter, and results for individual examples may vary with synthesis tools. However, the

concepts discussed in this chapter are general enough to be applied to any logic synthesis tool.[1] This chapter is

intended to give the reader a basic understanding of the mechanics and issues involved in logic synthesis. It is not

intended to be comprehensive material on logic synthesis. Detailed knowledge of logic synthesis can be obtained

from reference manuals, logic synthesis books, and by attending training classes.

Learning Objectives

 Define logic synthesis and explain the benefits of logic synthesis.

 Identify Verilog HDL constructs and operators accepted in logic synthesis. Understand how the logic

synthesis tool interprets these constructs.

 Explain a typical design flow, using logic synthesis. Describe the components in the logic synthesis-based

design flow.

 Describe verification of the gate-level netlist produced by logic synthesis.

 Understand techniques for writing efficient RTL descriptions.

 Describe partitioning techniques to help logic synthesis provide the optimal gate-level netlist.

 Design combinational and sequential circuits, using logic synthesis.

5.9 What Is Logic Synthesis?

Simply speaking, logic synthesis is the process of converting a high-level description of the design into an

optimized gate-level representation, given a standard cell library and certain design constraints. A standard cell

library can have simple cells, such as basic logic gates like and, or, and nor, or macro cells, such as adders,

muxes, and special flip-flops. A standard cell library is also known as the technology library.

Logic synthesis always existed even in the days of schematic gate-level design, but it was always done inside the

designer's mind. The designer would first understand the architectural description. Then he would consider design

constraints such as timing, area, testability, and power. The designer would partition the design into high-level

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ftn.ch14fn01

Dept. of ECE, SJBIT Page 20

Verilog HDL 18EC56

blocks, draw them on a piece of paper or a computer terminal, and describe the functionality of the circuit. This

was the high-level description. Finally, each block would be implemented on a hand-drawn schematic, using the

cells available in the standard cell library. The last step was the most complex process in the design flow and

required several time-consuming design iterations before an optimized gate-level representation that met all design

constraints was obtained. Thus, the designer's mind was used as the logic synthesis tool, as illustrated in Figure 14-

1

Figure 14-1. Designer's Mind as the Logic Synthesis Tool

The advent of computer-aided logic synthesis tools has automated the process of converting the high-level

description to logic gates. Instead of trying to perform logic synthesis in their minds, designers can now

concentrate on the architectural trade-offs, high-level description of the design, accurate design constraints, and

optimization of cells in the standard cell library. These are fed to the computer-aided logic synthesis tool, which

performs several iterations internally and generates the optimized gate-level description. Also, instead of drawing

the high-level description on a screen or a piece of paper, designers describe the high-level design in terms of

HDLs. Verilog HDL has become one of the popular HDLs for the writing of high-level descriptions. Figure 14-2

illustrates the process.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14fig02

Dept. of ECE, SJBIT Page 21

Verilog HDL 18EC56

Figure 14-2. Basic Computer-Aided Logic Synthesis Process

Automated logic synthesis has significantly reduced time for conversion from high-level design representation to

gates. This has allowed designers to spend more time on designing at a higher level of representation, because less

time is required for converting the design to gates.

5.10 Impact of Logic Synthesis

Logic synthesis has revolutionized the digital design industry by significantly improving productivity and by

reducing design cycle time. Before the days of automated logic synthesis, when designs were converted to gates

manually, the design process had the following limitations:

 For large designs, manual conversion was prone to human error. A small gate missed somewhere could

mean redesign of entire blocks.

 The designer could never be sure that the design constraints were going to be met until the gate-level

implementation was completed and tested.

 A significant portion of the design cycle was dominated by the time taken to convert a high-level design

into gates.

Dept. of ECE, SJBIT Page 22

Verilog HDL 18EC56

 If the gate-level design did not meet requirements, the turnaround time for redesign of blocks was very

high.

 What-if scenarios were hard to verify. For example, the designer designed a block in gates that could run at

a cycle time of 20 ns. If the designer wanted to find out whether the circuit could be optimized to run faster

at 15 ns, the entire block had to be redesigned. Thus, redesign was needed to verify what-if scenarios.

 Each designer would implement design blocks differently. There was little consistency in design styles. For

large designs, this could mean that smaller blocks were optimized, but the overall design was not optimal.

 If a bug was found in the final, gate-level design, this would sometimes require redesign of thousands of

gates.

 Timing, area, and power dissipation in library cells are fabrication-technology specific. Thus if the

company changed the IC fabrication vendor after the gate-level design was complete, this would mean

redesign of the entire circuit and a possible change in design methodology.

 Design reuse was not possible. Designs were technology-specific, hard to port, and very difficult to reuse.

Automated logic synthesis tools addressed these problems as follows:

 High-level design is less prone to human error because designs are described at a higher level of

abstraction.

 High-level design is done without significant concern about design constraints. Logic synthesis will convert

a high-level design to a gate-level netlist and ensure that all constraints have been met. If not, the designer

goes back, modifies the high-level design and repeats the process until a gate-level netlist that satisfies

timing, area, and power constraints is obtained.

 Conversion from high-level design to gates is fast. With this improvement, design cycle times are

shortened considerably. What took months before can now be done in hours or days.

 Turnaround time for redesign of blocks is shorter because changes are required only at the register-transfer

level; then, the design is simply resynthesized to obtain the gate-level netlist.

 What-if scenarios are easy to verify. The high-level description does not change. The designer has merely

to change the timing constraint from 20 ns to 15 ns and resynthesize the design to get the new gate-level

netlist that is optimized to achieve a cycle time of 15 ns.

 Logic synthesis tools optimize the design as a whole. This removes the problem with varied designer styles

for the different blocks in the design and suboptimal designs.

