
Verilog HDL [18EC56] 

1 

By: 
 Mrs. LATHA S 
 Assistant Professor,  
 Dept. of ECE, SJBIT 

 
 ║JAI SRI GURUDEV║  

Sri AdichunchanagiriShikshana Trust (R)  

SJB INSTITUTE OF TECHNOLOGY  
BGS Health & Education City, Kengeri , Bangalore – 60 .  

 

DEPARTMENT OF ELECTRONICS & COMMUNICATION 

ENGINEERING  



Outline 

 Course Outline 

 Recommended Books 

 Prerequisites of the subject 

 Module 1: Overview of Digital Design with 

Verilog HDL 

 

2 



Syllabus-18EC56 

3 



4 



Course Outcomes: 

At the end of this course, students should be able to 

 Write Verilog programs in gate, dataflow (RTL), 

behavioral and switch modeling levels of Abstraction. 

 Design and verify the functionality of digital 

circuit/system using test benches. 

 Identify the suitable Abstraction level for a particular 

digital design. 

 Write the programs more effectively using Verilog tasks, 

functions and directives. 

 Perform timing and delay Simulation 

 Interpret the various constructs in logic synthesis. 

5 



 

 Text Book: 

 Samir Palnitkar, “Verilog HDL: A Guide to Digital 

Design and Synthesis”, Pearson Education, Second 

Edition. 

 Reference Books: 

 1. Donald E. Thomas, Philip R. Moorby, “The Verilog 

Hardware Description Language”, Springer, Fifth 

edition. 

 2. Michael D. Ciletti, “Advanced Digital Design with the 

Verilog HDL” Pearson (Prentice Hall), Second edition. 

 3. Padmanabhan, Tripura Sundari, “Design through 

Verilog HDL”, Wiley, 2016 or earlier. 

6 



7 



8 



Module 1: Overview of 

Digital Design with Verilog 

Mrs. LATHA S 

Assistant Professor  

Dept. of ECE, SJBIT 



10 

Overview of Digital Design with Verilog 

HDL 

 
 Evolution of computer aided digital circuit 

design 

 Emergence of HDLs 

 Typical design flow 

 Importance of HDLs 

 Popularity of Verilog HDL 

 Trends in HDLs 



11 

Evolution of Computer Aided Digital 

Design 

 Digital circuits were designed with 

 Vacuum tubes 

 Transistors 

 Integrated circuits (ICs) 
 SSI 

 MSI : hundreds of gates 

 LSI : thousands of gates 

 CAD techniques began to evolve 

 circuit and Logic simulation about 100 transistors 

 VLSI : more than 100,000 transistors 

 ULSI : Ultra Large Scale Integration 



12 

Overview of Digital Design with Verilog 

HDL 

 
 Evolution of computer aided digital circuit 

design 

 Emergence of HDLs 

 Typical design flow 

 Importance of HDLs 

 Popularity of Verilog HDL 

 Trends in HDLs 



13 

Emergence of HDLs 
 Hardware Description Language (HDL) 

 A hardware description language  is the language that 
describes the hardware of digital systems in textual form 
and resembles a programming language, but specifically 
oriented to describing  hardware structures and behavior.  

 Allowed designed to model the concurrency of processes 
found in hardware elements 

 Verilog HDL originated in 1983 

 VHDL was developed under contract from DARPA 

 Could be used to describe digital circuits at a register 
transfer level (RTL) 

 Specify how the data flows between registers and how 
the design processes the data 

 Logic synthesis tools can be used to produce gate-level 
netlist from the RTL description automatically 

 



14 

Different Levels of Abstraction 

 Architecture / Algorithm Level 

 Describe the functionality (behavior) of a circuit 

 Register Transfer Logic (RTL) Level 

 Describe the data flow of a circuit 

 Gate Level 

 Describe the connectivity (structure) of a circuit 

 Switch Level 

 



15 

An Example of Verilog HDL 



16 

Overview of Digital Design with Verilog 

HDL 

 
 Evolution of computer aided digital circuit 

design 

 Emergence of HDLs 

 Typical design flow 

 Importance of HDLs 

 Popularity of Verilog HDL 

 Trends in HDLs 



Typical Design 

Flow for 

Designing VLSI 

IC 

17 



18 

Design Flow of using HDL 

 



19 

Overview of Digital Design with Verilog 

HDL 

 
 Evolution of computer aided digital circuit 

design 

 Emergence of HDLs 

 Typical design flow 

 Importance of HDLs 

 Popularity of Verilog HDL 

 Trends in HDLs 



20 

Why use the HDL ? 

 Difficult to design directly on hardware 

 Mixed-level modeling and simulation 

 Easier to explore different design options 

 Reduce design time and cost 

 



21 

Advantages of HDLs 

 Advantages compared to traditional 

schematic-based design 

 Design with RTL description + logic synthesis tool 

 Abstract level 

 Independent to fabrication technology 

 Reuse when fabrication technology changing 

 Functional verification can be done early 

 Optimized to meet the desired functionality 

 Analogous to computer programming 

 Textual description with comments 

 



22 

Overview of Digital Design with Verilog 

HDL 

 
 Evolution of computer aided digital circuit 

design 

 Emergence of HDLs 

 Typical design flow 

 Importance of HDLs 

 Popularity of Verilog HDL 

 Trends in HDLs 



23 

History of the Verilog HDL 

 1984: Gateway Design Automation introduced the 

Verilog-XL digital logic simulator 

 The Verilog language was part of the Verilog-XL simulator 

 The language was mostly created by 1 person, Phil Moorby 

 The language was intended to be used with only 1 product 

 1989: Gateway merged into Cadence Design 

Systems 

 1990: Cadence made the Verilog HDL public 

domain 

 Open Verilog International (OVI) controlled the language 



24 

History of the Verilog HDL (Cont’d) 

 1995: The IEEE standardized the Verilog 

HDL (IEEE 1364) 

 2001: The IEEE enhanced the Verilog HDL 

for modeling scalable designs, deep sub-

micron accuracy, etc. 

 



25 

Useful Features of the Verilog HDL 

 A general-purpose HDL 

 Easy to learn and use 

 Syntax is similar to C (VHDL is similar to PASCAL) 

 Allows different levels of abstraction to be mixed in the same 
model 

 In terms of switches, gates, RTL, or behavioral code 

 Need to learn only for stimulus and hierarchical design 

 Most popular logic synthesis tools support Verilog 

 Rich of Verilog HDL libraries 

 Provided by fabrication vendors for postlogic synthesis simulation 

 Allows the widest choice of vendors while designing a chip 

 With powerful PLI (Programming Language Interface) 

 Write custom C code to interact with internal data structure 



26 

Overview of Digital Design with Verilog 

HDL 

 
 Evolution of computer aided digital circuit 

design 

 Emergence of HDLs 

 Typical design flow 

 Importance of HDLs 

 Popularity of Verilog HDL 

 Trends in HDLs 



27 

Trends in HDLs 

 Higher levels of abstraction 

 Think only in terms of functionality for designers 

 CAD tools take care of the implementation details 

 Behavioral modeling 

 Design directly in terms of algorithms and 

 the behavior of the circuit 

 Formal verification 

 Supports for Mixed-level design 

 Ex: very high speed and timing-critical circuits like μPs 

 Mix gate-level description directly into the RTL description 

 System-level design in a mixed bottom-up methodology 

 Use either existing Verilog modules, basic building blocks, or IPs 

 Ex: SystemC for SoC designs 



Hierarchical Modelling Concepts 

28 

 Learning Objectives 

 Understand top-down and bottom-up design 

methodologies for digital design. 

 Explain differences between modules and module 

instances in Verilog. 

 Describe four levels of abstraction—behavioral, data 

flow, gate level, and switch level—to represent the same 

module. 

 Describe components required for the simulation of a 

digital design. Define a stimulus block and a design 

block. Explain two methods of applying stimulus. 

 



Top Down Design Methodology  

29 



Bottom Up Design Methodology  

30 



Example : Design of 4 bit Ripple 

Counter using Top Down approach  

31 



Ripple Counter 
 A n-bit ripple counter can count up to 2n states. It is also 

known as MOD n counter. It is known as ripple counter 

because of the way the clock pulse ripples its way 

through the flip-flops. Some of the features of ripple 

counter are: 

 It is an asynchronous counter.  

 Different flip-flops are used with a different clock pulse.  

 All the flip-flops are used in toggle mode.  

 Only one flip-flop is applied with an external clock pulse 

and another flip-flop clock is obtained from the output of 

the previous flip-flop.  

 The flip-flop applied with external clock pulse act as LSB 

(Least Significant Bit) in the counting sequence.  

 
32 



T-Flip flop 

33 



Design Hierarchy of 4 Bit ripple 

Counter 

34 



35 

Verilog - Module 
 A module is the building block in Verilog. 

 It is declared by the keyword module and 

is always terminated by the keyword 

endmodule. 

 Each statement is terminated with a 

semicolon, but there is no semi-colon after 

endmodule. 



Verilog Modules 

 
 Basic building block in 

Verilog 

 Hierarchical design (top-

down vs. bottom-up) 

 Multiple modules in a 

single file 

 Order of definition not 

important 

 Modules are: 
 Declared 

 Instantiated 

 Modules declarations 
cannot be nested 

 

 
36 



Module Representation  

 Module 

 A logic circuit  module 

 Its ports: inputs and 

outputs 

 Begins with module, 

ends with endmodule 

 Module<module 

name>(module terminal 

list); 

 <Module internals> 

 End module 

 



Different Levels of Abstraction 

Behavioural/Architectural / 

Algorithmic Level 

 Implement a design algorithm in 

high-level language constructs. 

Data flow level/Register 

Transfer Level 

 Describes the flow of data 

between registers and  

how a design process 

these data. 



Different Levels of Abstraction 

Gate Level 

 Describe the logic gates and the 

interconnections between them. 

Switch (Transistor) Level 

 Describe the transistors and 

the interconnections 

between them. 



Verilog Module Instances 

 A module provides template from which we 

can create actual objects. 

 When module is invoked, Verilog creates a 

unique from the template. Each object has 

its own name, variables, parameters and I/O 

interface. 

 The process of creating objects from 

template is called Instantiation, and the 

objects are called Instances. 

40 



Module Instantiation (cont’d) 

41 

 General syntax 
<module_name> <instance_name>(port connection list); 

 

 Example: 
// assuming module ripple_carry_counter(q, clk, reset); 

ripple_carry_counter cntr1(wire_vec1, wire2, wire3); 



Example Fuul Adder 
module fastr(x, y, cin, sum, cout); 

    input x,y,cin; 

    output sum,cout; 

    wire t1,t2,t3; 

  ha ha1 ( x,y,t1,t2); 

  ha ha2 ( t1,cin,sum,t3 ); 

  or or2 ( cout ,t3,t2);  

endmodule 

module ha(x, y, s, c); 

    input x,y; 

    output s,c; 

    assign s = x^y; 

    assign c = x&y; 

endmodule 

 42 



Module Instantiation 

43 

 Recall the Ripple-carry counter and TFF 

 
module TFF(q, clk, reset); 

 output q;  

 input clk, reset; 

 ... 

endmodule 

 

 

module ripple_carry_counter(q, clk, reset); 

 output [3:0] q;  

 input clk, reset;  

 

 //4 instances of the module TFF are created.  

 TFF tff0(q[0],clk, reset); 

 TFF tff1(q[1],q[0], reset); 

 TFF tff2(q[2],q[1], reset); 

 TFF tff3(q[3],q[2], reset); 

endmodule 
 

 



44 

Module Instances-Ripple Counter 

module reg4 (q,d,clock);  
  output [3:0] q;  
  input [3:0] d;  
  input clock;  
  wire [3:0] q, d;  
  wire clock;  
//port order connection, 

//2nd port not connected  
  dff u1 (q[0], , d[0], clock);  
//port name connection, 

//qb not connected  
  dff u2 (.clk(clock),.q(q[1]),.data(d[1])); 
//explicit parameter redefine  

  dff u3 (q[2], ,d[2], clock);  
  defparam u3.delay = 3.2;  
//implicit parameter redefine  

  dff #(2) u4 (q[3], , d[3], clock);  
endmodule 

module dff (q,qb,data,clk);  
  output q, qb;  
  input data, clk;  
  //default delay parameter  
  parameter delay = 1;  
  dff_udp #(delay) (q,data,clk);  
  not (qb, q);  
endmodule 

 



Components of Simulation 

 The functionality of the design block can be 

tested by applying stimulus and checking 

results such a block is called stimulus block. 

 Separate stimulus and design block. 

 Stimulus block can be written using verilog, 

separate language is not required. Stimulus 

block is also called as Test bench.  

 Different test benches can be written to test a 

design block 

45 



Stimulus Block Instantiates Design 

Block(Ripple Counter) 

46 



Stimulus and design Blocks Instantiated 

in a Dummy top level Module Design 

Block 

47 



Example:- 4 bit Ripple Counter 

  To illustrate the concepts discussed in the previous 

sections, let us build the complete simulation of a ripple 

carry counter.  

 We will define the design block and the stimulus block.  

 We will apply stimulus to the design block and monitor 

the outputs.  

 As we develop the Verilog models, you do not need to 

understand the exact syntax of each construct at this 

stage.  

 At this point, you should simply try to understand the 

design process. We discuss the syntax in much greater 

detail in the later modules. 

 
48 



Example: 4 bit Ripple Counter 

module ripple_carry_counter(q, clk, reset); 

output [3:0] q;  

input clk, reset;  

//4 instances of the module T_FF are created.  

T_FF tff0(q[0],clk, reset);  

T_FF tff1(q[1],q[0], reset);  

T_FF tff2(q[2],q[1], reset);  

T_FF tff3(q[3],q[2], reset);  

endmodule 

 

 
49 



 Example 2- Ripple Carry Counter Top 

Block 

 

module T_FF(q, clk, reset);  

output q;  

input clk, reset; wire d; 

 D_FF dff0(q, d, clk, reset);  

not n1(d, q); // not is a Verilog-provided primitive. case sensitive  

endmodule 

50 



Example 3 . Flipflop D_F 
 // module D_FF with synchronous reset module 

D_FF(q, d, clk, reset);  

 output q;  

 input d, clk, reset;  

 reg q;  
// Lots of new constructs. Ignore the functionality of the // constructs. // 

Concentrate on how the design block is built in a top-down fashion.  

 always @(posedge reset or negedge clk)  

 if (reset) q <= 1'b0;  

 else q <= d;  

 endmodule 

51 



Stimulus Block 
 We need to write the stimulus block to check if the ripple  

carry counter design is  functioning correctly.       

 In this case, we must control the signals clk and reset so 

that the regular function of the ripple carry counter and 

the asynchronous reset mechanism are both tested.  

 Consider the waveforms shown in Figure 1-9 to test the 

design. 

  Waveforms for clk, reset, and 4-bit output q are shown. 

The cycle time for clk is 10 units;  

 The reset signal stays up from time 0 to 15 and then 

goes up again from time 195 to 205. Output q counts 

from 0 to 15. 

 
52 



Stimulus Block 

53 



Example 1-6 Stimulus Block 

 
 module stimulus; reg clk; 

 reg reset; wire[3:0] q; 

 // instantiate the design block 

 ripple_carry_counter r1(q, clk, reset); 

 // Control the clk signal that drives the design block. Cycle time = 10 initial 

 clk = 1'b0; //set clk to 0 always 

 #5 clk = ~clk; //toggle clk every 5 time units 

 // Control the reset signal that drives the design block 

 // reset is asserted from 0 to 20 and from 200 to 220. initial 

 begin 

 reset = 1'b1;  

 #15 reset = 1'b0; 

 #180 reset = 1'b1;  

 #10 reset = 1'b0; 

 #20 $finish; //terminate the simulation 

 end 

 // Monitor the outputs 

 initial 

 $monitor($time, " Output q = %d", q); 

 endmodule 

 

54 



Example 2-7. Output of the 

Simulation 

  0 Output q = 0 20 Output q = 1 30 Output q = 

2 40 Output q = 3 50 Output q = 4 60 Output 

q = 5 70 Output q = 6 80 Output q = 7 90 

Output q = 8 100 Output q = 9 110 Output q = 

10 120 Output q = 11 130 Output q = 12 140 

Output q = 13 150 Output q = 14 160 Output 

q = 15 170 Output q = 0 180 Output q = 1 

190 Output q = 2 195 Output q = 0 210 

Output q = 1 220 Output q = 2 

 
55 



56 



Summary 

 
 In this module we discussed the following concepts. 

 Two kinds of design methodologies are used for digital 

design: top-down and bottom-up. A combination of these 

two methodologies is used in today's digital designs. As 

designs become very complex, it is important to follow 

these structured approaches to manage the design 

process. 

 Modules are the basic building blocks in Verilog. 

Modules are used in a design by instantiation. An 

instance of a module has a unique identity and is 

different from other instances of the same module. Each 

instance has an independent copy of the internals of the 

module. It is important to understand the difference 

between modules and instances. 

 
57 



 There are two distinct components in a 

simulation: a design block and a stimulus 

block. A stimulus block is used to test the 

design block. The stimulus block is usually 

the top-level block. There are two different 

styles of applying stimulus to a design block. 

 The example of the ripple carry counter 

explains the step-by-step process of building 

all the blocks required in a simulation. 

 

58 



Outcomes of Module-1 

 
 After completion of the module the 

students are able to: 

 Understand the importance, trends of HDL 

and design flow and design methodologies 

for digital design. 

 Differentiate the modules and module 

instances in Verilog with an example. 

 Define stimulus block and design block 

 

59 



Recommended questions 
 Discuss in brief about the evolution of CAD tools and 

HDLs used in digital system design. 

 Explain the typical VLSI IC design flow with the help of 

flow chart. 

 Discuss the trends in HDLs? 

 Why Verilog HDL has evolved as popular HDL in digital 

circuit design? 

 Explain the advantages of using HDLs over traditional 

schematic based design. 

 Describe the digital system design using hierarchical 

design methodologies with an example. 

 

60 



 Apply the top-down design methodology to demonstrate 

the design of ripple carry counter. 

 Apply the bottom-up design methodology to demonstrate 

the design of 4-bit ripple carry adder. 

 Write Verilog HDL program to describe the 4-bit ripple 

carry counter. 

 Define Module and an Instance. Describe 4 different 

description styles of Verilog HDL. 

 Differentiate simulation and synthesis. What is stimulus? 

 Write test bench to test the 4-bit ripple carry counter. 

 Write a test bench to test the 4-bit ripple carry adder. 

 

61 



Reference / Text Book Details 

Sl.No

. 
Title of Book Author Publication Edition 

1 
Verilog HDL: A Guide to 
Digital Design and Synthesis Samir Palnitkar 

Pearson 

Education 
2nd 

2 
VHDL for Programmable 
Logic Kevin Skahill 

PHI/Pearson 

education 
2nd 

3 
The Verilog Hardware 

Description Language 

Donald E. 

Thomas, Philip 

R. Moorby 

Springer 

Science+Busin

ess Media, 

LLC 

5th 

4 
Advanced Digital Design with 

the Verilog HDL 
Michael D. Ciletti 

Pearson 

(Prentice Hall) 
2nd 

5 Design through Verilog HDL 
Padmanabhan, 

Tripura Sundari 
Wiley Latest 





Module 2: BASIC CONCEPTS AND MODULES AND 
PORTS 

Verilog HDL [18EC56] 

1 

By: 
 Mrs. LATHA S 
 Assistant Professor,  
 Dept. of ECE, SJBIT 

 
 ║JAI SRI GURUDEV║  

Sri AdichunchanagiriShikshana Trust (R)  

SJB INSTITUTE OF TECHNOLOGY  
BGS Health & Education City, Kengeri , Bangalore – 60 .  

 

DEPARTMENT OF ELECTRONICS & COMMUNICATION 

ENGINEERING  



Content 

 Basic Concepts: Lexical conventions 

 Data types,  

 System tasks,  

 Compiler directives. 

 Modules and Ports:  

 Module definition,  

 Port declaration,  

 Connecting ports,  

 Hierarchical name 

 Referencing 



Learning Objectives  

 
 Understand the lexical conventions and 

define the logic value set and data type. 

 Identify useful system tasks and basic 

compiler directives. 

 Identify and understanding of components 

of a Verilog module definition. 

 Understand the port connection rules and 

connection to external signals by ordered 

list and by name 



Lexical Conventions 

 The basic lexical conventions used by Verilog  

HDL  are  similar  to  those  in  the  C  

programming  language.  

 Verilog contains a stream of tokens. Tokens 

can be comments, delimiters, numbers, 

strings, identifiers, and keywords.  

 Verilog HDL is a case-sensitive language. 

  All keywords are in lowercase. 

 



Whitespace 
 
 Blank spaces (\b) , tabs (\t) and newlines (\n) 

comprise the whitespace.  

 Whitespace is ignored by Verilog except 

when it separates tokens.  

 Whitespace is not ignored in strings. 

 



Comments  

 Comments can be inserted in the code for 

readability and documentation.  

 There are two ways to write comments. A one-

line comment starts with "//".  

 Verilog skips from that point to the end of line.  

 A multiple- line comment starts with "/*" and 

ends with "*/". Multiple-line comments cannot be 

nested.  

 However, one-line comments can be embedded 

in multiple-line comments. 

 



Comment Syntax 

 a = b && c; // This is a one-line comment 

  /* This is a multiple line comment 

 */ 

 /* This is /* an illegal */ comment */ 

   

 /* This is //a legal comment */ 

 



Operators 

 Operators are of three types: unary, binary, and 

ternary.  

 Unary operators precede the operand. Binary 

operators appear between two operands. 

Ternary operators have two separate operators 

that separate three operands. 

 a = ~ b; // ~ is a unary operator. b is the operand 

 a = b && c; // && is a binary operator. b and c 

are operands  

 a = b ? c : d; // ?: is a ternary operator. b, c and 

d are operands 

 



Number Specification 

 
 There are two types of number specification 

in Verilog: sized and unsized. 

 SIZED NUMBERS 

 Sized numbers are represented as <size> 

'<base format> <number>. 

 <size> is written only in decimal and specifies 

the number of bits in the number. 

 



 Legal base formats are decimal ('d or 'D), 

hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o 

or 'O).  

 The number is specified as consecutive digits from 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a 

subset of these digits is legal for a particular base.  

 Uppercase letters are legal for number specification. 

Syntax 

 4'b1111 // This is a 4-bit binary number  

 12'habc // This is a 12-bit hexadecimal number 

  16'd255 // This is a 16-bit decimal number 

 

 



Unsigned Numbers 

 Numbers that are specified without a <base 

format> specification are decimal numbers by 

default.  

 Numbers that are written without a <size> 

specification have a default number of bits that is 

simulator- and machine- specific (must be at 

least 32). 

 23456 // This is a 32-bit decimal number by 

default 

 'hc3 // This is a 32-bit hexadecimal number 

 'o21 // This is a 32-bit octal number 

 



X or Z values 

 Verilog has two symbols for unknown and high 

impedance values.  

 These values are very important for modeling 

real circuits.  

 An unknown value is denoted by an x. 

  A high impedance value is denoted by z. 

 12'h13x // This is a 12-bit hex number; 4 least 

significant bits unknown  

 6'hx // This is a 6-bit hex number 

 32'bz // This is a 32-bit high impedance number 

 

 



 An x or z sets four bits for a number in the 

hexadecimal base, three bits for a number in 

the octal base and one bit for a number in the 

binary base.  

 If the most significant bit of a number is 0, x, 

or z, the number is  automatically extended to 

fill the most significant bits, respectively, with 

0, x, or z. 

 This makes it easy to assign x or z to whole 

vector. If the most significant digit is 1, then it 

is also zero extended. 



Negative numbers 
 Negative numbers can be specified by putting a 

minus sign before the size for a constant number.  

 Size constants are always positive. It is illegal to 

have a minus sign between <base format> and 

<number>.  

 An optional signed specifier can be added for 

signed arithmetic. 

 -6'd3 // 8-bit   negative number stored as 2's 

complement of 3 

 -6'sd3 // Used for performing signed integer math  

 4'd-2 // Illegal specification 

 

 



Underscore characters and 

question marks 

  An underscore character "_" is allowed 

anywhere in a number except the first character.  

 Underscore characters are allowed only to 

improve readability of numbers and are ignored 

by Verilog.  

 A question mark "?" is the Verilog HDL 

alternative for z in the context of numbers.  

 The ? is used to enhance readability in the 

casex and casez statements. 



Strings 

  A string is a sequence of characters that are 

enclosed by double quotes. 

  The restriction on a string is that it must be 

contained on a single line, that is, without a 

carriage return.  

 It cannot be on multiple lines. Strings are 

treated as a sequence of one-byte ASCII 

values. 

 "Hello Verilog World" // is a string "a / b" // is 

a string. 

 



Identifiers and Keywords 

  Keywords are special identifiers reserved to define the 

language constructs.  

 Keywords are in lowercase.  

 Identifiers are names given to objects so that they can be 

referenced in the design.  

 Identifiers are made up of alphanumeric characters, the 

underscore ( _ ), or the dollar sign ( $ ).  

 Identifiers are case sensitive. Identifiers start with an 

alphabetic character or an underscore. They cannot start 

with a digit or a $ sign (The $ sign as the first character is 

reserved for system tasks) 

 reg value; // reg is a keyword; value is an identifier  

 input clk; // input is a keyword, clk is an identifier 

 



Escaped Identifiers 

 Escaped identifiers begin with the backslash ( \ ) 

character and end with whitespace (space, tab, or 

newline).  

 All characters between backslash and whitespace 

are processed literally. Any printable ASCII 

character can be included in escaped identifiers. 

 Neither the backslash nor the terminating 

whitespace is considered to be a part of the 

identifier. 

 \a+b-c 

 \**my_name** 



Data Types:- Value Set 

 

 

 Verilog supports four values and eight strengths to 

model the functionality of real hardware. The four value 

levels are listed in Table 2-1. 

 



 In addition to logic values, strength levels are often used 

to resolve conflicts between drivers of different strengths 

in digital circuits. Value levels 0 and 1 can have the 

strength levels listed in Table2-2. 

 



 If two signals of unequal strengths are driven 

on a wire, the stronger signal prevails.  

 For example, if two signals of strength 

strong1 and weak0 contend, the result is 

resolved as a strong1.  

 If two signals of equal strengths are driven on 

a wire, the result is unknown.  

 If two signals of strength strong1 and strong0 

conflict, the result is an x. 

 



Nets 

  Nets represent connections between hardware 

elements.  

 Just as in real circuits, nets have values continuously 

driven on them by the outputs of devices that they are 

connected to.  

 In Figure 2.1 net a is connected to the output of and gate 

g1. Net a will continuously assume the value computed 

at the output of gate g1, which is b & c. 



 Nets are declared primarily with the keyword wire.  

 Nets are one-bit values by default unless they are 

declared explicitly as vectors.  

 The terms wire and net are often used 

interchangeably. 

  The default value of a net is z (except the trireg net, 

which defaults to x ). Nets get the output value of 

their drivers. 

 If a net has no driver, it gets the value z.  

 wire a; // Declare net a for the above circuit 

 wire b,c; // Declare two wires b,c for the above 

circuit 

 wire d = 1'b0; // Net d is fixed to logic value 0 at 

declaration. 

 



Registers 

  Registers represent data storage elements.  

 Registers retain value until another value is placed 

onto them.  

 In Verilog, the term register merely means a variable 

that can hold a value.  

 Unlike a net, a register does not need  a driver. 

 Verilog registers do not need a clock as hardware 

register do.  

 Values of registers can be changed anytime in a 

simulation by assigning a new value to the register. 

 Register data types are commonly declared by the 

keyword reg. 

 



 Example 3-1 Example of Register 

 reg reset; // declare a variable reset that can hold its 

value 

 initial // keyword to specify the initial value of reg. 

 reset = 1'b1; //initialize reset to 1 to reset the digital 

circuit.  

 #100 reset = 1'b0; // after 100 time units reset is 

deasserted.  

 End 

 Example 2-2 Signed Register Declaration  

 reg signed [63:0] m; // 64 bit signed value  

 integer i; // 32 bit signed value 

 

 



Vectors 

  Nets or reg data types can be declared as vectors 

(multiple bit widths). If bit width is not specified, the 

default is scalar (1-bit). 

 wire a; // scalar net variable,  

 wire [7:0] bus; // 8-bit bus 

 wire [31:0] busA, busB, busC; // 3 buses of 32-bit 

width. reg clock; // scalar register, default 

 reg [0:40] virtual_addr; // Vector register, virtual 

address 41 bits wide. 

 Vectors can be declared at [high# : low#] or [low# : 

high#],  



Vector Part Select 
  For the vector declarations shown above, it is 

possible to address bits or parts of vectors. 

 busA[7] // bit # 7 of vector busA 

 bus[2:0] // Three least significant bits of vector 

bus, 

 // using bus[0:2] is illegal because the significant 

bit should always be on the left of a range 

specification. 

 virtual_addr[0:1] // Two most significant bits of 

vector virtual_addr. 

 



Vector Part Select 
  For the vector declarations shown above, it is 

possible to address bits or parts of vectors. 

busA[7] // bit # 7 of vector busA 

 bus[2:0] // Three least significant bits of vector 

bus, 

 // using bus[0:2] is illegal because the significant 

bit shouldalways be on the left of a range 

specification 

 virtual_addr[0:1] // Two most significant bits of 

vector virtual_addr 

 



Variable Vector Part Select 

  Another ability provided in Verilog HDL is to 

have variable part selects of a vector.  

 This allows part selects to be put in for loops to 

select various parts of the vector.  

 There are two special part-select operators: 

[<starting_bit>+:width] - part-select increments 

from starting bit. 

 [<starting_bit>-:width] - part-select decrements 

from starting bit. 

 The starting bit of the part select can be varied, 

but the width has to be constant. 

 



 The following example shows the use of variable 

vector part select: 

 reg [255:0] data1; //Little endian notation reg  

 [0:255] data2; //Big endian notation reg [7:0] byte; 

 //Using a variable part select, one can choose parts 

 byte = data1[31-:8]; //starting bit = 31, width =8 => 

data[31:24]  

 byte = data1[24+:8]; //starting bit = 24, width =8 => 

data[31:24]  

 byte = data2[31-:8]; //starting bit = 31, width =8 => 

data[24:31]  

 byte = data2[24+:8]; //starting bit = 24, width =8 => 

data[24:31] 

 



 //The starting bit can also be a variable. The 

width has to be constant. 

 //Therefore, one can use the variable part 

select 

 //in a loop to select all bytes of the vector. for 

(j=0; j<=31; j=j+1) 

 byte = data1[(j*8)+:8]; //Sequence is [7:0], 

[15:8]... [255:248] 

 //Can initialize a part of the vector 

 data1[(byteNum*8)+:8] = 8'b0; //If byteNum = 

1, clear 8 bits [15:8] 

 



Data Types- Integers 

 An integer is a general purpose  register data 

type  used  for  manipulating quantities. 

 Integers  are declared  by the keyword integer.  

 The default width for an integer is the host- 

machine word size, which is implementation-

specific but is at least 32 bits. 

 integer counter; // general purpose variable used 

as a counter. initial 

 counter = -1; // A negative one is stored in the 

counter 

 



Data Types- Real 

  Real number constants and real register data 

types are declared with the keyword real.  

 They can be specified in decimal notation 

(e.g., 3.14) or in scientific notation (e.g., 3e6, 

which is 3 x 106 ).  

 Real numbers cannot have a range 

declaration, and their default value is 0. 

 When a real value is assigned to an integer, 

the real number is rounded off to the nearest 

integer. 

 



Example 

 real delta; // Define a real variable called 

delta initial begin 

 delta = 4e10; // delta is assigned in scientific 

notation 

 delta = 2.13; // delta is assigned a value 2.13 

end integer i; // Define an integer i 

 initial 

 i = delta; // i gets the value 2 (rounded value 

of 2.13) 

 



Data Types- Time 

  Verilog simulation is done with respect to simulation 

time.  

 A special time register data type is used in Verilog to 

store simulation time.  

 A time variable is declared with the keyword time. The 

width for time register data types is implementation-

specific but is at least 64 bits. 

 The system function $time is  invoked  to get the current 

simulation time. 

 time save_sim_time; // Define a time variable 

save_sim_time initial. 

 save_sim_time = $time; // Save the current simulation 

time 

 



Data Types- Arrays 

  Arrays are allowed in Verilog for reg, integer, time, 

real, real time and vector register data types.  

 Multi- dimensional arrays can also be declared with 

any number of dimensions.  

 Arrays of nets can also be used to connect ports of 

generated instances.  

 Each element of the array can be used in the same 

fashion as a scalar or vector net. Arrays are 

accessed by <array_name>[<subscript>].  

 For multi- dimensional arrays, indexes need to be 

provided for each dimension. 

 



Examples 

 integer count[0:7]; // An array of 8 count 

variables 

 count[5] = 0; // Reset 5th element of array of 

count variables 

 chk_point[1:100]; // Array of 100 time 

checkpoint variables. 

 chk_point[100] = 0; // Reset 100th time check 

point value 

 

 



Memories 

 
 In digital simulation, one often needs to model register 

files, RAMs, and ROMs. 

  Memories are modeled in Verilog simply as a one-

dimensional array of registers. 