Dept. of ECE, SJBIT Page 23

Verilog HDL 18EC56

 If a bug is found in the gate-level design, the designer goes back and changes the high-level description to

eliminate the bug. Then, the high-level description is again read into the logic synthesis tool to

automatically generate a new gate-level description.

 Logic synthesis tools allow technology-independent design. A high-level description may be written

without the IC fabrication technology in mind. Logic synthesis tools convert the design to gates, using cells

in the standard cell library provided by an IC fabrication vendor. If the technology changes or the IC

fabrication vendor changes, designers simply use logic synthesis to retarget the design to gates, using the

standard cell library for the new technology.

 Design reuse is possible for technology-independent descriptions. For example, if the functionality of the

I/O block in a microprocessor does not change, the RTL description of the I/O block can be reused in the

design of derivative microprocessors. If the technology changes, the synthesis tool simply maps to the

desired technology.

5.11 Verilog HDL Synthesis

For the purpose of logic synthesis, designs are currently written in an HDL at a register transfer level (RTL). The

term RTL is used for an HDL description style that utilizes a combination of data flow and behavioral constructs.

Logic synthesis tools take the register transfer-level HDL description and convert it to an optimized gate-level

netlist. Verilog and VHDL are the two most popular HDLs used to describe the functionality at the RTL level. In

this chapter, we discuss RTL-based logic synthesis with Verilog HDL. Behavioral synthesis tools that convert a

behavioral description into an RTL description are slowly evolving, but RTL-based synthesis is currently the most

popular design method. Thus, we will address only RTL-based synthesis in this chapter.

Verilog Constructs

Not all constructs can be used when writing a description for a logic synthesis tool. In general, any construct that is

used to define a cycle-by-cycle RTL description is acceptable to the logic synthesis tool. A list of constructs that

are typically accepted by logic synthesis tools is given in Table 14-1. The capabilities of individual logic synthesis

tools may vary. The constructs that are typically acceptable to logic synthesis tools are also shown.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14table01

Dept. of ECE, SJBIT Page 24

Verilog HDL 18EC56

Table 14-1. Verilog HDL Constructs for Logic Synthesis

Construct Type Keyword or Description Notes

ports input, inout, output

parameters parameter

module definition module

signals and

variables

wire, reg, tri Vectors are allowed

instantiation module instances, primitive gate

instances

E.g., mymux m1(out, i0, i1, s); E.g., nand (out, a, b);

functions and

tasks

function, task Timing constructs ignored

procedural always, if, then, else, case, casex,

casez

initial is not supported

procedural blocks begin, end, named blocks, disable Disabling of named blocks allowed

data flow assign Delay information is ignored

loops for, while, forever, while and forever loops must contain @(posedge clk) or

@(negedge clk)

Remember that we are providing a cycle-by-cycle RTL description of the circuit. Hence, there are restrictions on

the way these constructs are used for the logic synthesis tool. For example, the while and forever loops must be

broken by a @ (posedge clock) or @ (negedge clock) statement to enforce cycle-by-cycle behavior and to prevent

combinational feedback. Another restriction is that logic synthesis ignores all timing delays specified by #<delay>

construct. Therefore, pre- and post-synthesis Verilog simulation results may not match. The designer must use a

description style that eliminates these mismatches. Also, the initial construct is not supported by logic synthesis

tools. Instead, the designer must use a reset mechanism to initialize the signals in the circuit.

It is recommended that all signal widths and variable widths be explicitly specified. Defining unsized variables can

result in large, gate-level netlists because synthesis tools can infer unnecessary logic based on the variable

definition.

5.12 Verilog Operators

Almost all operators in Verilog are allowed for logic synthesis. Table 14-2 is a list of the operators allowed. Only

operators such as === and !== that are related to x and z are not allowed, because equality with x and z does not

have much meaning in logic synthesis. While writing expressions, it is recommended that you use parentheses to

group logic the way you want it to appear. If you rely on operator precedence, logic synthesis tools might produce

an undesirable logic structure.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14table02

Dept. of ECE, SJBIT Page 25

Verilog HDL 18EC56

Table 14-2. Verilog HDL Operators for Logic Synthesis

Operator Type Operator Symbol Operation Performed

Arithmetic *

/

+

-

%

+

-

multiply

divide

add

subtract

modulus

unary plus

unary minus

Logical !

&&

||

logical negation

logical and

logical or

Relational >

<

>=

<=

greater than

less than

greater than or equal

less than or equal

Equality ==

!=

equality

inequality

Bit-wise ~

&

|

^

^~ or ~^

bitwise negation

bitwise and

bitwise or

bitwise ex-or

bitwise ex-nor

Reduction &

~&

|

~|

reduction and

reduction nand

reduction or

Dept. of ECE, SJBIT Page 26

Verilog HDL 18EC56

Operator Type Operator Symbol Operation Performed
^

^~ or ~^

reduction nor

reduction ex-or

reduction ex-nor

Shift >>

<<

>>>

<<<

right shift

left shift

arithmetic right shift

arithmetic left shift

Concatenation { } concatenation

Conditional ?: conditional

Interpretation of a Few Verilog Constructs

Having described the basic Verilog constructs, let us try to understand how logic synthesis tools frequently

interpret these constructs and translate them to logic gates.

The assign statement

The assign construct is the most fundamental construct used to describe combinational logic at an RTL level.

Given below is a logic expression that uses the assign statement.

assign out = (a & b) | c;

This will frequently translate to the following gate-level representation:

If a, b, c, and out are 2-bit vectors [1:0], then the above assign statement will frequently translate to two identical

circuits for each bit.