  Each element of the array is known as an element or 

word and is addressed by a single array index. 

  Each word can be one or more bits. It is important to 

differentiate between n 1-bit registers and one n-bit 

register.  

 A particular word in memory is obtained by using the 

address as a memory array subscript. 

 



Example- Memory Declaration 

 reg mem1bit[0:1023]; // Memory mem1bit 

with 1K 1-bit words 

 reg [7:0] membyte[0:1023]; // Memory 

membyte with 1K 8-bit words(bytes) 

membyte[511] // Fetches 1 byte word whose 

address is 511. 

 



Parameters 

 
 Verilog allows constants to be defined in a 

module by the keyword parameter. Paramet 

 parameter port_id = 5; // Defines a constant 

port_id 

 parameter cache_line_width = 256; // 

Constant defines width of cache line 

parameter signed [15:0] WIDTH; // Fixed sign 

and range for parameter WIDTH 

 ers cannot be used as variables. 



Strings 

  Strings can be stored in reg. The width of the register 

variables must be large enough to hold the string.  

 Each character in the string takes up 8 bits (1 byte). If 

the width of the register is greater than the size of the 

string, Verilog fills bits to the left of the string with zeros. 

  If the register width is smaller than the string width, 

Verilog truncates the leftmost bits of the string.  

 It is always safe to declare a string that is slightly wider 

than necessary. reg [8*18:1] string_value; // Declare a 

variable that is 18 bytes wide initial 

 string_value = "Hello Verilog World"; // String can be 

stored in variable 



Special characters 



System Tasks and Compiler 

Directives 

  Verilog provides standard system tasks for 

certain routine operations. All system tasks 

appear in the form $<keyword>.  

 Operations such as displaying on the screen, 

monitoring values of nets, stopping, and 

finishing are done by system tasks.  



Displaying information  
  $display is the main system task for displaying 

values of variables or strings or expressions. 

This is one of the most useful tasks in Verilog.  

 Usage: $display(p1, p2, p3,. , pn);  

 p1, p2, p3,..., pn can be quoted strings or 

variables or expressions. The format of $display 

is very similar to printf in C. 

  A $display inserts a newline at the end of the 

string by default.  

 A $display without any arguments produces a 

newline.  

 



Monitoring information  
 

 Verilog provides a mechanism to monitor a 

signal when its value changes. This facility is 

provided by the  

 $monitor task.  

 Usage: $monitor(p1,p2,p3,. ,pn);  

 The parameters p1, p2, ... , pn can be 

variables, signal names, or quoted strings. A 

format similar to the 

 $display task is used in the $monitor task.  

 



 $monitor continuously monitors the values of the 

variables or signals specified in the parameter list 

and displays all parameters in the list whenever the 

value of any one variable or signal changes.  

 Unlike $display, $monitor needs to be invoked only 

once. Only one monitoring list can be active at a 

time.  

 If there is more than one $monitor statement in your 

simulation, the last $monitor statement will be the 

active statement. The earlier $monitor statements 

will be overridden.  

 Two tasks are used to switch monitoring on and off. 



Usage:  

 $monitoron;  

 $monitoroff;  

 The $monitoron tasks enables monitoring, 

and the $monitoroff task disables monitoring 

during a simulation. 



Example of Monitor Statement  
 //Monitor time and value of the signals clock and reset  

//Clock toggles every 5 time units and reset goes down 

at 10 time units initial  

begin  

$monitor ($time," Value of signals clock = %b reset = 

%b", clock,reset); end  

Partial output of the monitor statement:  

-- 0 Value of signals clock = 0 reset = 1  

-- 5 Value of signals clock = 1 reset = 1  

-- 10 Value of signals clock = 0 reset = 0 

 



Stopping and finishing in a 

simulation  

  The task $stop is provided to stop during a 

simulation. Usage: $stop;  

 The $stop task puts the simulation in an 

interactive mode. The designer can then debug 

the design from the interactive mode. The $stop 

task is used whenever the designer wants to 

suspend the simulation and examine the values 

of signals in the design.  

 The $finish task terminates the simulation.  



Example of Stop and Finish Tasks  

 
 // Stop at time 100 in the simulation and 

examine the results  

 // Finish the simulation at time 1000. initial  

 begin clock = 0;  

 reset = 1;  

 #100 $stop; // This will suspend the 

simulation at time = 100 #900 $finish; // This 

will terminate the simulation at time = 1000 

end  



Compiler Directives  
 Compiler directives are provided in Verilog. All 

compiler directives are defined by using the  

 `<keyword> construct. The two most useful compiler 

directives are  

 `define - The `define directive is used to define text 

macros in Verilog .The Verilog compiler substitutes 

the text of the macro wherever it encounters a 

`<macro_name>.  

 This is similar to the #define construct in C. The 

defined constants or text macros are used in the 

Verilog code by preceding them with a ` (back tick).  



Example for `define Directive  

 
 //define a text macro that defines default word 

size  

 //Used as 'WORD_SIZE in the code 'define 

WORD_SIZE 32  

 //define an alias. A $stop will be substituted 

wherever 'S appears 'define S $stop;  

 //define a frequently used text string 'define 

WORD_REG reg [31:0]  



 `include  

 The `include directive allows you to include 

entire contents of a Verilog source file in 

another Verilog file during compilation.  

 This works similarly to the #include in the C 

programming language.  



Example for `include Directive  
 

 // Include the file header.v, which contains 

declarations in themain verilog file design.v. 

'include header.v  

 ...  

 ...  

 <Verilog code in file design.v>  

 



Modules  

 Module is a basic building block in Verilog.  

 A module definition always begins with the keyword 

module.  

 The module name, port list, port declarations, and 

optional parameters must come first in a module 

definition.  

 Port list and port declarations are present only if the 

module has any ports to interact with the external 

environment.  



 The five components within a module are: variable 

declarations, dataflow statements, instantiation of 

lower modules, behavioral blocks, and tasks or 

functions.  

 These components can be in any order and at an 

 The endmodule statement must always come last 

in a module definition.  

 All components except module, module name, and 

endmodule are optional and can be mixed and 

matched as per design needs. 

  Verilog allows multiple modules to be defined in a 

single file. The modules can be defined in any 

order in the file. y place in the module definition.  





Example of Components of SR 

Latch  
 The SR latch has S and R as the input ports 

and Q and Qbar as the output ports. The SR 

latch and its stimulus can be modeled as 

shown in Exam 

 // This example illustrates the different 

components of a module  

 // Module name and port list  

 // SR_latch module  

 module SR_latch(Q, Qbar, Sbar, Rbar);  



 //Port declarations output Q, Qbar; input 

Sbar, Rbar  

 // Instantiate lower-level modules  

 // In this case, instantiate Verilog primitive 

nand gates  

 // Note how the wires are connected in a 

cross-coupled fashion.  

 nand n1(Q, Sbar, Qbar);  

 nand n2(Qbar, Rbar, Q);  

 // endmodule statement  

 endmodule  



 // Module name and port list  

 // Stimulus module  

 module Top;  

 // Declarations of wire, reg, and other variables 

  reg set, reset;  

 // Instantiate lower-level modules  

 // In this case, instantiate SR_latch Feed inverted set and reset signals to 

the SR latch  

 SR_latch m1(q, qbar, ~set, ~reset); 

 // Behavioral block, initial initial  

 begin  

 $monitor($time, " set = %b, reset= %b, q= %b\n",set,reset,q); set = 0; reset 

= 0;  

 #5 reset = 1;   

 #5 reset = 0;  

 #5 set = 1; end  

 // endmodule statement  

 endmodule  

 



 From the above example following characteristics are 

noticed:  

 In the SR latch definition above ,all components 

described in Figure 2-2 need not be present in a module. 

  We do not find variable declarations, dataflow (assign) 

statements, or behavioral blocks (always or initial).  

 However, the stimulus block for the SR latch contains 

module name, wire, reg, and variable declarations, 

instantiation of lower level modules, behavioral block 

(initial), and endmodule statement but does not contain 

port list, port declarations, and data flow (assign) 

statements.  

 Thus, all parts except module, module name, and 

endmodule are optional and can be mixed and matched 

as per design needs.  

 



Ports  
 Ports provide the interface by which a module can 

communicate with its environment.  

 For example, the input/output pins of an IC chip are its 

ports.  

 The environment can interact with the module only 

through its ports.  

 The internals of the module are not visible to the 

environment.  

 This provides a very powerful flexibility to the designer. 

The internals of the module can be changed without 

affecting the environment as long as the interface is not 

modified.  

 Ports are also referred to as terminals.  



List of Ports  

 

 
 A module definition contains an optional list of ports. If 

the module does not exchange any signals with the 

environment, there are no ports in the list. Consider a 4-

bit full adder that is instantiated inside a top- level 

module Top. The diagram for the input/output ports is 

shown in Figure 2-4.  



 From the above figure, the module Top is a top-level 

module. The module fulladd4 is instantiated below Top.  

 The module fulladd4 takes input on ports a, b, and c_in and 

produces an output on ports sum and c_out. Thus, module 

fulladd4 performs an addition for its environment.  

 The module Top is a top- level module in the simulation 

and does not need to pass signals to or receive signals 

from the environment.  

 Thus, it does not have a list of ports. The module names 

and port lists for both module declarations in Verilog are as 

shown in below example.  

 Example of List of Ports  

 module fulladd4(sum, c_out, a, b, c_in); //Module with a list 

of ports  

 module Top; // No list of ports, top-level module in 

simulation  



Port Declaration  
 

 All ports in the list of ports must be declared 

in the module. Ports can be declared as 

follows: input -Input port  

 output- Output port inout- Bidirectional port  

 Each port in the port list is defined as input, 

output, or inout, based on the direction of the 

port signal.  

 Thus, for the example of the the port 

declarations will be as shown in example 

below.  



Example for Port Declarations  
  module fulladd4(sum, c_out, a, b, c_in);  

//Begin port declarations section  

 output[3:0] sum;  

 output c_cout;  

 input [3:0] a, b; input c_in;  

 //End port declarations section  

 ...  

 <module internals>  

 ... endmodule  



 All port declarations are implicitly declared as wire in 

Verilog.  

 Thus, if a port is intended to be a wire, it is sufficient 

to declare it as output, input, or inout.  

 Input or inout ports are normally declared as wires.  

 However, if output ports hold their value, they must 

be declared as reg. 

 Ports of the type input and inout cannot be declared 

as reg because reg variables store values and input 

ports should not store values but simply reflect the 

changes in the external signals they are connected 

to.  



 Alternate syntax for port declaration is shown in below 

example. This syntax avoids the duplication of naming 

the ports in both the module definition statement and the 

module port list definitions.  

 If a port is declared but no data type is specified, then, 

under specific circumstances, the signal will default to a 

wire data type.  

 module fulladd4(output reg [3:0] sum, output reg c_out,  

 input [3:0] a, b, //wire by default input c_in);  

 //wire by default  

 ...  

 <module internals>  

 ...  

 endmodule  



Port Connection Rules  
 A port as consisting of two units, one unit that 

is internal to the module and another that is 

external to the module.  

 The internal and external units are 

connected. There are rules governing port 

connections when modules are instantiated 

within other modules.  

 The Verilog simulator complains if any port 

connection rules are violated. These rules are 

summarized in Figure2.5  





 Inputs  

 Internally, input ports must always be of the type net. 

Externally, the inputs can be connected to a variable 

which is a reg or a net.  

 Outputs  

 Internally, outputs ports can be of the type reg or net. 

Externally, outputs must always be connected to a net. 

They cannot be connected to a reg.  

 Inouts  

 Internally, inout ports must always be of the type net. 

Externally, inout ports must always be connected to a 

net.  

 Width matching  

 It is legal to connect internal and external items of 

different sizes when making intermodule port 

connections. However, a warning is typically issued that 

the widths do not match.  



 Unconnected ports  

 Verilog allows ports to remain unconnected. For 

example, certain output ports might be simply for 

debugging, and you might not be interested in 

connecting them to the external signals. You can let a 

port remain unconnected by instantiating a module as 

shown below  

 fulladd4 fa0 (SUM, A, B, C_IN); // Output port c_out is 

unconnected  

 Example of illegal port connection  

 To illustrate port connection rules, assume that the 

module fulladd4 Example is instantiated in the stimulus 

block Top. Below example shows an illegal port 

connection  



Example 2-14 Illegal Port Connection  

 module Top;  

 //Declare connection variables reg [3:0]A,B;  

 reg C_IN;  

 reg [3:0] SUM;  

 wire C_OUT;  

 //Instantiate fulladd4, call it fa0  

 fulladd4 fa0(SUM, C_OUT, A, B, C_IN);  

 //Illegal connection because output port sum in module 

fulladd4  

 //is connected to a register variable SUM in module Top.  

 <stimulus>  

 . …. 

 endmodule  

 This problem is rectified if the variable SUM is declared as a 

net (wire).  



Connecting Ports to External 

Signals  
 There are two methods of making 

connections between signals specified in the 

module instantiation and the ports in a 

module definition.  

 These two methods cannot be mixed. These 

methods are  

 Connecting by ordered list  

 Connecting ports by name  



Connecting by ordered list  
  The signals to be connected must appear in the 

module instantiation in the same order as the ports in 

the port list in the module definition.  

 Consider the module fulladd4.To connect signals in 

module Top by ordered list, the Verilog code is shown 

in below example.  

 Notice that the external signals SUM, C_OUT, A, B, 

and C_IN appear in exactly the same order as the 

ports sum, c_out, a, b, and c_in in module definition of 

fulladd4.  

 



Example 2-15 Connection by Ordered List  

 module Top;  

 //Declare connection variables reg [3:0]A,B;  

 reg C_IN;  

 wire [3:0] SUM; wire C_OUT;  

 //Instantiate fulladd4, call it fa_ordered.  

 //Signals are connected to ports in order (by 

position) fulladd4 fa_ordered (SUM, C_OUT, A, 

B, C_IN);  

 ...  

 <stimulus>  

 ... endmodule  



 module fulladd4(sum, c_out, a, b, c_in);  

 output[3:0] sum; output c_cout; input [3:0] a, 

b; input c_in;  

 ...  

 <module internals>  

 ... endmodule  



Connecting ports by name  
 For large designs where modules have, say, 50 ports, 

remembering the order of the ports in the module 

definition is impractical and error-prone.  

 Verilog provides the capability to connect external 

signals to ports by the port names, rather than by 

position.  

 Another advantage of connecting ports by name is that 

as long as the port name is not changed, the order of 

ports in the port list of a module can be rearranged 

without changing the port connections in module 

instantiations.  

 We could connect the ports by name in above example 

by instantiating the module fulladd4, as follows. 

   



 // Instantiate module fa_byname and connect signals to 

ports by name  

 fulladd4 fa_byname(.c_out(C_OUT), .sum(SUM), .b(B), 

.c_in(C_IN), .a(A),);  

 Note that only those ports that are to be connected to 

external signals must be specified in port connection by 

name.  

 Unconnected ports can be dropped. For example, if the 

port c_out were to be kept unconnected, the instantiation 

of fulladd4 would look as follows. The port c_out is 

simply dropped from the port list.  

 // Instantiate module fa_byname and connect signals to 

ports by name  

 fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), 

.a(A),);  



Reference / Text Book Details 

Sl.No

. 
Title of Book Author Publication Edition 

1 
Verilog HDL: A Guide to 
Digital Design and Synthesis Samir Palnitkar 

Pearson 

Education 
2nd 

2 
VHDL for Programmable 
Logic Kevin Skahill 

PHI/Pearson 

education 
2nd 

3 
The Verilog Hardware 

Description Language 

Donald E. 

Thomas, Philip 

R. Moorby 

Springer 

Science+Busin

ess Media, 

LLC 

5th 

4 
Advanced Digital Design with 

the Verilog HDL 
Michael D. Ciletti 

Pearson 

(Prentice Hall) 
2nd 

5 Design through Verilog HDL 
Padmanabhan, 

Tripura Sundari 
Wiley Latest 





Module 3: Gate-Level and Data Flow Modelling 

Verilog HDL [18EC56] 

1 

By: 
 Mrs. LATHA S 
 Assistant Professor,  
 Dept. of ECE, SJBIT 

 
 ║JAI SRI GURUDEV║  

Sri AdichunchanagiriShikshana Trust (R)  

SJB INSTITUTE OF TECHNOLOGY  
BGS Health & Education City, Kengeri , Bangalore – 60 .  

 

DEPARTMENT OF ELECTRONICS & COMMUNICATION 

ENGINEERING  



Content 

1. Basic Verilog gate primitives 

2. Description of and/or and buf/not type gates 

3. Rise, fall and turn-off delays 

4. Min, max, and typical delays 

5. Continuous assignments 

6. Delay specification 

7. Expressions, Operators, operands 

8. Operator types 



Learning Objectives 

 Identify logic gate primitives provided in Verilog. 