Dept. of ECE, SJBIT Page 27

Verilog HDL 18EC56

If arithmetic operators are used, each arithmetic operator is implemented in terms of arithmetic hardware blocks

available to the logic synthesis tool. A 1-bit full adder is implemented below.

assign {c_out, sum} = a + b + c_in;

Assuming that the 1-bit full adder is available internally in the logic synthesis tool, the above assign statement is

often interpreted by logic synthesis tools as follows:

If a multiple-bit adder is synthesized, the synthesis tool will perform optimization and the designer might get a

result that looks different from the above figure.

If a conditional operator ? is used, a multiplexer circuit is inferred.

assign out = (s) ? i1 : i0;

It frequently translates to the gate-level representation shown in Figure 14-3.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14fig03

Dept. of ECE, SJBIT Page 28

Verilog HDL 18EC56

The if-else statement

Single if-else statements translate to multiplexers where the control signal is the signal or variable in the if clause.

if(s)

 out = i1;

else

 out = i0;

The above statement will frequently translate to the gate-level description shown in Figure 14-3. In general,

multiple if-else-if statements do not synthesize to large multiplexers.

The case statement

The case statement also can used to infer multiplexers. The above multiplexer would have been inferred from the

following description that uses case statements:

case (s)

 1'b0 : out = i0;

 1'b1 : out = i1;

endcase

Large case statements may be used to infer large multiplexers.

for loops

The for loops can be used to build cascaded combinational logic. For example, the following for loop builds an

8-bit full adder:

c = c_in;

for(i=0; i <=7; i = i + 1)

 {c, sum[i]} = a[i] + b[i] + c; // builds an 8-bit ripple adder

c_out = c;

The always statement

The always statement can be used to infer sequential and combinational logic. For sequential logic, the always

statement must be controlled by the change in the value of a clock signal clk.

always @(posedge clk)

 q <= d;

This is inferred as a positive edge-triggered D-flipflop with d as input, q as output, and clk as the clocking signal.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14fig03

Dept. of ECE, SJBIT Page 29

Verilog HDL 18EC56

Similarly, the following Verilog description creates a level-sensitive latch:

always @(clk or d)

 if (clk)

 q <= d;

For combinational logic, the always statement must be triggered by a signal other than the clk, reset, or preset. For

example, the following block will be interpreted as a 1-bit full adder:

always @(a or b or c_in)

 {c_out, sum} = a + b + c_in;

The function statement

Functions synthesize to combinational blocks with one output variable. The output might be scalar or vector. A 4-

bit full adder is implemented as a function in the Verilog description below. The most significant bit of the

function is used for the carry bit.

function [4:0] fulladd;

input [3:0] a, b;

input c_in;

begin

 fulladd = a + b + c_in; //bit 4 of fulladd for carry, bits[3:0] for sum.

end

endfunction

Synthesis Design Flow

Having understood how basic Verilog constructs are interpreted by the logic synthesis tool, let us now discuss the

synthesis design flow from an RTL description to an optimized gate-level description.

RTL to Gates

To fully utilize the benefits of logic synthesis, the designer must first understand the flow from the high-level RTL

description to a gate-level netlist. Figure 14-4 explains that flow.

RTL description

The designer describes the design at a high level by using RTL constructs. The designer spends time in functional

verification to ensure that the RTL description functions correctly. After the functionality is verified, the RTL

description is input to the logic synthesis tool.

Translation

The RTL description is converted by the logic synthesis tool to an unoptimized, intermediate, internal

representation. This process is called translation. Translation is relatively simple and uses techniques similar to

those discussed in Section 14.3.3, Interpretation of a Few Verilog Constructs. The translator understands the basic

primitives and operators in the Verilog RTL description. Design constraints such as area, timing, and power are not

considered in the translation process. At this point, the logic synthesis tool does a simple allocation of internal

resources.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14fig04
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14lev2sec3

Dept. of ECE, SJBIT Page 30

Verilog HDL 18EC56

Figure 14-4. Logic Synthesis Flow from RTL to Gates

Unoptimized intermediate representation

The translation process yields an unoptimized intermediate representation of the design. The design is represented

internally by the logic synthesis tool in terms of internal data structures. The unoptimized intermediate

representation is incomprehensible to the user.

Logic optimization

The logic is now optimized to remove redundant logic. Various technology independent boolean logic

optimization techniques are used. This process is called logic optimization. It is a very important step in logic

synthesis, and it yields an optimized internal representation of the design.

Technology mapping and optimization

Until this step, the design description is independent of a specific target technology. In this step, the synthesis tool

takes the internal representation and implements the representation in gates, using the cells provided in the

technology library. In other words, the design is mapped to the desired target technology.

Suppose you want to get your IC chip fabricated at ABC Inc. ABC Inc. has 0.65 micron CMOS technology, which

it calls abc_100 technology. Then, abc_100 becomes the target technology. You must therefore implement your

internal design representation in gates, using the cells provided in abc_100 technology library. This is called

technology mapping. Also, the implementation should satisfy such design constraints as timing, area, and power.

Some local optimizations are done to achieve the best results for the target technology. This is called technology

optimization or technology-dependent optimization.

Dept. of ECE, SJBIT Page 31

Verilog HDL 18EC56

Technology library

The technology library contains library cells provided by ABC Inc. The term standard cell library used earlier in

the chapter and the term technology library are identical and are used interchangeably.

To build a technology library, ABC Inc. decides the range of functionality to provide in its library cells. As

discussed earlier, library cells can be basic logic gates or macro cells such as adders, ALUs, multiplexers, and

special flip-flops. The library cells are the basic building blocks that ABC Inc. will use for IC fabrication. Physical

layout of library cells is done first. Then, the area of each cell is computed from the cell layout. Next, modeling

techniques are used to estimate the timing and power characteristics of each library cell. This process is called cell

characterization.

Finally, each cell is described in a format that is understood by the synthesis tool. The cell description contains

information about the following:

 Functionality of the cell

 Area of the cell layout

 Timing information about the cell

 Power information about the cell

A collection of these cells is called the technology library. The synthesis tool uses these cells to implement the

design. The quality of results from synthesis tools will typically be dominated by the cells available in the

technology library. If the choice of cells in the technology library is limited, the synthesis tool cannot do much in

terms of optimization for timing, area, and power.

Design constraints

Design constraints typically include the following:

 Timing—. The circuit must meet certain timing requirements. An internal static timing analyzer checks

timing.

 Area—. The area of the final layout must not exceed a limit.

 Power—. The power dissipation in the circuit must not exceed a threshold.

In general, there is an inverse relationship between area and timing constraints. For a given technology library, to

optimize timing (faster circuits), the design has to be parallelized, which typically means that larger circuits have

to be built. To build smaller circuits, designers must generally compromise on circuit speed. The inverse

relationship is shown in Figure 14-5.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14fig05

Dept. of ECE, SJBIT Page 32

Verilog HDL 18EC56

Figure 14-5. Area vs. Timing Trade-off

On top of design constraints, operating environment factors, such as input and output delays, drive strengths, and

loads, will affect the optimization for the target technology. Operating environment factors must be input to the

logic synthesis tool to ensure that circuits are optimized for the required operating environment.

Optimized gate-level description

After the technology mapping is complete, an optimized gate-level netlist described in terms of target technology

components is produced. If this netlist meets the required constraints, it is handed to ABC Inc. for final layout.

Otherwise, the designer modifies the RTL or reconstrains the design to achieve the desired results. This process is

iterated until the netlist meets the required constraints. ABC Inc. will do the layout, do timing checks to ensure that

the circuit meets required timing after layout, and then fabricate the IC chip for you.

There are three points to note about the synthesis flow.

1. For very high speed circuits like microprocessors, vendor technology libraries may yield nonoptimal

results. Instead, design groups obtain information about the fabrication process used by the vendor, for

example, 0.65 micron CMOS process, and build their own technology library components. Cell

characterization is done by the designers. Discussion about building technology libraries and cell

characterization is beyond the scope of this book.

2. Translation, logic optimization, and technology mapping are done internally in the logic synthesis tool and

are not visible to the designer. The technology library is given to the designer. Once the technology is

chosen, the designer can control only the input RTL description and design constraint specification. Thus,

writing efficient RTL descriptions, specifying design constraints accurately, evaluating design trade-offs,

and having a good technology library are very important to produce optimal digital circuits when using

logic synthesis.

3. For submicron designs, interconnect delays are becoming a dominating factor in the overall delay.

Therefore, as geometries shrink, in order to accurately model interconnect delays, synthesis tools will need

to have a tighter link to layout, right at the RTL level. Timing analyzers built into synthesis tools will have

to account for interconnect delays in the total delay calculation.

Dept. of ECE, SJBIT Page 33

Verilog HDL 18EC56

An Example of RTL-to-Gates

Let us discuss synthesis of a 4-bit magnitude comparator to understand each step in the synthesis flow. Steps of the

synthesis flow such as translation, logic optimization, and technology mapping are not visible to us as designers.

Therefore, we will concentrate on the components that are visible to the designer, such as the RTL description,

technology library, design constraints, and the final, optimized, gate-level description.

Design specification

A magnitude comparator checks if one number is greater than, equal to, or less than another number. Design a 4-

bit magnitude comparator IC chip that has the following specifications:

 The name of the design is magnitude_comparator

 Inputs A and B are 4-bit inputs. No x or z values will appear on A and B inputs

 Output A_gt_B is true if A is greater than B

 Output A_lt_B is true if A is less than B

 Output A_eq_B is true if A is equal to B

 The magnitude comparator circuit must be as fast as possible. Area can be compromised for speed.

RTL description

The RTL description that describes the magnitude comparator is shown in Example 14-1. This is a technology-

independent description. The designer does not have to worry about the target technology at this point.

Example 14-1. RTL for Magnitude Comparator

//Module magnitude comparator

module magnitude_comparator(A_gt_B, A_lt_B, A_eq_B, A, B);

//Comparison output

output A_gt_B, A_lt_B, A_eq_B;

//4-bits numbers input

input [3:0] A, B;

assign A_gt_B = (A > B); //A greater than B

assign A_lt_B = (A < B); //A less than B

assign A_eq_B = (A == B); //A equal to B

endmodule

Notice that the RTL description is very concise.

Technology library

We decide to use the 0.65 micron CMOS process called abc_100 used by ABC Inc. to make our IC chip. ABC Inc.

supplies a technology library for synthesis. The library contains the following library cells. The library cells are

defined in a format understood by the synthesis tool.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14list01

Dept. of ECE, SJBIT Page 34

Verilog HDL 18EC56

//Library cells for abc_100 technology

VNAND//2-input nand gate

VAND//2-input and gate

VNOR//2-input nor gate

VOR//2-input or gate

VNOT//not gate

VBUF//buffer

NDFF//Negative edge triggered D flip-flop

PDFF//Positive edge triggered D flip-flop

Functionality, timing, area, and power dissipation information of each library cell are specified in the technology

library.

Design constraints

According to the specification, the design should be as fast as possible for the target technology, abc_100. There

are no area constraints. Thus, there is only one design constraint.