 Understand instantiation of gates, gate symbols, 

and truth tables for and/or and buf/not type 

gates. 

 Understand how to construct a Verilog 

description from the logic diagram of the circuit. 

 Describe rise, fall, and turn-off delays in the 

gate-level design and Explain min, max, and 

type delays in the gate-level design 



Learning Objectives  

 
 Describe the continuous assignment (assign) 

statement, restrictions on the assign 

statement, and the implicit continuous 

assignment statement. 

 Explain assignment delay, implicit assignment 

delay, and net declaration delay for continuous 

 assignment statements and Define 

expressions, operators, and operands. 

 Use dataflow constructs to model practical 

digital circuits in Verilog 



Gate Types 

 A logic circuit can be designed by use of logic 

gates.  

 Verilog supports basic logic gates as 

predefined primitives.  

 These primitives are instantiated like modules 

except that they are predefined in Verilog and 

do not need a module definition.  

 All logic circuits can be designed by using 

basic gates. There are two classes of basic 

gates: and/or gates and buf/not gates. 



And/Or Gates  
  And/or gates have one scalar output and multiple scalar 

inputs.  

 The first terminal in the list of gate terminals is an output 

and the other terminals are inputs. 

 The output of a gate is evaluated as soon as one of the 

inputs changes.  

 The and/or gates available in Verilog are: and, or, xor, 

nand, nor, xnor. 

 The corresponding logic symbols for these gates are 

shown in Figure 3-1. Consider the gates with two inputs. 

 The output terminal is denoted by out. Input terminals 

are denoted by i1 and i2. 





Gate Instantiation of And / Or 

Gates  
 wire OUT, IN1, IN2; 

 // basic gate instantiations. 

 and a1(OUT, IN1, IN2); 

 nand na1(OUT, IN1, IN2); 

 or or1(OUT, IN1, IN2); 

 nor nor1(OUT, IN1, IN2); 

 xor x1(OUT, IN1, IN2); 

 xnor nx1(OUT, IN1, IN2); 

 // More than two inputs; 3 input nand gate 

 nand na1_3inp(OUT, IN1, IN2, IN3); 

 // gate instantiation without instance name 

 and (OUT, IN1, IN2); // legal gate instantiation 



Truth Table  







Buf/Not Gates 
 Buf/not gates have one scalar input and one or more scalar 

outputs. The last terminal in the port list is connected 

 to the input. Other terminals are connected to the outputs. We 

will discuss gates that have one input and one 

 output. Two basic buf/not gate primitives are provided in 

Verilog. 

 The symbols for these logic gates are shown in Figure 3-2. 



Example 3-2 Gate Instantiations of Buf/Not 

Gates 

  These gates are instantiated in Verilog as shown Example 3-

2. Notice that these gates can have multiple outputs but 

exactly one input, which is the last terminal in the port list. 

 // basic gate instantiations. 

 buf b1(OUT1, IN); 

 not n1(OUT1, IN); 

 // More than two outputs 

 buf b1_2out(OUT1, OUT2, IN); 

 // gate instantiation without instance name 

 not (OUT1, IN); // legal gate instantiation 

 Truth tables for gates with one input and one output are 

shown in Table 3-2. 





Bufif/notif 
 Gates with an additional control signal on buf and not 

gates are also available. 

 These gates propagate only if their control signal is 

asserted. They propagate z if their control signal is 

deasserted. Symbols for bufif/notif are shown in Figure 

3-3. 





Example 3-3 Gate Instantiations 

of Bufif/Notif Gates 

 //Instantiation of bufif gates. 

 bufif1 b1 (out, in, ctrl); 

 bufif0 b0 (out, in, ctrl); 

 //Instantiation of notif gates 

 notif1 n1 (out, in, ctrl); 

 notif0 n0 (out, in, ctrl); 



Array of Instances 

 There are many situations when repetitive 

instances are required.  

 These instances differ from each other only by 

the index of the vector to which they are 

connected.  

 To simplify specification of such instances, 

Verilog HDL allows an array of primitive 

instances to be defined. 

 



Simple Array of Primitive Instances 

 wire [7:0] OUT, IN1, IN2; 

 // basic gate instantiations. 

 nand n_gate[7:0](OUT, IN1, IN2); 

 // This is equivalent to the following 8 instantiations 

 nand n_gate0(OUT[0], IN1[0], IN2[0]); 

 nand n_gate1(OUT[1], IN1[1], IN2[1]); 

 nand n_gate2(OUT[2], IN1[2], IN2[2]); 

 nand n_gate3(OUT[3], IN1[3], IN2[3]); 

 nand n_gate4(OUT[4], IN1[4], IN2[4]); 

 nand n_gate5(OUT[5], IN1[5], IN2[5]); 

 nand n_gate6(OUT[6], IN1[6], IN2[6]); 

 nand n_gate7(OUT[7], IN1[7], IN2[7]); 



Gate-level multiplexer 



Logic Diagram for Multiplexer 



Example 3-5 Verilog Description of 

Multiplexer 

  // Module 4-to-1 multiplexer. Port list is taken exactly 

from// the I/O diagram. 

 module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

 // Port declarations from the I/O diagram 

 output out; 

 input i0, i1, i2, i3; 

 input s1, s0; 

 // Internal wire declarations 

 wire s1n, s0n; 

 wire y0, y1, y2, y3; 



 // Gate instantiations 

 // Create s1n and s0n signals. 

 not (s1n, s1); 

 not (s0n, s0); 

 // 3-input and gates instantiated 

 and (y0, i0, s1n, s0n); 

 and (y1, i1, s1n, s0); 

 and (y2, i2, s1, s0n); 

 and (y3, i3, s1, s0); 

 // 4-input or gate instantiated 

 or (out, y0, y1, y2, y3); 



Stimulus for Multiplexer 

  // Define the stimulus module (no ports) 

 module stimulus; 

 // Declare variables to be connected// to inputs 

 reg IN0, IN1, IN2, IN3; 

 reg S1, S0; 

 // Declare output wire 

 wire OUTPUT; 

 // Instantiate the multiplexer 

 mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, 

S0); 



 // Stimulate the inputs 

 // Define the stimulus module (no ports) 

 initial 

 begin 

 // set input lines 

 IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0; 

 #1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= 

%b\n",IN0,IN1,IN2,IN3); 

 // choose IN0 

 S1 = 0; S0 = 0; 

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, 

S0, OUTPUT); 

 // choose IN1 

 



 S1 = 0; S0 = 1; 

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, 

S0, OUTPUT); 

 // choose IN2 

 S1 = 1; S0 = 0; 

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, 

S0, OUTPUT); 

 // choose IN3 

 S1 = 1; S0 = 1; 

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, 

S0, OUTPUT); 

 end 

 endmodule 



 The output of the simulation is shown below. 

Each combination of the select signals is 

tested. 

 IN0= 1, IN1= 0, IN2= 1, IN3= 0 

 S1 = 0, S0 = 0, OUTPUT = 1 

 S1 = 0, S0 = 1, OUTPUT = 0 

 S1 = 1, S0 = 0, OUTPUT = 1 

 S1 = 1, S0 = 1, OUTPUT = 0 



1-bit Full Adder 



 Example 3-7 Verilog Description for 1-bit 

Full Adder 
 // Define a 1-bit full adder 

 module fulladd(sum, c_out, a, b, c_in); 

 // I/O port declarations 

 output sum, c_out; 

 input a, b, c_in; 

 // Internal nets 

 wire s1, c1, c2; 

 // Instantiate logic gate primitives 

 xor (s1, a, b); 

 and (c1, a, b); 

 xor (sum, s1, c_in); 

 and (c2, s1, c_in); 

 xor (c_out, c2, c1); 

 endmodule 



4-bit Ripple Carry Full Adder 



 Example 3-8 Verilog Description for 4-bit 

Ripple Carry Full Adder 

 // Define a 4-bit full adder 

 module fulladd4(sum, c_out, a, b, c_in); 

 // I/O port declarations 

 output [3:0] sum; 

 output c_out; 

 input[3:0] a, b; 

 input c_in; 

 // Internal nets 

 wire c1, c2, c3; 



 // Instantiate four 1-bit full adders. 

 fulladd fa0(sum[0], c1, a[0], b[0], c_in); 

 fulladd fa1(sum[1], c2, a[1], b[1], c1); 

 fulladd fa2(sum[2], c3, a[2], b[2], c2); 

 fulladd fa3(sum[3], c_out, a[3], b[3], c3); 

 endmodule 



 Example 3-9 Stimulus for 4-bit Ripple 

Carry Full Adder 

 // Define the stimulus (top level module) 

 module stimulus; 

 // Set up variables 

 reg [3:0] A, B; 

 reg C_IN; 

 wire [3:0] SUM; 

 wire C_OUT; 

 // Instantiate the 4-bit full adder. call it FA1_4 

 fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN); 



 // Set up the monitoring for the signal values 

 initial 

 begin 

 $monitor($time," A= %b, B=%b, C_IN= %b, --

- C_OUT= %b, SUM= %b\n", 

 A, B, C_IN, C_OUT, SUM); 

 End 

 // Stimulate inputs 

 initial 

 begin 

 A = 4'd0; B = 4'd0; C_IN = 1'b0; 

 #5 A = 4'd3; B = 4'd4; 



 #5 A = 4'd2; B = 4'd5; 

 #5 A = 4'd9; B = 4'd9; 

 #5 A = 4'd10; B = 4'd15; 

 #5 A = 4'd10; B = 4'd5; C_IN = 1'b1; 

 end 

 endmodule 



 The output of the simulation is shown below. 

 0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 

0000 

 5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 

0111 

 10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 

0111 

 15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 

0010 

 20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 

1001 

 25 A= 1010, B=0101, C_IN= 1,--- C_OUT= 1, SUM= 

0000 



Gate Delays 
 Until now, circuits are described without any 

delays (i.e., zero delay). In real circuits, logic 

gates have delays associated with them.  

 Gate delays allow the Verilog user to specify 

delays through the logic circuits.  

 Pin-to-pin delays can also be specified in 

Verilog. 

 There are three types of delays from the 

inputs to the output of a primitive gate : Rise, 

Fall, and Turn-off Delays 



 Rise delay 

 The rise delay is associated with a gate 

output transition to a 1 from another value. 

 

 

 

 Fall delay 

 The fall delay is associated with a gate output 

transition to a 0 from another value. 



Turn-off delay 
 The turn-off delay is associated with a gate output transition 

to the high impedance value (z) from another value.  

 If the value changes to x, the minimum of the three delays 

is considered. 

 Three types of delay specifications are allowed. If only one 

delay is specified, this value is used for all transitions.  

 If two delays are specified, they refer to the rise and fall 

delay values. The turn-off delay is the minimum of the two 

delays.  

 If all three delays are specified, they refer to rise, fall, and 

turn-off delay values.  

 If no delays are specified, the default value is zero. 

Examples of delay specification are shown in Example 3-

10. 



Example 3-10 Types of Delay 

Specification 
 // Delay of delay_time for all transitions 

 and #(delay_time) a1(out, i1, i2); 

 // Rise and Fall Delay Specification. 

 and #(rise_val, fall_val) a2(out, i1, i2); 

 // Rise, Fall, and Turn-off Delay Specification 

 bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, 

in, control); 



 Examples of delay specification are shown 

below. 

 and #(5) a1(out, i1, i2); //Delay of 5 for all 

transitions 

 and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6 

 bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, 

Fall = 4, Turn-off= 5 



Min/Typ/Max Values 
 Verilog provides an additional level of control for each 

type of delay mentioned above. 

 For each type of delay? rise, fall, and turn-off? three 

values, min, typ, and max, can be specified.  

 Any one value can be chosen at the start of the 

simulation.  

 Min/typ/max values are used to model devices whose 

delays vary within a minimum and maximum range be 

 Min value:- The min value is the minimum delay value 

that the designer expects the gate to have.  

 Typ val:- The typ value is the typical delay value that the 

designer expects the gate to have. 



 Max value 

 The max value is the maximum delay value that the 

designer expects the gate to have.  

 Min, typ, or max values can be chosen at Verilog run 

time.  

 Method of choosing a min/typ/max value may vary for 

different simulators  or operating systems. (For Verilog- 

XL , the values are chosen by specifying options 

+maxdelays, +typdelays, and +mindelays at run time.  

 If no option is specified, the typical delay value is the 

default). 

 This allows the designers the flexibility of building three 

delay values for each transition into their design.  

 The  

 designer can experiment with delay values without 

modifying the design. 



 Example 3-11 Min, Max, and Typical Delay 

Values 

 // One delay 

 // if +mindelays, delay= 4 

 // if +typdelays, delay= 5 

 // if +maxdelays, delay= 6 

 and #(4:5:6) a1(out, i1, i2); 

 // Two delays 

 // if +mindelays, rise= 3, fall= 5, turn-off = min(3,5) 

 // if +typdelays, rise= 4, fall= 6, turn-off = min(4,6) 

 // if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7) 

 and #(3:4:5, 5:6:7) a2(out, i1, i2); 



 // Three delays 

 // if +mindelays, rise= 2 fall= 3 turn-off = 4 

 // if +typdelays, rise= 3 fall= 4 turn-off = 5 

 // if +maxdelays, rise= 4 fall= 5 turn-off = 6 

 and #(2:3:4, 3:4:5, 4:5:6) a3(out, i1,i2); 

 Examples of invoking the Verilog-XL simulator with the 

command-line options are shown below. Assume that 

the module with delays is declared in the file test.v. 

 //invoke simulation with maximum delay 

 > verilog test.v +maxdelays 

 //invoke simulation with minimum delay 

 > verilog test.v +mindelays 

 //invoke simulation with typical delay 

 > verilog test.v +typdelays 



Delay Example 
 Let us consider a simple example to illustrate the use of 

gate delays to model timing in the logic circuits.  

 A simple module called D implements the following logic 

equations: 

 out = (a b) + c 

 The gate-level implementation is shown in Module D 

(Figure 3-8). The module contains two gates with delays 

of 5 and 4 time units. 



 Example 3-12 Verilog Definition for Module D with 

Delay 

 // Define a simple combination module called D 

 module D (out, a, b, c); 

 // I/O port declarations 

 output out; 

 input a,b,c; 

 // Internal nets 

 wire e; 

 // Instantiate primitive gates to build the circuit 

 and #(5) a1(e, a, b); //Delay of 5 on gate a1 

 or #(4) o1(out, e,c); //Delay of 4 on gate o1 

 endmodule 



 Example 3-13 Stimulus for Module D with Delay 

 // Stimulus (top-level module) 

 module stimulus; 

 // Declare variables 

 reg A, B, C; 

 wire OUT; 

 // Instantiate the module D 

 D d1( OUT, A, B, C); 

 // Stimulate the inputs. Finish the simulation at 40 time units. 

 initial 

 begin 

 A= 1'b0; B= 1'b0; C= 1'b0; 

 #10 A= 1'b1; B= 1'b1; C= 1'b1; 

 #10 A= 1'b1; B= 1'b0; C= 1'b0; 

 #20 $finish; 

 end 

 endmodule 



 The waveforms from the simulation are shown in Figure 

3-9 to illustrate the effect of specifying delays on 

 gates. 

 The waveforms are not drawn to scale. However, 

simulation time at each transition is specified below the 

 transition. 

 The outputs E and OUT are initially unknown. 

 At time 10, after A, B, and C all transition to 1, OUT 

transitions to 1 after a delay of 4 time units and E 

changes value to 1 after 5 time units. 

 At time 20, B and C transition to 0. E changes value to 0 

after 5 time units, and OUT transitions to 0, 4 time units 

after E changes. 





Data Flow Modeling 



 For small circuits, the gate-level modeling approach 

works very well because the number of gates is limited 

and the designer can instantiate and connects every 

gate individually.  

 Also, gate-level modeling is very intuitive to a designer 

with a basic knowledge of digital logic design. However, 

in complex designs the number of gates is very large. 

 Thus, designers can design more effectively if they 

concentrate on implementing the function at a level of 

abstraction higher than gate level.  

 Dataflow modeling provides a powerful way to implement 

a design. 

 Verilog allows a circuit to be designed in terms of the 

data flow between registers and how a design processes 

data rather than instantiation of individual gates. 



Continuous Assignments 
 A continuous assignment is the most basic statement in 

dataflow modeling, used to drive a value onto a net. This 

 assignment replaces gates in the description of the 

circuit and describes the circuit at a higher level of 

abstraction. 