 Optimize the final circuit for fastest timing

Logic synthesis

The RTL description of the magnitude comparator is read by the logic synthesis tool. The design constraints and

technology library for abc_100 are provided to the logic synthesis tool. The logic synthesis tool performs the

necessary optimizations and produces a gate-level description optimized for abc_100 technology.

Final, Optimized, Gate-Level Description

The logic synthesis tool produces a final, gate-level description. The schematic for the gate-level circuit is shown

in Figure 14-6.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14fig06

Dept. of ECE, SJBIT Page 35

Verilog HDL 18EC56

Figure 14-6. Gate-Level Schematic for the Magnitude Comparator

The gate-level Verilog description produced by the logic synthesis tool for the circuit is shown below. Ports are

connected by name.

Example 14-2. Gate-Level Description for the Magnitude Comparator

module magnitude_comparator (A_gt_B, A_lt_B, A_eq_B, A, B);

input [3:0] A;

input [3:0] B;

output A_gt_B, A_lt_B, A_eq_B;

 wire n60, n61, n62, n50, n63, n51, n64, n52, n65, n40, n53,

 n41, n54, n42, n55, n43, n56, n44, n57, n45, n58, n46,

 n59, n47, n48, n49, n38, n39;

 VAND U7 (.in0(n48), .in1(n49), .out(n38));

 VAND U8 (.in0(n51), .in1(n52), .out(n50));

 VAND U9 (.in0(n54), .in1(n55), .out(n53));

 VNOT U30 (.in(A[2]), .out(n62));

 VNOT U31 (.in(A[1]), .out(n59));

 VNOT U32 (.in(A[0]), .out(n60));

 VNAND U20 (.in0(B[2]), .in1(n62), .out(n45));

 VNAND U21 (.in0(n61), .in1(n45), .out(n63));

 VNAND U22 (.in0(n63), .in1(n42), .out(n41));

 VAND U10 (.in0(n55), .in1(n52), .out(n47));

 VOR U23 (.in0(n60), .in1(B[0]), .out(n57));

Dept. of ECE, SJBIT Page 36

Verilog HDL 18EC56

 VAND U11 (.in0(n56), .in1(n57), .out(n49));

 VNAND U24 (.in0(n57), .in1(n52), .out(n54));

 VAND U12 (.in0(n40), .in1(n42), .out(n48));

 VNAND U25 (.in0(n53), .in1(n44), .out(n64));

 VOR U13 (.in0(n58), .in1(B[3]), .out(n42));

 VOR U26 (.in0(n62), .in1(B[2]), .out(n46));

 VNAND U14 (.in0(B[3]), .in1(n58), .out(n40));

 VNAND U27 (.in0(n64), .in1(n46), .out(n65));

 VNAND U15 (.in0(B[1]), .in1(n59), .out(n55));

 VNAND U28 (.in0(n65), .in1(n40), .out(n43));

 VOR U16 (.in0(n59), .in1(B[1]), .out(n52));

 VNOT U29 (.in(A[3]), .out(n58));

 VNAND U17 (.in0(B[0]), .in1(n60), .out(n56));

 VNAND U18 (.in0(n56), .in1(n55), .out(n51));

 VNAND U19 (.in0(n50), .in1(n44), .out(n61));

 VAND U2 (.in0(n38), .in1(n39), .out(A_eq_B));

 VNAND U3 (.in0(n40), .in1(n41), .out(A_lt_B));

 VNAND U4 (.in0(n42), .in1(n43), .out(A_gt_B));

 VAND U5 (.in0(n45), .in1(n46), .out(n44));

 VAND U6 (.in0(n47), .in1(n44), .out(n39));

endmodule

If the designer decides to use another technology, say, xyz_100 from XYZ Inc., because it is a better technology,

the RTL description and design constraints do not change. Only the technology library changes. Thus, to map to a

new technology, a logic synthesis tool simply reads the unchanged RTL description, unchanged design constraints,

and new technology library and creates a new, optimized, gate-level netlist.

Note that if automated logic synthesis were not available, choosing a new technology would require the designer to

redesign and reoptimize by hand the gate-level netlist in Example 14-2.

IC Fabrication

The gate-level netlist is verified for functionality and timing and then submitted to ABC Inc. ABC Inc. does the

chip layout, checks that the post-layout circuit meets timing requirements, and then fabricates the IC chip, using

abc_100 technology.

Verification of Gate-Level Netlist

The optimized gate-level netlist produced by the logic synthesis tool must be verified for functionality. Also, the

synthesis tool may not always be able to meet both timing and area requirements if they are too stringent. Thus, a

separate timing verification can be done on the gate-level netlist.

Functional Verification

Identical stimulus is run with the original RTL and synthesized gate-level descriptions of the design. The output is

compared to find any mismatches. For the magnitude comparator, a sample stimulus file is shown below.

Example 14-3. Stimulus for Magnitude Comparator

module stimulus;

reg [3:0] A, B;

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14list02

Dept. of ECE, SJBIT Page 37

Verilog HDL 18EC56

wire A_GT_B, A_LT_B, A_EQ_B;

//Instantiate the magnitude comparator

magnitude_comparator MC(A_GT_B, A_LT_B, A_EQ_B, A, B);

initial

 $monitor($time," A = %b, B = %b, A_GT_B = %b, A_LT_B = %b, A_EQ_B = %b",

 A, B, A_GT_B, A_LT_B, A_EQ_B);

//stimulate the magnitude comparator.

initial

begin

 A = 4'b1010; B = 4'b1001;

 # 10 A = 4'b1110; B = 4'b1111;

 # 10 A = 4'b0000; B = 4'b0000;

 # 10 A = 4'b1000; B = 4'b1100;

 # 10 A = 4'b0110; B = 4'b1110;

 # 10 A = 4'b1110; B = 4'b1110;

end

endmodule

The same stimulus is applied to both the RTL description in Example 14-1 and the synthesized gate-level

description in Example 14-2, and the simulation output is compared for mismatches. However, there is an

additional consideration. The gate-level description is in terms of library cells VAND, VNAND, etc. Verilog

simulators do not understand the meaning of these cells. Thus, to simulate the gate-level description, a simulation

library, abc_100.v, must be provided by ABC Inc. The simulation library must describe cells VAND, VNAND, etc.,

in terms of Verilog HDL primitives and, nand, etc. For example, the VAND cell will be defined in the simulation

library as shown in Example 14-4.

Example 14-4. Simulation Library

//Simulation Library abc_100.v. Extremely simple. No timing checks.

module VAND (out, in0, in1);

input in0;

input in1;

output out;

//timing information, rise/fall and min:typ:max

specify

(in0 => out) = (0.260604:0.513000:0.955206, 0.255524:0.503000:0.936586);

(in1 => out) = (0.260604:0.513000:0.955206, 0.255524:0.503000:0.936586);

endspecify

//instantiate a Verilog HDL primitive

and (out, in0, in1);

endmodule

...

//All library cells will have corresponding module definitions

//in terms of Verilog primitives.

...

Stimulus is applied to the RTL description and the gate-level description. A typical invocation with a Verilog

simulator is shown below.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14list01
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14list02
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14list04

Dept. of ECE, SJBIT Page 38

Verilog HDL 18EC56

//Apply stimulus to RTL description

> verilog stimulus.v mag_compare.v

//Apply stimulus to gate-level description.

//Include simulation library "abc_100.v" using the -v option

> verilog stimulus.v mag_compare.gv -v abc_100.v

The simulation output must be identical for the two simulations. In our case, the output is identical. For the

example of the magnitude comparator, the output is shown in Example 14-5.

Example 14-5. Output from Simulation of Magnitude Comparator

 0 A = 1010, B = 1001, A_GT_B = 1, A_LT_B = 0, A_EQ_B = 0

10 A = 1110, B = 1111, A_GT_B = 0, A_LT_B = 1, A_EQ_B = 0

20 A = 0000, B = 0000, A_GT_B = 0, A_LT_B = 0, A_EQ_B = 1

30 A = 1000, B = 1100, A_GT_B = 0, A_LT_B = 1, A_EQ_B = 0

40 A = 0110, B = 1110, A_GT_B = 0, A_LT_B = 1, A_EQ_B = 0

50 A = 1110, B = 1110, A_GT_B = 0, A_LT_B = 0, A_EQ_B = 1

If the output is not identical, the designer needs to check for any potential bugs and rerun the whole flow until all

bugs are eliminated.

Comparing simulation output of an RTL and a gate-level netlist is only a part of the functional verification process.

Various techniques are used to ensure that the gate-level netlist produced by logic synthesis is functionally correct.

One technique is to write a high-level architectural description in C++. The output obtained by executing the high-

level architectural description is compared against the simulation output of the RTL or the gate-level description.

Another technique called equivalence checking is also frequently used.

Timing verification

The gate-level netlist is typically checked for timing by use of timing simulation or by a static timing verifier. If

any timing constraints are violated, the designer must either redesign part of the RTL or make trade-offs in design

constraints for logic synthesis. The entire flow is iterated until timing requirements are met. Details of static timing

verifiers are beyond the scope of this book.

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch14.html#ch14list05

Dept. of ECE, SJBIT Page 39

Verilog HDL 18EC56

Summary

In this chapter, we discussed the following aspects of Verilog:

 Procedural continuous assignments can be used to override the assignments on registers and nets. assign

and deassign can override assignments on registers. force and release can override assignments on

registers and nets. assign and deassign are used in the actual design. force and release are used for

debugging.

 Parameters defined in a module can be overridden with the defparam statement or by passing a new value

during module instantiation. During module instantiation, parameter values can be assigned by ordered list

or by name. It is recommended to use parameter assignment by name.

 Compilation of parts of the design can be made conditional by using the 'ifdef, 'ifndef, 'elsif, 'else, and

'endif directives. Compilation flags are defined at compile time by using the `define statement.

 Execution is made conditional in Verilog simulators by means of the $test$plusargs system task. The

execution flags are defined at run time by +<flag_name>.

 Up to 30 files can be opened for writing in Verilog. Each file is assigned a bit in the multichannel

descriptor. The multichannel descriptor concept can be used to write to multiple files. The IEEE Standard

Verilog Hardware Description Language document describes more advanced ways of doing file I/O.

 Hierarchy can be displayed with the %m option in any display statement.

 Strobing is a way to display values at a certain time or event after all other statements in that time unit have

executed.

 Random numbers can be generated with the system task $random. They are used for random test vector

generation. $random task can generate both positive and negative numbers.

 Memory can be initialized from a data file. The data file contains addresses and data. Addresses can also be

specified in memory initialization tasks.

 Value Change Dump is a popular format used by many designers for debugging with postprocessing tools.

Verilog allows all or selected module variables to be dumped to the VCD file. Various system tasks are

available for this purpose.

Exercises

1: Using assign and deassign statements, design a positive edge-triggered D-flipflop with asynchronous clear

(q=0) and preset (q=1).

2: Using primitive gates, design a 1-bit full adder FA. Instantiate the full adder inside a stimulus module. Force the

sum output to a & b & c_in for the time between 15 and 35 units.

3: A 1-bit full adder FA is defined with gates and with delay parameters as shown below.