 The assignment statement starts with the keyword 

assign. The syntax of an assign statement is as follows. 

 continuous_assign ::= assign [ drive_strength ] [ delay3 ] 

list_of_net_assignments ; 

 list_of_net_assignments ::= net_assignment { , 

net_assignment } 

 net_assignment ::= net_lvalue = expression 



 The default value for drive strength is strong1 and strong0. The 

delay value is also optional and can be used to specify delay on 

the assign statement. This is like specifying delays for gates. 

Continuous assignments have the following characteristics: 

 The left hand side of an assignment must always be a scalar or 

vector net or a concatenation of scalar and vector nets. It cannot 

be a scalar or vector register. 

 Continuous assignments are always active. The assignment 

expression  is evaluated as soon as one of the right hand- side 

operands changes and the value is assigned to the left-hand-side 

net. 

 The operands on the right-hand side can be registers or nets or 

function calls. Registers or nets can be scalars or vectors. 

 Delay values can be specified for assignments in terms of time 

units. Delay values are used to control the time when a net is 

assigned the evaluated value. 

 This feature is similar to specifying delays for gates. It is very 

useful in modeling timing behavior in real circuits. 



 Example 3-14 Examples of Continuous 

Assignment 

 // Continuous assign. out is a net. i1 and i2 are nets. 

 assign out = i1 & i2; 

 // Continuous assign for vector nets. addr is a 16-bit 

vector net // addr1 and addr2 are 16-bit vector 

registers. 

 assign addr[15:0] =addr1_bits[15:0]^addr2_bits[15:0]; 

 // Concatenation. Left-hand side is a concatenation of 

a scalar// net and a vector net. 

 assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in; 



Implicit Continuous Assignment 

 Instead of declaring a net and then writing a continuous 

assignment on the net, Verilog provides a shortcut by which 

a continuous assignment can be placed on a net when it is 

declared. There can be only one implicit declaration 

 assignment per net because a net is declared only once. 

 In the example below, an implicit continuous assignment is 

contrasted with a regular continuous assignment. 

 //Regular continuous assignment 

 wire out; 

 assign out = in1 & in2; 

 //Same effect is achieved by an implicit continuous 

assignment 

 wire out = in1 & in2; 



Implicit Net Declaration 

 If a signal name is used to the left of the 

continuous assignment, an implicit net 

declaration will be inferred for that signal name.  

 If the net is connected to a module port, the 

width of the inferred net is equal to the width of 

the module port.  

 wire i1, i2; 

 assign out = i1 & i2; //Note that out was not 

declared as a wire 

 //but an implicit wire declaration for out 

 //is done by the simulator 



Delays 
 Delay values control the time between the change in a right-hand-side 

operand and when the new value is assigned to the left-hand side.  

 Three ways of specifying delays in continuous assignment statements 

are regular assignment delay, implicit continuous assignment delay, 

and net declaration delay. 

 



Regular Assignment Delay 
 The first method is to assign a delay value in a 

continuous assignment statement.  

 The delay value is specified after the keyword assign.  

 Any change in values of in1 or in2 will result in a delay of 

10 time units before re-computation of the expression in1 

& in2, and the result will be assigned to out.  

 If in1 or in2 changes value again before 10 time units 

when the result propagates to out, the values of in1 and 

in2 at the time of re-computation are considered. 

 This property is called inertial delay. An input pulse that 

is shorter than the delay of the assignment statement 

does not propagate to the output. 



 assign #10 out = in1 & in2; // Delay in a continuous assign 

 1. When signals in1 and in2 go high at time 20, out goes to a 

high 10 time units later (time = 30). 

 2. When in1 goes low at 60, out changes to low at 70. 

 3. However, in1 changes to high at 80, but it goes down to low 

before 10 time units have elapsed. 

 4. Hence, at the time of re-computation, 10 units after time 80, 

in1 is 0. Thus, out gets the value 0. A pulse of width less than 

the specified assignment delay is no propagated to the 

output. 



Implicit Continuous Assignment Delay 

 An equivalent method is to use an implicit 

continuous assignment to specify both a delay and 

an assignment on the net. 

 //implicit continuous assignment delay 

 wire #10 out = in1 & in2; 

 //same as 

 wire out; 

 assign #10 out = in1 & in2; 

 The declaration above has the same effect as 

defining a wire out and declaring a continuous 

assignment on out. 



Net Declaration Delay 

 A delay can be specified on a net when it is declared 

without putting a continuous assignment on the net. If a 

delay is specified on a net out, then any value change 

applied to the net out is delayed accordingly.  

 Net declaration delays can also be used in gate-level 

modeling. 

 //Net Delays 

 wire # 10 out; 

 assign out = in1 & in2; 

 //The above statement has the same effect as the 

following. 

 wire out; 

 assign #10 out = in1 & in2; 



Expressions, Operators, and 

Operands 
 Dataflow modeling describes the design in terms of 

expressions instead of primitive gates.  

 Expressions, operators, and operands form the basis of 

dataflow modeling. 

 Expressions are constructs that combine operators and 

operands to pro 

 // Examples of expressions. Combines operands and 

operators 

 a ^ b  

 addr1[20:17] + addr2[20:17] 

 in1 | in2 



Operands 
 Operands can be any one of the data types defined, 

Data Types.  

 Some constructs will take only certain types of 

operands.  

 Operands can be constants, integers, real numbers, 

nets, registers, times, bit-select (one bit of vector net 

or a vector register), part-select (selected bits of the 

vector net or register vector), and memories or 

function calls 

 Examples: integer count, final_count; 

 final_count = count + 1;//count is an integer operand 

 real a, b, c; 

 



 c = a - b; //a and b are real operands 

 reg [15:0] reg1, reg2; 

 reg [3:0] reg_out; 

 reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and 

reg2[3:0] are //part-select register operands 

 reg ret_value; 

 ret_value=calculate_parity(A,B);//calculate_p

arity is a//function type operand 



Operators 

 Operators act on the operands to produce 

desired results.  

 Verilog provides various types of operators. 

Operator 

 Types d1 && d2 // && is an operator on 

operands d1 and d2. 

 !a[0] // ! is an operator on operand a[0] 

 B >> 1 // >> is an operator on operands B 

and 1 



Operator Types 



 Arithmetic 

 There are five arithmetic operators in Verilog. 

 module Arithmetic (A, B, Y1, Y2, Y3, Y4, Y5); 

                   input [2:0] A, B; 

                  output [3:0] Y1; 

                  output [4:0] Y3; 

                  output [2:0] Y2, Y4, Y5; 

                  reg [3:0] Y1; 

                  reg [4:0] Y3; 

                  reg [2:0] Y2, Y4, Y5; 

                  always @(A or B) 

                  begin 

                                   Y1=A+B;//addition 

                                   Y2=A-B;//subtraction 

                                   Y3=A*B;//multiplication 

                                   Y4=A/B;//division 

                                   Y5=A%B;//modulus of A divided by B 

                  end 

 endmodule  

 



Logical and Relational Operators 



Equality and Bitwise Operators 



 Equality and inequality  

 Equality and inequality operators are used in exactly the same way 

as relational operators and return a true or false indication 

depending on whether any two operands are equivalent or not.  

  module Equality (A, B, Y1, Y2, Y3); 

                   input [2:0] A, B; 

                  output Y1, Y2; 

                  output [2:0] Y3; 

                  reg Y1, Y2; 

                  reg [2:0] Y3; 

                  always @(A or B) 

                  begin 

                                   Y1=A==B;//Y1=1 if A equivalent to B 

                                   Y2=A!=B;//Y2=1 if A not equivalent to B 

                                   if (A==B)//parenthesis needed 

                                                    Y3=A;  

                                   else 

                                                    Y3=B;  

                  end  

 endmodule 

 



 Bit-wise  

 Logical bit-wise operators take two single or multiple operands on 

either side of the operator and return a single bit result. The only 

exception is the NOT operator, which negates the single operand that 

follows. Verilog does not have the equivalent of NAND or NOR 

operator, their funstion is implemented by negating the AND and OR 

operators.  
  module Bitwise (A, B, Y); 

                   input [6:0] A; 

                  input [5:0] B; 

                  output [6:0] Y; 

                  reg [6:0] Y; 

                   always @(A or B) 

                  begin 

                                   Y(0)=A(0)&B(0); //binary AND 

                                   Y(1)=A(1)|B(1); //binary OR 

                                   Y(2)=!(A(2)&B(2)); //negated AND 

                                   Y(3)=!(A(3)|B(3)); //negated OR 

                                   Y(4)=A(4)^B(4); //binary XOR 

                                   Y(5)=A(5)~^B(5); //binary XNOR 

                                   Y(6)=!A(6); //unary negation 

                  end  

 endmodule 

 





 Reduction 

 Verilog has six reduction operators, these operators accept a single 

vectored (multiple bit) operand, performs the appropriate bit-wise 

reduction on all bits of the operand, and returns a single bit result. 

For example, the four bits of A are ANDed together to produce Y1.  

  module Reduction (A, Y1, Y2, Y3, Y4, Y5, Y6); 

                   input [3:0] A; 

                  output Y1, Y2, Y3, Y4, Y5, Y6; 

                  reg Y1, Y2, Y3, Y4, Y5, Y6; 

                   always @(A) 

                  begin 

                                   Y1=&A; //reduction AND 

                                   Y2=|A; //reduction OR 

                                   Y3=~&A; //reduction NAND 

                                   Y4=~|A; //reduction NOR 

                                   Y5=^A; //reduction XOR 

                                   Y6=~^A; //reduction XNOR 

                  end  

 endmodule 



 Shift  

 Shift operators require two operands. The operand before the 

operator contains data to be shifted and the operand after the 

operator contains the number of single bit shift operations to be 

performed. 0 is being used to fill the blank positions.  

 module Shift (A, Y1, Y2); 

   

                  input [7:0] A; 

                  output [7:0] Y1, Y2; 

                  parameter B=3; reg [7:0] Y1, Y2; 

                   

                  always @(A) 

                  begin 

                                   Y1=A<<B; //logical shift left 

                                   Y2=A>>B; //logical shift right 

                  end  

 endmodule 

 



 Concatenation and Replication  

 The concatenation operator "{ , }" combines (concatenates) the bits 

of two or more data objects. The objects may be scalar (single bit) or 

vectored (muliple bit). Multiple concatenations may be performed 

with a constant prefix and is known as replication.  

  module Concatenation (A, B, Y); 

                   input [2:0] A, B; 

                  output [14:0] Y; 

                  parameter C=3'b011; 

                  reg [14:0] Y; 

                   always @(A or B) 

                  begin 

                                   Y={A, B, (2{C}}, 3'b110}; 

                  end  

 endmodule 

   

 



 Conditional  

 An expression using conditional operator 

evaluates the logical expression before the 

"?".  

 If the expression is true then the expression 

before the colon (:) is evaluated and assigned 

to the output.  

 If the logical expression is false then the 

expression after the colon is evaluated and 

assigned to the output.  

 



4-to-1 Multiplexer 
 Gate-level modeling of a 4-to-1 multiplexer, Example. 

The logic diagram for the multiplexer is given in Figure 

3.4 and the gate-level Verilog description is shown in 

Example.  

 We describe the multiplexer, using dataflow statements. 

 We show two methods to model the multiplexer by using 

dataflow statements. 

 Method 1: logic equation 

 We can use assignment statements instead of gates to 

model the logic equations of the multiplexer.  

 Notice that everything is same as the gate-level Verilog 

description except that computation of out is done by 

specifying one logic equation by using operators instead 

of individual gate instantiations. 



 I/O ports remain the same. 

 This important so that the interface with the environment 

does not change. Only the internals of the module 

change. 

 Example 4-to-1 Multiplexer, Using Logic Equations 

 // Module 4-to-1 multiplexer using data flow. logic 

equation 

 module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

 output out; 

 input i0, i1, i2, i3; 

 input s1, s0; 

 //Logic equation for out 

 assign out = (~s1 & ~s0 & i0)|(~s1 & s0 & i1) |(s1 & ~s0 

& i2) |(s1 & s0 & i3) ; 

 endmodule 



 Method 2: Conditional Operator 

 There is a more concise way to specify the 4-to-1 

multiplexers. 

 Example of 4-to-1 Multiplexer, Using Conditional 

Operators 

 // Module 4-to-1 multiplexer using data flow. Conditional 

operator. 

 module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0); 

 // Port declarations from the I/O diagram 

 output out; 

 input i0, i1, i2, i3 

 input s1, s0; 

 assign out = s1 ? ( s0 ? i3 : i2) : (s0 ? i1 : i0) ; 

 endmodule 



4 bit Full Adder 

 Method 1: dataflow operators 
 Example 4-bit Full Adder, Using Dataflow Operators 

 // Define a 4-bit full adder by using dataflow statements. 

 module fulladd4(sum, c_out, a, b, c_in); 

 // I/O port declarations 

 output [3:0] sum; 

 output c_out; 

 input[3:0] a, b; 

 input c_in; 

 // Specify the function of a full adder 

 assign {c_out, sum} = a + b + c_in; 

 endmodule 

 



Example 4-bit Full Adder with Carry 

Lookahead 
 module fulladd4(sum, c_out, a, b, c_in); 

 // Inputs and outputs 

 output [3:0] sum; 

 output c_out; 

 input [3:0] a,b; 

 input c_in; 

 // Internal wires 

 wire p0,g0, p1,g1, p2,g2, p3,g3; 

 wire  

 compute the p for each stage 

 assign p0 = a[0] ^ b[0], 

 p1 = a[1] ^ b[1], 

 p2 = a[2] ^ b[2], 

 p3 = a[3] ^ b[3];c4, c3, c2, c1; 



 compute the g for each stage 

 assign g0 = a[0] & b[0], 

 g1 = a[1] & b[1], 

 g2 = a[2] & b[2], 

 g3 = a[3] & b[3]; 

 // compute the carry for each stage 

 // Note that c_in I 

 carry lookahead computation 

 assign c1 = g0 | (p0 & c_in), 

 c2 = g1 | (p1 & g0) | (p1 & p0 & c_in), 

 c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in), 

 c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | 

 (p3 & p2 & p1 & p0 & c_in); 



 // Compute Sum 

 assign sum[0] = p0 ^ c_in, 

 sum[1] = p1 ^ c1, 

 sum[2] = p2 ^ c2, 

 sum[3] = p3 ^ c3; 

 // Assign carry output 

 assign c_out = c4; 

 Endmodule 

 



Ripple Counter 



Example: Verilog Code for Ripple 

Counter 
 module counter(Q , clock, clear); 

 // I/O ports 

 output [3:0] Q; 

 input clock, clear; 

 // Instantiate the T flipflops 

 T_FF tff0(Q[0], clock, clear); 

 T_FF tff1(Q[1], Q[0], clear); 

 T_FF tff2(Q[2], Q[1], clear); 

 T_FF tff3(Q[3], Q[2], clear); 

 endmodule 



Stimulus Module for Ripple 

Counter 
 // Top level stimulus module 

 module stimulus; 

 // Declare variables for stimulating input 

 reg CLOCK, CLEAR; 

 wire [3:0] Q; 

 initial 

 $monitor($time, " Count Q = %b Clear= %b", 

Q[3:0],CLEAR); 

 // Instantiate the design block counter 

 counter c1(Q, CLOCK, CLEAR) 



 // Stimulate the Clear Signal 

 initial 

 begin 

 CLEAR = 1'b1; 

 #34 CLEAR = 1'b0; 

 #200 CLEAR = 1'b1; 

 #50 CLEAR = 1'b0; 

 End 

 // Set up the clock to toggle every 10 time units 

 initial 

 begin 

 CLOCK = 1'b0; 

 forever #10 CLOCK = ~CLOCK; 

 end 



 // Finish the simulation at time 400 

 initial 

 begin 

 #400 $finish; 

 end 

 endmodule 



The output of the simulation is shown below. Note that the clear signal resets 

the count to zero. 



T-Flipflop 



Example :Verilog Code for T-flipflop 

 // Edge-triggered T-flipflop. Toggles every clock 

 // cycle. 

 module T_FF(q, clk, clear); 

 // I/O ports 

 output q; 

 input clk, clear; 

 // Instantiate the edge-triggered DFF 

 // Complement of output q is fed back. 

 // Notice qbar not needed. Unconnected port. 

 edge_dff ff1(q, ,~q, clk, clear); 

 endmodule 



D-flipflop 



Verilog Code for Edge-Triggered 

D-flipflop 
 // Edge-triggered D flipflop 

 module edge_dff(q, qbar, d, clk, clear); 

 // Inputs and outputs 

 output q,qbar; 

 input d, clk, clear; 

 // Internal variables 

 wire s, sbar, r, rbar,cbar; 



 // dataflow statements 

 //Create a complement of signal clear 

 assign cbar = ~clear; 

 // Input latches; A latch is level sensitive. An edge-

sensitive 

 // flip-flop is implemented by using 3 SR latches. 

 assign sbar = ~(rbar & s), 

 s = ~(sbar & cbar & ~clk), 

 r = ~(rbar & ~clk & s), 

 rbar = ~(r & cbar & d); 

 // Output latch 

 assign q = ~(s & qbar), 

 qbar = ~(q & r & cbar); 

 endmodule 

 



Module Outcomes 
 After completion of the module the students are able to: 

 Identify logic gate primitives provided in Verilog and Understand 

instantiation of gates, gate symbols, and truth tables for and/or and 

buf/not type gates. 