// Define a 1-bit full adder

module fulladd(sum, c_out, a, b, c_in);

parameter d_sum = 0, d_cout = 0;

// I/O port declarations

output sum, c_out;

input a, b, c_in;

// Internal nets

wire s1, c1, c2;

Dept. of ECE, SJBIT Page 40

Verilog HDL 18EC56

// Instantiate logic gate primitives

xor (s1, a, b);

and (c1, a, b);

xor #(d_sum) (sum, s1, c_in); //delay on output sum is d_sum

and (c2, s1, c_in);

or #(d_cout) (c_out, c2, c1); //delay on output c_out is d_cout

endmodule

Define a 4-bit full adder fulladd4 as shown in Example 5-8 on page 77, but pass the following parameter values

to the instances, using the two methods discussed in the book:

Instance Delay Values

fa0

fa1

d_sum=1, d_cout=1

d_sum=2, d_cout=2

fa2

fa3

d_sum=3, d_cout=3

d_sum=4, d_cout=4

1. Build the fulladd4 module with defparam statements to change instance parameter values. Simulate the

4-bit full adder using the stimulus shown in Example 5-9 on page 77. Explain the effect of the full adder

delays on the times when outputs of the adder appear. (Use delays of 20 instead of 5 used in this

stimulus.)

2. Build the fulladd4 with delay values passed to instances fa0, fa1, fa2, and fa3 during instantiation.

Resimulate the 4-bit adder, using the stimulus above. Check if the results are identical.

4: Create a design that uses the full adder example above. Use a conditional compilation (`ifdef). Compile the

fulladd4 with defparam statements if the text macro DPARAM is defined by the `define statement; otherwise,

compile the fulladd4 with module instance parameter values.

5: Identify the files to which the following display statements will write:

//File output with multi-channel descriptor

module test;

integer handle1,handle2,handle3; //file handles

//open files

initial

begin

 handle1 = $fopen("f1.out");

 handle2 = $fopen("f2.out");

 handle3 = $fopen("f3.out");

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch05.html#ch05list08
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch05.html#ch05list09

Dept. of ECE, SJBIT Page 41

Verilog HDL 18EC56

end

//Display statements to files

initial

begin

//File output with multi-channel descriptor

 #5;

 $fdisplay(4, "Display Statement # 1");

 $fdisplay(15, "Display Statement # 2");

 $fdisplay(6, "Display Statement # 3");

 $fdisplay(10, "Display Statement # 4");

 $fdisplay(0, "Display Statement # 5");

end

endmodule

6: What will be the output of the $display statement shown below?

module top;

A a1();

endmodule

module A;

B b1();

endmodule

module B;

initial

 $display("I am inside instance %m");

endmodule

7: Consider the 4-bit full adder in Example 6-4 on page 108. Write a stimulus file to do random testing of the full

adder. Use a random number generator to generate a 32-bit random number. Pick bits 3:0 and apply them to

input a; pick bits 7:4 and apply them to input b. Use bit 8 and apply it to c_in. Apply 20 random test vectors and

observe the output.

8: Use the 8-byte memory initialization example in Example 9-14 on page 205. Modify the file to read data in

hexadecimal. Write a new data file with the following addresses and data values. Unspecified locations are not

initialized.

Location Address Data

1

2

33

66

4

5

6

z0

0z

01

https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch06.html#ch06list04
https://learning.oreilly.com/library/view/verilog-hdl-a/0130449113/ch09.html#ch09list14

Dept. of ECE, SJBIT Page 42

Verilog HDL 18EC56

9: Write an initial block that controls the VCD file. The initial block must do the following:

 Set myfile.dmp as the output VCD file.

 Dump all variables two levels deep in module instance top.a1.b1.c1.

 Stop dumping to VCD at time 200.

 Start dumping to VCD at time 400.

 Stop dumping to VCD at time 500.

 Create a checkpoint. Dump the current value of all VCD variables to the dumpfile.

	MODULE -3
	3.2 Gate Types
	3.2.1 And/Or Gates
	These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are shown below. In Example 3-1, for all instances, OUT is connected to the output out, and IN1 and IN2 are connected to the two inputs i1 and i2 of the g...
	Figure 3-1. Basic Gates
	Table 3-1. Truth Tables for And/Or
	Figure 3-2. Buf/not Gates

	Truth tables for gates with one input and one output are shown in Table 3-2.
	Table 3-2. Truth Tables for Buf/Not Gates
	Figure 3-3. Bufif/notif Gates
	Table 3-3. Truth Tables for Bufif/Notif Gates
	Example 3-3 Gate Instantiations of Bufif/Notif Gates

	3.2.3 Array of Instances
	Example 3-4 Simple Array of Primitive Instances
	3.1.4 Examples
	Gate-level multiplexer
	Figure 3-4. 4-to-1 Multiplexer
	Example 3-5 Verilog Description of Multiplexer
	Example 3-6 Stimulus for Multiplexer
	The output of the simulation is shown below. Each combination of the select signals is tested.
	4-bit Ripple Carry Full Adder
	Example 3-7 Verilog Description for 1-bit Full Adder
	Example 3-8 Verilog Description for 4-bit Ripple Carry Full Adder
	Example 3-9 Stimulus for 4-bit Ripple Carry Full Adder

	3.3 Gate Delays
	3.3.1 Rise, Fall, and Turn-off Delays
	Rise delay
	Fall delay
	Turn-off delay
	Example 3-10 Types of Delay Specification

	3.3.2 Min/Typ/Max Values
	Example 3-11 Min, Max, and Typical Delay Values

	3.3.3 Delay Example
	Example 3-12 Verilog Definition for Module D with Delay
	Example 3-13 Stimulus for Module D with Delay