 Understand how to construct a Verilog description from the logic 

diagram of the circuit. 

 Describe rise, fall, and turn-off delays in the gate-level design and 

Explain min, max, and type delays in the gate-level design 

 Describe the continuous assignment (assign) statement, restrictions 

on the assign statement, and the implicit continuous assignment 

statement. 

 Explain assignment delay, implicit assignment delay, and net 

declaration delay for continuous assignment statements and Define 

expressions, operators, and operands. 

 Use dataflow constructs to model practical digital circuits in Verilog 



Recommended questions 
 1. Write the truth table of all the basic gates. Input values 

consisting of ‘0’, ‘1’, ‘x’, ‘z’. 

 2. What are the primitive gates supported by Verilog 

HDL? Write the Verilog HDL statements to 

 instantiate all the primitive gates. 

 3. Use gate level description of Verilog HDL to design 4 

to 1 multiplexer. Write truth table, top-level 

 block, logic expression and logic diagram. Also write the 

stimulus block for the same. 

 4. Explain the different types of buffers and not gates 

with the help of truth table, logic symbol, logic expression 

 5. Use gate level description of Verilog HDL to describe 

the 4-bit ripple carry counter. Also write a stimulus block 

for 4-bit ripple carry adder. 



 6. How to model the delays of a logic gate using Verilog 

HDL? Give examples. Also explain the different delays 

associated with digital circuits. 

 7. Write gate level description to implement function y = 

a.b + c, with 5 and 4 time units of gate delay for 

 AND and OR gate respectively. Also write the stimulus 

block and simulation waveform. 

 8. With syntax describe the continuous assignment 

statement. 

 9. Show how different delays associated with logic circuit 

are modelled using dataflow description. 

 10. Explain different operators supported by Verilog 

HDL. 

 11. What is an expression associated with dataflow 

description? What are the different types of operands in 

an expression? 



 12. Discuss the precedence of operators. 

 13. Use dataflow description style of Verilog HDL to 

design 4:1 multiplexer with and without using 

 conditional operator. 

 14. Use dataflow description style of Verilog HDL to 

design 4-bitadder using 

  i. Ripple carry logic. 

 ii. Carry look ahead logic. 

 15. Use dataflow description style, gate level 

description of Verilog HDL to design 4-bit ripple 

carry counter. Also write the stimulus block to verify 

the same. 



Reference / Text Book Details 

Sl.No

. 
Title of Book Author Publication Edition 

1 
Verilog HDL: A Guide to 
Digital Design and Synthesis Samir Palnitkar 

Pearson 

Education 
2nd 

2 
VHDL for Programmable 
Logic Kevin Skahill 

PHI/Pearson 

education 
2nd 

3 
The Verilog Hardware 

Description Language 

Donald E. 

Thomas, Philip 

R. Moorby 

Springer 

Science+Busin

ess Media, 

LLC 

5th 

4 
Advanced Digital Design with 

the Verilog HDL 
Michael D. Ciletti 

Pearson 

(Prentice Hall) 
2nd 

5 Design through Verilog HDL 
Padmanabhan, 

Tripura Sundari 
Wiley Latest 





Module 4: Behavioural Modelling and Tasks Functions 

Verilog HDL [18EC56] 

1 

By: 
 Mrs. LATHA S 
 Assistant Professor,  
 Dept. of ECE, SJBIT 

 
 ║JAI SRI GURUDEV║  

Sri AdichunchanagiriShikshana Trust (R)  

SJB INSTITUTE OF TECHNOLOGY  
BGS Health & Education City, Kengeri , Bangalore – 60 .  

 

DEPARTMENT OF ELECTRONICS & COMMUNICATION 

ENGINEERING  



Content 

 Structured procedures 

 Initial and always,  

 Blocking and non-blocking statements 

 Delay control, generate statement 

 Event control, conditional statements  

 Multiway branching, loops 

 sequential and parallel blocks 

 Tasks and Functions: Differences between tasks 

and functions, declaration, invocation, automatic 

tasks and functions. 



Learning Objectives 

 To Explain the significance of structured 

procedures always and initial in behavioral 

modeling.  

 To Define blocking and nonblocking procedural 

assignments.  

 To Understand delay-based timing control 

mechanism in behavioral modeling. Use regular 

delays, intra-assignment delays, and zero delays.  

 To Describe event-based timing control mechanism 

in behavioral modeling. Use regular event control, 

named event control, and event OR control.  

 



Learning Objectives  

 
 To Use level-sensitive timing control 

mechanism in behavioral modeling.  

 To Explain conditional statements using if and 

else.  

 To Describe multiway branching, using case, 

casex, and casez statements.  

 To Understand looping statements such as 

while, for, repeat, and forever.  

 To Define sequential and parallel blocks  



 Structured Procedures  

 There are two structured procedure 

statements in Verilog: always and initial. 

 These statements are the two most basic 

statements in behavioral modeling.  

 All other behavioral statements can appear 

only inside these structured procedure state 

 The statements always and initial cannot be 

nested. ments.  



 Initial Statement  

  All statements inside an initial statement constitute an initial 

block.  

 An initial block starts at time 0, executes exactly once during 

a simulation, and then does not execute again. If there are 

multiple initial blocks, each block starts to execute 

concurrently at time 0.  

 Each block finishes execution independently of other blocks.  

 Multiple behavioral statements must be grouped, typically 

using the keywords begin and end. 

 If there is only one behavioral statement, grouping is not 

necessary. This is similar to the begin-end blocks in Pascal 

programming language or the { } grouping in the C 

programming language 



 Example 4.1:Initial Statement  

 module stimulus; reg x,y, a,b, m;  

 initial  

 m = 1'b0; //single statement; does not need to be grouped  

 initial  

 begin  

 #5 a = 1'b1; //multiple statements; need to be grouped  

 #25 b = 1'b0;  

 end  

 Initial 

 begin  

 #10 x = 1'b0; 

 #25 y = 1'b1;  

 end  

 initial 

 #50 $finish;  

 endmodule  



 In the above example, the three initial statements start to 

execute in parallel at time 0.  

 If a delay #<delay> is seen before a statement, the statement 

is executed <delay> time units after the current simulation 

time. Thus, the execution sequence of the statements inside 

the initial blocks will be as follows. 

 time statement executed  

 0 m = 1'b0;  

 5 a = 1'b1;  

 10 x = 1'b0;   

 30 b = 1'b0;  

 35 y = 1'b1;  

 50 $finish;  

 The initial blocks are typically used for initialization, 

monitoring, waveforms and other processes that must be 

executed only once during the entire simulation run.  



Combined Variable Declaration and 

Initialization  

  Variables can be initialized when they are declared. 

Example 4-2 shows such a declaration.  

 Example 4-2 Initial Value Assignment  

 //The clock variable is defined first reg clock;  

 //The value of clock is set to 0 initial clock = 0;  

 //Instead of the above method, clock variable  

 //can be initialized at the time of declaration  

 //This is allowed only for variables declared  

 //at module level. reg clock = 0;  



Combined Port/Data Declaration 

and Initialization  
 The combined port/data declaration can also be 

combined with an initialization. Example 4-3 shows such 

a declaration.  

 Example 4-3 Combined Port/Data Declaration and 

Variable Initialization  

 module adder (sum, co, a, b, ci);  

 output reg [7:0] sum = 0; //Initialize 8 bit output sum 

output reg co = 0; //Initialize 1 bit output co  

 input [7:0] a, b; input ci;  

 ------- 

 endmodule  



Combined ANSI C Style Port 

Declaration and Initialization  
 Verilog-2001 introduced an abbreviated module port 

declaration enhancement, often referred to as “ANSI-C” style port 

declarations, where each module port could be declared just once 

and include the port position, port direction and port data type all in 

a single declaration 

 ANSI C style port declaration can also be combined with an 

initialization. Example 4-4 shows such a declaration.  

 Example 4-4 Combined ANSI C Port Declaration and Variable 

Initialization  

 module adder (output reg [7:0] sum = 0, //Initialize 8 bit output output 

reg co = 0, //Initialize 1 bit output co  

 input [7:0] a, b, input ci  

 );   

 --  

 endmodule  



Always Statement  

 All behavioral statements inside an always 

statement constitute an always block.  

 The always statement starts at time 0 and 

executes the statements in the always block 

continuously in a looping fashion.  

 This statement is used to model a block of 

activity that is repeated continuously in a digital 

circuit.  

 An example is a clock generator module that 

toggles the clock signal every half cycle. 



 In real circuits, the clock generator is active from time 0 

to as long as the circuit is powered on. Example 4-5 

illustrates one method to model a clock generator in 

Verilog.  

 Example 4-5 always Statement  

 module clock_gen (output reg clock);  

 //Initialize clock at time zero initial  

 clock = 1'b0;  

 //Toggle clock every half-cycle (time period = 10) 

 Always 

  #10 clock = ~clock; 

 initial  

 #1000 $finish;  

 endmodule 



 In Example 4-5, the always statement starts at time 0 

and executes the statement clock = ~clock every 10 time 

units.  

 Notice that the initialization of clock has to be done 

inside a separate initial statement.  

 If we put the initialization of clock inside the always 

block, clock will be initialized every time the always is 

entered.  

 Also, the simulation must be halted inside an initial 

statement. If there is no $stop or $finish statement to halt 

the simulation, the clock generator will run forever.  



Procedural Assignments  
 Procedural assignments update values of reg, integer, 

real, or time variables.  

 The value placed on a variable will remain unchanged until 

another procedural assignment updates the variable with a 

different value.  

 These are unlike continuous assignments, Dataflow 

Modeling, where one assignment statement can cause the 

value of the right-hand-side expression to be continuouly 

expression sly placed onto the left-hand-side net.  

 The syntax for the simplest form of procedural assignment 

is shown below.  

 assignment ::= variable_lvalue = [ delay_or_event_control 

] expression  



 The left-hand side of a procedural assignment <lvalue> 

can be one of the following:  

 A reg, integer, real, or time register variable or a memory 

element  

 A bit select of these variables (e.g., addr[0])  

 A part select of these variables (e.g., addr[31:16])  

 A concatenation of any of the above  

 The right-hand side can be any expression that 

evaluates to a value. In behavioral modeling, all 

operators can be used in behavioral expressions. 

 There are two types of procedural assignment 

statements: blocking and nonblocking. 



Blocking Assignments 

 Blocking assignment statements are executed in the 

order they are specified in a sequential block.  

 A blocking assignment will not block execution of 

statements that follow in a parallel block.  

 The = operator is used to specify blocking assignments. 

 A blocking assignment gets its name because 

a blocking assignment must evaluate the RHS 

arguments and complete the assignment without 

interruption from any other Verilog statement. 

 The assignment is said to "block" 

other assignments until the current assignment has 

completed. 

 



 Example 4-6 Blocking Statements  

 reg x, y, z;  

 reg [15:0] reg_a, reg_b; integer count;  

 //All behavioral statements must be inside an initial or 

always block initial  

 begin  

 x = 0; y = 1; z = 1; //Scalar assignments count = 0; 

//Assignment to integer variables  

 reg_a = 16'b0; reg_b = reg_a; //initialize vectors  

 #15 reg_a[2] = 1'b1; //Bit select assignment with delay  

 #10 reg_b[15:13] = {x, y, z} //Assign result of 

concatenation to part select of a vector  

 count = count + 1; //Assignment to an integer (increment)  

 end  



 In Example 4-6, the statement y = 1 is executed only 

after x = 0 is executed. The behavior in a particular block 

is sequential in a begin-end block if blocking statements 

are used, because the statements can execute only in 

sequence.  

 The statement count = count + 1 is executed last. The 

simulation times at which the statements are executed 

are as follows:  

 All statements x = 0 through reg_b = reg_a are executed 

at time 0  

 Statement reg_a[2] = 0 at time = 15  

 Statement reg_b[15:13] = {x, y, z} at time = 25  

 Statement count = count + 1 at time = 25  

 Since there is a delay of 15 and 10 in the preceding 

statements, count = count + 1 will be executed at time = 

25 units  

 



Nonblocking Assignments 
 Nonblocking assignments allow scheduling of 

assignments without blocking execution of the statements 

that follow in a sequential block.  

 A <= operator is used to specify nonblocking assignments. 

Note that this operator has the same symbol as a 

relational operator, less_than_equal_to.  

 The operator <= is interpreted as a relational operator in 

an expression and as an assignment operator in the 

context of a nonblocking assignment.  

 To illustrate the behavior of nonblocking statements and 

its difference from blocking statements, let us consider 

Example 4-7, where we convert some blocking 

assignments to nonblocking assignments, and observe the 

behavior. 



 Example 4-7 Nonblocking Assignments  

 reg x, y, z;  

 reg [15:0] reg_a, reg_b; integer count; //All behavioral 

statements must be inside an initial or always block 

 initial  

 begin  

 x = 0; y = 1; z = 1; //Scalar assignments  

 count = 0; //Assignment to integer variables  

 reg_a = 16'b0; reg_b = reg_a; //Initialize vectors 

 reg_a[2] <= #15 1'b1; //Bit select assignment with delay  

 reg_b[15:13] <= #10 {x, y, z}; //Assign result of 

concatenation //to part select of a vector  

 count <= count + 1; //Assignment to an intege(increment) 

 end 



 In this example, the statements x = 0 through reg_b = 

reg_a are executed sequentially at time 0.  

 Then the three nonblocking assignments are processed 

at the same simulation time.  

 reg_a[2] = 0 is scheduled to execute after 15 units (i.e., 

time = 15)  

 reg_b[15:13] = {x, y, z} is scheduled to execute after 10 

time units (i.e., time = 10)  

 count = count + 1 is scheduled to be executed without 

any delay (i.e., time = 0)  

 Thus, the simulator schedules a non blocking 

assignment statement to execute and continues to the 

next statement in the block without waiting for the non 

blocking statement to complete execution.  



 Typically, nonblocking assignment statements are 

executed last in the time step in which they are 

scheduled, that is, after all the blocking assignments 

in that time step are executed.  

 In the example above, we mixed blocking and non 

blocking assignments to illustrate their behaviour. 

 However, it is recommended that blocking and non 

blocking assignments not be mixed in the same 

always block. 



 module block_nonblock();   

 reg a, b, c, d , e, f ;   

 // Blocking assignments  

 initial begin 

 a = #10 1'b1;// The simulator assigns 1 to a at time 10  

 b = #20 1'b0;// The simulator assigns 0 to b at time 30  

 c = #40 1'b1;// The simulator assigns 1 to c at time 70  

 end  

 // Nonblocking assignments 

 initial  

 begin 13  

 d <= #10 1'b1;// The simulator assigns 1 to d at time 10 

 e <= #20 1'b0;// The simulator assigns 0 to e at time 20  

  f <= #40 1'b1;// The simulator assigns 1 to f at time 40 

 end 

 endmodule 



Application of non blocking 

assignments 
 They are used as a method to model several concurrent 

data transfers that take place after a common event. 

 Consider the following example where three concurrent 

data transfers take place at the positive edge of clock.  

 always @(posedge clock) begin  

 reg1 <= #1 in1;  

 reg2 <= @(negedge clock) in2 ^ in3;  

 reg3 <= #1 reg1; //The old value of reg1  

 end  



 At each positive edge of clock, the following sequence 

takes place for the non blocking assignments.  

 A read operation is performed on each right-hand-side 

variable, in1, in2, in3, and reg1, at the positive edge of 

clock.  

 The right-hand-side expressions are evaluated, and the 

results are stored internally in the simulator.  

 The write operations to the left-hand-side variables are 

scheduled to be executed at the time specified by the 

intra-assignment delay in each assignment, that is, 

schedule "write" to reg1 after 1 time unit, to reg2 at the 

next negative edge of clock, and to reg3 after 1 time unit.  

 

 



 The write operations are executed at the scheduled time 

steps.  

 The order in which the write operations are executed is 

not important because the internally stored right-hand-

side expression values are used to assign to the left-

hand-side values.  

 For example, note that reg3 is assigned the old value of 

reg1 that was stored after the read operation, even if the 

write operation wrote a new value to reg1 before the 

write operation to reg3 was executed.  

 Thus, the final values of reg1, reg2, and reg3 are not 

dependent on the order in which the assignments are 

processed.  