	3.4 Dataflow Modeling
	Implicit Net Declaration

	3.5 Expressions, Operators, and Operands
	Operators
	Table 3-4 Operator Types and Symbols

	4 bit Full Adder

	3.6 : Outcomes
	3.7 : Recommended questions
	MODULE -4
	4.2 Structured Procedures
	4.2.1 Initial Statement
	Example 4.1:Initial Statement
	Combined Variable Declaration and Initialization
	Example 4-2 Initial Value Assignment
	Combined Port/Data Declaration and Initialization
	Example 4-3 Combined Port/Data Declaration and Variable Initialization
	Combined ANSI C Style Port Declaration and Initialization
	Example 4-4 Combined ANSI C Port Declaration and Variable Initialization

	4.2.2 Always Statement

	4.3 Procedural Assignments
	4.3.1 Blocking Assignments
	Example 4-6 Blocking Statements

	4.3.2 Nonblocking Assignments
	Example 4-7 Nonblocking Assignments
	Application of non blocking assignments
	Example 4-8 Nonblocking Statements to Eliminate Race Conditions
	Example 4-9 Implementing Nonblocking Assignments using Blocking Assignments

	4.4 Timing Controls
	4.4.1 Delay-Based Timing Control
	Regular delay control
	Example 4-10 Regular Delay Control
	Intra-assignment delay control
	Example 4-11 Intra-assignment Delays
	Zero delay control
	Example 4-12 Zero Delay Control

	4.4.2 Event-Based Timing Control
	Regular event control
	Example 4-13 Regular Event Control
	Named event control
	Example 4-14 Named Event Control
	Event OR Control
	Example 4-15 Event OR Control (Sensitivity List)
	Example 4-16 Sensitivity List with Comma Operator
	Example 4-17 Use of @* Operator

	4.4.3 Level-Sensitive Timing Control

	4.5 Conditional Statements
	Example 4-18 Conditional Statement Examples

	4.6 Multiway Branching
	4.6.1 case Statement
	Example 4-19 4-to-1 Multiplexer with Case Statement
	Example 4-20 Case Statement with x and z

	4.6.2 casex, casez Keywords

	4.7 Loops
	4.7.1 While Loop
	Example 4-22 While Loop

	4.7.2 for Loop
	4.7.3 Repeat Loop
	Example 4-24 Repeat Loop

	4.7.4 Forever loop
	Example 4-25 Forever Loop

	4.8 Sequential and Parallel Blocks
	4.8.1 Block Types
	Sequential blocks
	Example 4-26 Sequential Blocks
	Parallel blocks
	Example 4-27 Parallel Blocks

	4.8.2 Special Features of Blocks
	Nested blocks
	Named blocks
	Example 4-29 Named Blocks
	Disabling named blocks

	4.9 : Task and Functions
	4.9.1 Differences between Tasks and Functions
	 Both task and functions must be defined in a module and are local to the module.
	 Tasks are used for common Verilog code that contains delays, timing, event constructs, or multiple output arguments.
	 Functions are used when common Verilog code is purely combinational, executes in zero simulation time and provides exactly one output
	 Functions are typically used for conversions and commonly used calculations.
	 Task can have input, output and in-out ports
	 Functions can have input ports. In addition they can have local variables, integers, real or events.
	 Tasks and functions cannot have wires, they contain behavioral statements only.
	 Tasks and functions do not contain always and initial statements but are called form always block, initial block and other task and functions.
	4.9.2 Task
	 I/O declaration use keywords input, output or input, based on the type of argument declared.
	 Input and output arguments are passed into the task.
	 Input arguments are processed in the task statements.
	 Output and inout argument values are passed back to the variables in the task invocation statement when the task is completed.
	 Task can invoke other tasks or functions.
	 Ports are used to connect external signals to the module.
	 I/O arguments in a task are used to pass values to and from the task.
	4.9.3 Task Declaration and Invocation
	Task Examples
	Use of input and output arguments
	Asymmetric Sequence Generator

	4.10 Functions
	4.11 Function Declaration and Invocation
	4.12 Function Examples
	Parity calculation
	Left/right shifter

	4.13 Automatic (Recursive) Functions
	4.14 Constant Functions
	Signed Functions

	4.15 Summary
	Exercises
	4.11 Outcomes
	4.12 : Recommended Questions
	MODULE -5
	5.4 : Force and Release
	force and release on registers
	force and release on nets

	5.5: Overriding Parameters
	Defparam Statement
	Module_Instance Parameter Values

	5.6 : Conditional Compilation and Execution
	Conditional Compilation
	Conditional Execution

	5.5: Time Scales
	5.7 Useful System Tasks
	File Output
	Opening a file
	Writing to files
	Closing files

	Displaying Hierarchy
	Strobing
	Random Number Generation
	Initializing Memory from File
	Value Change Dump File

	5.8 Logic Synthesis with Verilog HDL
	5.9 What Is Logic Synthesis?
	5.10 Impact of Logic Synthesis
	5.11 Verilog HDL Synthesis
	Verilog Constructs
	5.12 Verilog Operators
	Interpretation of a Few Verilog Constructs
	The assign statement
	The if-else statement
	The case statement
	for loops
	The function statement

	Synthesis Design Flow
	RTL to Gates
	RTL description
	Translation
	Unoptimized intermediate representation
	Logic optimization
	Technology mapping and optimization
	Technology library
	Design constraints
	Optimized gate-level description

	An Example of RTL-to-Gates
	Design specification
	RTL description
	Technology library
	Design constraints
	Logic synthesis
	Final, Optimized, Gate-Level Description
	IC Fabrication

	Verification of Gate-Level Netlist
	Functional Verification
	Timing verification

	Summary
	Exercises