 



Nonblocking Statements to Eliminate 

Race Conditions  
 //Illustration 1: Two concurrent always blocks with 

blocking statements// 

 always @(posedge clock) a = b;  

 always @(pose dge clock) b = a;  

 //Illustration 2: Two concurrent always blocks with 

nonblocking statements// 

 always @(posedge clock) a <= b;  

 always @(posedge clock) b <= a;  

 In Example 4-8, in Illustration 1, there is a race condition 

when blocking statements are used. Either a = b would 

be executed before b = a, or vice versa, depending on 

the simulator implementation.. 



 Thus, values of registers a and b will not be swapped. 

Instead, both registers will get the same value (previous 

value of a or b), based on the Verilog simulator 

implementation 

 However, nonblocking statements used in Illustration 2 

eliminate the race condition. At the positive edge of 

clock, the values of all right-hand-side variables are 

"read," and the right-hand-side expressions are 

evaluated and stored in temporary variables.  

 During the write operation, the values stored in the 

temporary variables are assigned to the left-handside 

variables. Separating the read and write operations 

ensures that the values of registers a and b are swapped 

correctly, regardless of the order in which the write 

operations are performed.  



Example 4-9 Implementing Nonblocking 

Assignments using Blocking Assignments 

 Example 4-9 shows how non blocking assignments 

shown in Illustration 2 could be emulated using blocking 

assignments. 

 //Emulate the behavior of nonblocking assignments by  

 //using temporary variables and blocking assignments 

always @(posedge clock)  

 begin  

 //Read operation  

 //store values of right-hand-side expressions in 

temporary variables 

 temp_a = a;  

 temp_b = b; 



 //Write operation  

 //Assign values of temporary variables to left-

hand-side variables  

 a = temp_b;  

 b = temp_a;  

 End 

 For digital design, use of nonblocking 

assignments in place of blocking 

assignments is highly recommended in 

places where concurrent data transfers take 

place after a common event.  



 In such cases, blocking assignments can potentially 

cause race conditions because the final result depends 

on the order in which the assignments are evaluated.  

 Nonblocking assignments can be used effectively to 

model concurrent data transfers because the final result 

is not dependent on the order in which the assignments 

are evaluated. 

 Typical applications of nonblocking assignments include 

pipeline modeling and modeling of several mutually 

exclusive data transfers.  

 On the downside, nonblocking assignments can 

potentially cause degradation in the simulator 

performance and increase in memory usage.  

 



Timing Controls  

 Various behavioral timing control constructs are 

available in Verilog.  

 In Verilog, if there are no timing control statements, 

the simulation time does not advance.  

 Timing controls provide a way to specify the 

simulation time at which procedural statements will 

execute.  

 There are three methods of timing control: delay-

based timing control, event-based timing control, 

and level- sensitive timing control. 



Delay-Based Timing Control  

 Delay-based timing control in an expression specifies the 

time duration between when the statement is 

encountered and when it is executed.  

 Delays are specified by the symbol #.  

 Syntax for the delay-based timing control statement is 

shown below.  

 delay3 ::= # delay_value | # ( delay_value [ , delay_value 

[ , delay_value ] ] )  

 delay2 ::= # delay_value | # ( delay_value [ , delay_value 

] ) delay_value ::= unsigned_number | 

parameter_identifier | specparam_identifier | 

mintypmax_expression  

 



 Delay-based timing control can be specified by a 

number, identifier, or a mintypmax_expression.  

 There are three types of delay control for procedural 

assignments: regular delay control, intra-assignment 

delay control, and zero delay control.  

 Regular delay control  

 Regular delay control is used when a non-zero delay is 

specified to the left of a procedural assignment. Usage of 

regular delay control is shown in Example 4-10.  

 



Example 4-10 Regular Delay 

Control  
 //define parameters  

 parameter latency = 20; 

  parameter delta = 2;  

 //define register variables  

 reg x, y, z, p, q;  

 initial  

 begin  

 x = 0; // no delay control // delay control with a number. 

Delay execution of  // y = 1 by 10units  

 #10 y = 1;  

 #latency z = 0; // Delay control with identifier. Delay of 20 

units  



 #(latency + delta) p = 1; // Delay control with expression  

 #y x = x + 1; // Delay control with identifier. Take value of 

y.  

 #(4:5:6) q = 0; // Minimum, typical and maximum delay 

values.  

 end  

 In Example 4-10, the execution of a procedural 

assignment is delayed by the number specified by the 

delay control.  

 For begin-end groups, delay is always relative to time 

when the statement is encountered.  

 Thus, y =1 is executed 10 units after it is encountered in 

the activity flow.  

 



Intra-assignment delay control  

 Instead of specifying delay control to the left of the assignment, 

it is possible to assign a delay to the right of the assignment 

operator. Such delay specification alters the flow of activity in a 

different manner. 

 Example 4-11 shows the contrast between intra-assignment 

delays and regular delays 

 //define register variables 

 reg x, y, z;  

 //intra assignment delays  

 initial  

 begin  

 x = 0; z = 0;  

 y = #5 x + z; //Take value of x and z at the time=0, evaluate //x + 

z and then wait 5 time units to assign value to y.  

 end  



 //Equivalent method with temporary variables and regular 

delay control initial  

 begin  

 x = 0; z = 0;  

 temp_xz = x + z;  

 #5 y = temp_xz; //Take value of x + z at the current time and  

 //store it in a temporary variable. Even though x and z might 

change between 0 and 5, //the value assigned to y at time 5 is 

unaffected.  

 end  

 Regular delays defer the execution of the entire assignment.  

 Intra-assignment delays compute the righthand- side 

expression at the current time and defer the assignment of the 

computed value to the left-hand-side variable. Intra-

assignment delays are like using regular delays with a 

temporary variable to store the current value of a right-hand-

side expression.  



Zero delay control  
 Procedural statements in different always-initial blocks 

may be evaluated at the same simulation time.  

 The order of execution of these statements in different 

always-initial blocks is nondeterministic. 

  Zero delay control is a method to ensure that a 

statement is executed last, after all other statements in 

that simulation time are executed.  

 This is used to eliminate race conditions.  

 However, if there are multiple zero delay statements, the 

order between them is nondeterministic. 

  Example 4-12 illustrates zero delay control.  



Example 4-12:- Zero Delay Control  

 initial  

 begin  

 x = 0;  

 y = 0;  

 end  

 initial  

 begin  

 #0 x = 1; //zero delay control  

 #0 y = 1;  

 end  



 In Example 4-12, four statements?x = 0, y = 0, x = 1, y = 

1 are to be executed at simulation time 0.  

 However, since x = 1 and y = 1 have #0, they will be 

executed last.  

 Thus, at the end of time 0, x will have value 1 and y will 

have value 1.  

 The order in which x = 1 and y = 1 are executed is not 

deterministic.  

 The above example was used as an illustration. 

However, using #0 is not a recommended practice.  



Event-Based Timing Control  

 An event is the change in the value on a register or a 

net. Events can be utilized to trigger execution of a 

statement or a block of statements. There are four types 

of event-based timing control: regular event control, 

named event control, event OR control, and level 

sensitive timing control.  

 Regular event control  

 The @ symbol is used to specify an event control. 

Statements can be executed on changes in signal value 

or at a positive or negative transition of the signal value. 

The keyword posedge is used for a positive transition, as 

shown in Example 4-13.  



 Example 4-13 Regular Event Control  

 @(clock) q = d; //q = d is executed whenever signal clock 

changes value 

  @(posedge clock) q = d; //q = d is executed whenever 

signal clock does  

 //a positive transition ( 0 to 1,x or z, x to 1, z to 1 )  

 @(negedge clock) q = d; //q = d is executed whenever 

signal clock does  

 //a negative transition ( 1 to 0,x or z, x to 0, z to 0)  

 q = @(posedge clock) d; //d is evaluated immediately 

and assigned to q at the positive edge of clock  



Named event control  

 Verilog provides the capability to declare an event 

and then trigger and recognize the occurrence of 

that event (see Example 4-14).  

 The event does not hold any data. A named event is 

declared by the keyword event. An event is 

triggered by the symbol ->.  

 The triggering of the event is recognized by the 

symbol @.  



 Example 4-14 Named Event Control  

 //This is an example of a data buffer storing data after the last 

packet of data has arrived.  

 event received_data; //Define an event called received_data  

 always @(posedge clock) //check at each positive clock edge 

 begin  

 if(last_data_packet) //If this is the last data packet  

 ->received_data; //trigger the event received_data end  

 always @(received_data) //Await triggering of event 

received_data  

 //When event is triggered, store all four  

 //packets of received data in data buffer  

 //use concatenation operator { }  

 data_buf = {data_pkt[0], data_pkt[1], data_pkt[2], data_pkt[3]};  



Event OR Control  

 Sometimes a transition on any one of multiple 

signals or events can trigger the execution of a 

statement or a block of statements.  

 This is expressed as an OR of events or signals. 

The list of events or signals expressed as an OR is 

also known as a sensitivity list.  

 The keyword or is used to specify multiple triggers, 

as shown in Example 4-15.  



 Example 4-15 Event OR Control (Sensitivity List)  

 //A level-sensitive latch with asynchronous reset  

 always @( reset or clock or d)  

 //Wait for reset or clock or d to change  

 begin  

 if (reset) //if reset signal is high, set q to 0.  

 q = 1'b0;  

 else if(clock) //if clock is high, latch input  

 q = d;  

 end  

 Sensitivity lists can also be specified using the "," 

(comma) operator instead of the or operator.  



 Example 4-16 Sensitivity List with Comma Operator  

 //A level-sensitive latch with asynchronous reset 

 always @( reset, clock, d)  

 //Wait for reset or clock or d to change  

 begin  

 if (reset) //if reset signal is high, set q to 0.  

 q = 1'b0;  

 else if(clock) //if clock is high, latch input  

 q = d;  

 End  



 When the number of input variables to a combination 

logic block are very large, sensitivity lists can become 

very cumbersome to write.  

 Moreover, if an input variable is missed from the 

sensitivity list, the block will not behave like a 

combinational logic block.  

 To solve this problem, Verilog HDL contains two special 

symbols: @* and @(*).  

 Both symbols exhibit identical behavior. These special 

symbols are sensitive to a change on any signal that 

may be read by the statement group that follows this 

symbol  



 Example 4-17 Use of @* Operator  

 //Combination logic block using the or 

operator  

 //Cumbersome to write and it is easy to miss 

one input to the block  

 always @(a or b or c or d or e or f or g or h or 

p or m)  

 begin  

 out1 = a ? b+c : d+e;  

 out2 = f ? g+h : p+m;  

 end  



 //Instead of the above method, use @(*) 

symbol  

 //Alternately, the @* symbol can be used  

 //All input variables are automatically included 

in the  

 //sensitivity list.  

 always @(*)  

 begin  

 out1 = a ? b+c : d+e;  

 out2 = f ? g+h : p+m;  

 end  

 



Level-Sensitive Timing Control  
 Event control discussed earlier waited for the change of a signal 

value or the triggering of an event.  

 The symbol @ provided edge-sensitive control.  

 Verilog also allows level sensitive timing control, that is, the 

ability to wait for a certain condition to be true before a statement 

or a block of statements is executed.  

 The keyword wait is used for level sensitive constructs.  

 always  

 wait (count_enable) #20 count = count + 1;  

 In the above example, the value of count_enable is monitored 

continuously. If count_enable is 0, the statement is not entered. If 

it is logical 1, the statement count = count + 1 is executed after 

20 time units. If count_enable stays at 1, count will be 

incremented every 20 time units.  



Conditional Statements  
 Conditional statements are used for making decisions 

based upon certain conditions.  

 These conditions are used to decide whether or not a 

statement should be executed. 

  Keywords if and else are used for conditional 

statements.  

 There are three types of conditional statements. Usage 

of conditional statements is shown below.  

 //Type 1 conditional statement. No else statement.  

 //Statement executes or does not execute. 

  if (<expression>) true_statement ;  



 //Type 2 conditional statement. One else statement  

 //Either true_statement or false_statement is evaluated  

 if (<expression>) true_statement ; else false_statement ;  

 //Type 3 conditional statement. Nested if-else-if.  

 //Choice of multiple statements. Only one is executed.  

 if (<expression1>) true_statement1 ;  

 else if (<expression2>) true_statement2 ;  

 else if (<expression3>) true_statement3 ;  

 else default_statement ;  

 The <expression> is evaluated. If it is true (1 or a non-zero 

value), the true_statement is executed. However, if it is false 

(zero) or ambiguous (x), the false_statement is executed. The 

<expression> can contain any operators. Each true_statement 

or false_statement can be a single statement or a block of 

multiple statements. A block must be grouped, typically by 

using keywords begin and end. A single statement need not be 

grouped.  



 Example 4-18 Conditional Statement Examples  

 //Type 1 statements  

 if(!lock) buffer = data; if(enable) out = in;  

 //Type 2 statements  

 if (number_queued < MAX_Q_DEPTH) begin  

 data_queue = data;  

 number_queued = number_queued + 1; end  

 else  

 $display("Queue Full. Try again");  



 //Type 3 statements  

 //Execute statements based on ALU control 

signal. if (alu_control == 0)  

 y = x + z;  

 else if(alu_control == 1) y = x - z;  

 else if(alu_control == 2) y = x * z;  

 else  

 $display("Invalid ALU control signal");  



Multiway Branching  
 Conditional Statements, there were many alternatives, 

from which one was chosen. The nested if-else-if can 

become unwieldy if there are too many alternatives. A 

shortcut to achieve the same result is to use the case 

statement.  

 Case Statement  

 The keywords case, endcase, and default are used in the 

case statement.. case (expression)  

 alternative1: statement1; alternative2: statement2;  

 alternative3: statement3;  

 ...  

 default: default_statement; 

 endcase  



 Each of statement1, statement2 , default_statement can 

be a single statement or a block of multiple statements. 

 A block of multiple statements must be grouped by 

keywords begin and end.  

 The expression is compared to the alternatives in the 

order they are written.  

 For the first alternative that matches, the corresponding 

statement or block is executed. If none of the 

alternatives matches, the default_statement is executed. 

The default_statement is optional.  

 Placing of multiple default statements in one case 

statement is not allowed. The case statements can be 

nested. The following Verilog code implements the type 

3 conditional statement in Example 4-18.  



 //Execute statements based on the ALU control 

signal  

 reg [1:0] alu_control;  

 ...  

 ...  

 case (alu_control)  

 2'd0 : y = x + z;  

 2'd1 : y = x - z;  

 2'd2 : y = x * z;  

 default : $display("Invalid ALU control signal");  

 endcase  



 Example 4-19 4-to-1 Multiplexer with Case Statement  

 module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);  

 // Port declarations from the I/O diagram output out;  

 input i0, i1, i2, i3;  

 input s1, s0;  

 reg out;  

 always @(s1 or s0 or i0 or i1 or i2 or i3)  

 case (s1, s0) //Switch based on concatenation of control 

signals  

 2'd0 : out = i0;  

 2'd1 : out = i1;  

 2'd2 : out = i2;  

 2'd3 : out = i3;  

 default: $display("Invalid control signals"); endcase  

 endmodule  



Casex, Casez Keywords  
 There are two variations of the case statement. They are 

denoted by keywords, casex and casez.  

 casez treats all z values in the case alternatives or the case 

expression as don't cares. All bit positions with z can also 

represented by ? in that position.  

 casex treats all x and z values in the case item or the case 

expression as don't cares.  

 The use of casex and casez allows comparison of only non-

x or -z positions in the case expression and the case 

alternatives. Example 4-21 illustrates the decoding of state 

bits in a finite state machine using a casex statement. The 

use of casez is similar. Only one bit is considered to 

determine the next state and the other bits are ignored.  



 Example 4-21 casex Use reg [3:0] 

encoding; integer state;  

 casex (encoding) //logic value x represents a 

don't care bit. 

 4'b1xxx : next_state = 3;  

 4'bx1xx : next_state = 2;  

 4'bxx1x : next_state = 1;  

 4'bxxx1 : next_state = 0;  

 default : next_state = 0; endcase  

 Thus, an input encoding = 4'b10xz would 

cause next_state = 3 to be executed.  



Loops  
 There are four types of looping statements in Verilog: while, for, 

repeat, and forever. The syntax of these loops is very similar to 

the syntax of loops in the C programming language. All looping 

statements can appear only inside an initial or always block. 

Loops may contain delay expressions.  

 While Loop  

 The keyword while is used to specify this loop. The while loop 

executes until the while expression is not true. If the loop is 

entered when the while-expression is not true, the loop is not 

executed at all. Each expression can contain the operators. Any 

logical expression can be specified with these operators. If 

multiple statements are to be executed in the loop, they must be 

grouped typically using keywords begin and end. Example 4-22 

illustrates the use of the while loop.  



 //Illustration 1: Increment count from 0 to 127. Exit at 

count 128.  

 //Display the count variable.  

 integer count;  

 initial  

 begin  

 count = 0;  

 while (count < 128) //Execute loop till count is 127.  

 //exit at count 128  

 begin  

 $display("Count = %d", count);  

 count = count + 1;  

 end  

 end  



 //Illustration 2: Find the first bit with a value 1 in flag (vector variable)  

 'define TRUE 1'b1';  

 'define FALSE 1'b0; reg [15:0] flag;  

 integer i; //integer to keep count  

 reg continue;  

 initial  

 begin  

 flag = 16'b 0010_0000_0000_0000; i = 0;  

 continue = 'TRUE; 148  

 while((i < 16) && continue ) //Multiple conditions using operators.  

 begin  

 if (flag[i]) begin  

 $display("Encountered a TRUE bit at element number %d", i); continue 

= 'FALSE;  

 end  

 i = i + 1;  

 end  

 end  



For Loop  
 The keyword for is used to specify this loop. The for loop 

contains three parts:  

 An initial condition  

 A check to see if the terminating condition is true  

 A procedural assignment to change value of the control 

variable  

 The counter described in Example 4-22 can be coded as 

a for loop (Example 4-23). The initialization condition and 

the incrementing procedural assignment are included in 

the for loop and do not need to be specified separately. 

Thus, the for loop provides a more compact loop structure 

than the while loop. Note, however, that the while loop is 

more general-purpose than the for loop. The for loop 

cannot be used in place of the while loop in all situations.  

 



 Example 4-23 For Loop  

 integer count; 

 initial  

 for ( count=0; count < 128; count = count + 1)  

 $display("Count = %d", count);  

 for loops can also be used to initialize an array or memory, as 

shown below. //Initialize array elements 'define MAX_STATES 32  

 integer state [0: 'MAX_STATES-1]; //Integer array state with 

elements 0:31  

 integer i;  

 initial begin  

 for(i = 0; i < 32; i = i + 2) //initialize all even locations with 0 state[i] 

= 0;  

 for(i = 1; i < 32; i = i + 2) //initialize all odd locations with 1 

 state[i] = 1;  

 end  



Repeat Loop  
 The keyword repeat is used for this loop.  

 The repeat construct executes the loop a fixed number of 

times. A repeat construct cannot be used to loop on a 

general logical expression. 

 A while loop is used for that purpose.  

 A repeat construct must contain a number, which can be 

a constant, a variable or a signal value.  

 However, if the number is a variable or signal value, it is 

evaluated only when the loop starts and not during the 

loop execution.  

 The counter in Example 4-22 can be expressed with the 

repeat loop, as shown in Illustration 1.  



 Example 4-24 Repeat Loop  

 //Illustration 1 : increment and display count from 0 

to 127  

 integer count;  

 initial  

 begin count = 0;  

 repeat(128) 

 begin  

 $display("Count = %d", count); count = count + 1;  

 end  

 end  



 //Illustration 2 : Data buffer module example //After it receives a 

data_start signal. //Reads data for next 8 cycles.  

 module data_buffer(data_start, data, clock);  

 parameter cycles = 8;  

 input data_start;  

 input [15:0] data; input clock;  

 reg [15:0] buffer [0:7]; integer i;  

 always @(posedge clock) begin  

 if(data_start) //data start signal is true begin  

 i = 0;  

 repeat(cycles) //Store data at the posedge of next 8 clock //cycles 

 begin  

 @(posedge clock) buffer[i] = data; //waits till next // posedge to latch  

 data i = i + 1;  

 end  

 end  

 end  

 endmodule  

  



Forever loop  
 The keyword forever is used to express this loop. 

 The loop does not contain any expression and executes 

forever until the $finish task is encountered.  

 The loop is equivalent to a while loop with an expression 

that always evaluates to true, e.g., while (1). A forever loop 

can be exited by use of the disable statement.  

 A forever loop is typically used in conjunction with timing 

control constructs. 

  If timing control constructs are not used, the Verilog 

simulator would execute this statement infinitely without 

advancing simulation time and the rest of the design would 

never be executed. Example 4-25 explains the use of the 

forever statement  



 Example 4-25 Forever Loop  

 //Example 1: Clock generation  

 //Use forever loop instead of always block reg clock;  

 initial  

 begin  

 clock = 1'b0;  

 forever #10 clock = ~clock; //Clock with period of 20 units 

end  

 //Example 2: Synchronize two register values at every 

positive edge of //clock  

 reg clock; reg x, y; 

 initial  

 forever @(posedge clock) x = y;  



Sequential and Parallel Blocks  
 Block statements are used to group multiple statements 

to act together as one.  

 In previous examples, we used keywords begin and end 

to group multiple statements. 

 Thus, we used sequential blocks where the statements 

in the block execute one after another.  

 In this section we discuss the block types: sequential 

blocks and parallel blocks.  

 We also discuss three special features of blocks: named 

blocks, disabling named blocks, and nested blocks. 

 There are two types of blocks: sequential blocks and 

parallel blocks   



Sequential blocks  
 The keywords begin and end are used to group 

statements into sequential blocks.  

 Sequential blocks have the following characteristics:  

 The statements in a sequential block are processed in 

the order they are specified.  

 A statement is executed only after its preceding 

statement completes execution (except for nonblocking 

assignments with intra- assignment timing control).  

 If delay or event control is specified, it is relative to the 

simulation time when the previous statement in the block 

completed execution.  



 Example 4-26 Sequential Blocks  

 In Illustration 1, the final values are x = 0, y= 1, z = 1, w = 

2 at simulation time 0.  

 //Illustration 1: Sequential block without delay  

 reg x, y;  

 reg [1:0] z, w;  

 initial  

 begin  

 x = 1'b0;  

 y = 1'b1;  

 z = {x, y};  

 w = {y, x};  

 end  



 In Illustration 2, the final values are the same except that 

the simulation time is 35 at the end of the block.  

 //Illustration 2: Sequential blocks with delay. 

 reg x, y;  

 reg [1:0] z, w; initial  

 begin  

 x = 1'b0; //completes at simulation time 0  

 #5 y = 1'b1; //completes at simulation time 5  

 #10 z = {x, y}; //completes at simulation time 15  

 #20 w = {y, x}; //completes at simulation time 35  

 end  



Parallel blocks  
 Parallel blocks, specified by keywords fork and join, 

provide interesting simulation features.  

 Parallel blocks have the following characteristics:  

 Statements in a parallel block are executed concurrently.  

 Ordering of statements is controlled by the delay or 

event control assigned to each statement.  

 If delay or event control is specified, it is relative to the 

time the block was entered. 

 Notice the fundamental difference between sequential 

and parallel blocks.  

 All statements in a parallel block start at the time when 

the block was entered. Thus, the order in which the 

statements are written in the block is not important.  



 Let us consider the sequential block with delay in 

Example 4-26 and convert it to a parallel block. The 

converted Verilog code is shown in Example 4-27. The 

result of simulation remains the same except that all 

statements start in parallel at time 0. Hence, the block 

finishes at time 20 instead of time 35.  

 //Example 1: Parallel blocks with delay. reg x, y;  

 reg [1:0] z, w; initial  

 fork  

 x = 1'b0; //completes at simulation time 0  

 #5 y = 1'b1; //completes at simulation time 5  

 #10 z = {x, y}; //completes at simulation time 10  

 #20 w = {y, x}; //completes at simulation time 20  

 join  



 //Parallel blocks with deliberate race condition 

reg x, y;  

 reg [1:0] z, w;  

 initial  

 fork  

 x = 1'b0;  

 y = 1'b1;  

 z = {x, y};  

 w = {y, x};  

 join  



Special Features of Blocks  
 We discuss three special features available with block 

statements: nested blocks, named blocks and disabling of 

named blocks.  

 Nested blocks:- Blocks can be nested.  

 Sequential and parallel blocks can be mixed, as shown in 

Example 4-28. Example 4-28 Nested Blocks  

 //Nested blocks initial  

 begin  

 x = 1'b0;  

 fork  

 #5 y = 1'b1;  

 #10 z = {x, y};  

 join  

 #20 w = {y, x};  

 end  



 Named blocks  

 Blocks can be given names.  

 Local variables can be declared for the named block.  

 Named blocks are a part of the design hierarchy. 

Variables in a named block can be accessed by using 

hierarchical name referencing.  

 Named blocks can be disabled, i.e., their execution can 

be stopped.  

 Example 4-29 shows naming of blocks and hierarchical 

naming of blocks.  



 Example 4-29 Named Blocks  

 //Named blocks module top; initial  

 begin: block1 //sequential block named block1 integer i; 

//integer i is static and local to block1  

 // can be accessed by hierarchical name, top.block1.i  

 ...  

 ...  

 end initial  

 fork: block2 //parallel block named block2  

 reg i; // register i is static and local to block2  

 // can be accessed by hierarchical name, top.block2.i  

 ...  

 ...  

 join  



Disabling named blocks  

 The keyword disable provides a way to terminate the 

execution of a named block.  

 Disable can be used to get out of loops, handle error 

conditions, or control execution of pieces of code, based 

on a control signal.  

 Disabling a block causes the execution control to be 

passed to the statement immediately succeeding the 

block.  

 For C programmers, this is very similar to the break 

statement used to exit a loop.  



Task and Functions  

 Learning Objectives  

 Describe the differences between tasks and 

functions.  

 Identify the conditions required for tasks to be 

defined. Understand task declaration and 

invocation.  

 Explain the conditions necessary for 

functions to be defined. Understand function 

declaration and invocation.  

 



Task and Functions  

 A designer is frequently required to implement the same 

functionality at many places in a behavioral design.  

 This means that the commonly used parts should be 

abstracted into routines and the routines must be 

invoked instead of repeating the code.  

 Most programming languages provide procedures or 

subroutines to accomplish this.  

 Verilog provides tasks and functions to break up large 

behavioral designs into smaller pieces.  

 Tasks and functions allow the designer to abstract 

Verilog code that is used at many places in the design.  



 Tasks have input, output, and inout arguments; functions 

have input arguments.  

 Thus, values can be passed into and out from tasks and 

functions.  

 Considering the analogy of FORTRAN, tasks are similar 

to SUBROUTINE and functions are similar to 

FUNCTION.  

 Tasks and functions are included in the design hierarchy. 

 Like named blocks, tasks or functions can be addressed 

by means of hierarchical names.  



Differences between Tasks and Functions  



 Both task and functions must be defined in a module and are 

local to the module.  

 Tasks are used for common Verilog code that contains delays, 

timing, event constructs, or multiple output arguments.  

 Functions are used when common Verilog code is purely 

combinational, executes in zero simulation time and provides 

exactly one output  

 Functions are typically used for conversions and commonly 

used calculations.  

 Task can have input, output and in-out ports  

 Functions can have input ports. In addition they can have local 

variables, integers, real or events.  

 Tasks and functions cannot have wires, they contain behavioral 

statements only.  

 Tasks and functions do not contain always and initial 

statements but are called form always block, initial block and 

other task and functions.  



Task  
 Tasks are declared with the keywords task and endtask. Tasks 

must be used if any one of the following conditions is true for 

the procedure:  

 There are delay, timing, or event control constructs in the procedure.  

 The procedure has zero or more than one output arguments.  

 The procedure has no input arguments.  

 I/O declaration use keywords input, output or input, based on the type 

of argument declared.  

 Input and output arguments are passed into the task.  

 Input arguments are processed in the task statements.  

 Output and inout argument values are passed back to the variables in 

the task invocation statement when the task is completed.  

 Task can invoke other tasks or functions.  

 Ports are used to connect external signals to the module.  

 I/O arguments in a task are used to pass values to and from the task. 

uments are processed in the task statements.  



Task Declaration and Invocation  

 task_declaration ::=  

 task [ automatic ] task_identifier ;  

 { task_item_declaration }  

 statement  

 endtask  

 | task [ automatic ] task_identifier ( 

task_port_list ) ;  

 { block_item_declaration }  

 statement  

 endtask  



 task_item_declaration ::=  

 block_item_declaration  

 | { attribute_instance } tf_input_declaration ;  

 | { attribute_instance } tf_output_declaration ;  

 | { attribute_instance } tf_inout_declaration ;  

 task_port_list ::= task_port_item { , task_port_item }  

 task_port_item ::=  

 { attribute_instance } tf_input_declaration  

 | { attribute_instance } tf_output_declaration  

 | { attribute_instance } tf_inout_declaration  



 tf_input_declaration ::=  

 input [ reg ] [ signed ] [ range ] 

list_of_port_identifiers  

 | input [ task_port_type ] list_of_port_identifiers  

 tf_output_declaration ::=  

 output [ reg ] [ signed ] [ range ] 

list_of_port_identifiers  

 | output [ task_port_type ] list_of_port_identifiers  

 tf_inout_declaration ::=  

 inout [ reg ] [ signed ] [ range ] 

list_of_port_identifiers  

 | inout [ task_port_type ] list_of_port_identifiers  

 task_port_type ::=  

 time | real | realtime | integer  



 I/O declarations use keywords input, output, or inout, 

based on the type of argument declared. 

 Input and inout arguments are passed into the task.  

 Input arguments are processed in the task statements. 

Output and inout argument values are passed back to the 

variables in the task invocation statement when the task is 

completed.  

 Tasks can invoke other tasks or functions.  

 Although the keywords input, inout, and output used for 

I/O arguments in a task are the same as the keywords 

used to declare ports in modules, there is a difference. 

 Ports are used to connect external signals to the module. 

I/O arguments in a task are used to pass values to and 

from the task.  



Task Examples  
 Use of input and output arguments  

 //Define a module called operation that contains the task 

bitwise_oper  

 module operation;  

 ...  

 parameter delay = 10;  

 reg [15:0] A, B;  

 reg [15:0] AB_AND, AB_OR, AB_XOR;  

 always @(A or B) //whenever A or B changes in value  

 begin  

 //invoke the task bitwise_oper. provide 2 input arguments A, B  

 //Expect 3 output arguments AB_AND, AB_OR, AB_XOR  

 



 //The arguments must be specified in the same order as they //appear 

in the task declaration.  

 bitwise_oper(AB_AND, AB_OR, AB_XOR, A, B);  

 end  

 ... 

 //define task bitwise_oper  

 task bitwise_oper;  

 output [15:0] ab_and, ab_or, ab_xor; //outputs from the task  

 input [15:0] a, b; //inputs to the task  

 begin  

 #delay ab_and = a & b;  

 ab_or = a | b;  

 ab_xor = a ^ b;  

 end  

 endtask  

 ...  

 endmodule  



 In the above task, the input values passed to the task 

are A and B.  

 Hence, when the task is entered, a = A and b = B. The 

three output values are computed after a delay.  

 This delay is specified by the parameter delay, which is 

10 units for this example.  

 When the task is completed, the output values are 

passed back to the calling output arguments.  

 Therefore, AB_AND = ab_and, AB_OR = ab_or, and 

AB_XOR = ab_xor when the task is completed. 



 Example 9-3. Task Definition using ANSI C 

Style Argument Declaration 

 //define task bitwise_oper  

 task bitwise_oper (output [15:0] ab_and, ab_or, ab_xor,  

 input [15:0] a, b);  

 begin  

 #delay ab_and = a & b;  

 ab_or = a | b;  

 ab_xor = a ^ b; 

 end  

 endtask 



Asymmetric Sequence Generator 
 Tasks can directly operate on reg variables defined in the module.  

 Example 8-4 directly operates on the reg variable clock to 

continuously produce an asymmetric sequence.  

 The clock is initialized with an initialization sequence. 

 Example 9-4. Direct Operation on reg Variables 

 //Define a module that contains the task asymmetric_sequence  

 module sequence;  

 reg clock;  

 ...  

 initial  

 init_sequence; //Invoke the task init_sequence  

 ...  

 always  

 begin  

 asymmetric_sequence; //Invoke the task asymmetric_sequence  

 End  



 //Initialization sequence  

 task init_sequence;  

 begin  

 clock = 1'b0;  

 end  

 endtask  

 //define task to generate asymmetric sequence  

 //operate directly on the clock defined in the module.  

 task asymmetric_sequence;  

 begin  

 #12 clock = 1'b0;  

 #5 clock = 1'b1;  

 #3 clock = 1'b0;  

 #10 clock = 1'b1;  

 end  

 endtask  

 Endmodule  



Functions  

 Functions are declared with the keywords function 

and endfunction.  

 Functions are used if all of the following conditions 

are true for the procedure:  

 1. There are no delay, timing, or event control 

constructs in the procedure.  

 2. The procedure returns a single value.  

 3. There is at least one input argument.  

 4. There are no output or inout arguments.  

 5. There are no nonblocking assignments.  

 



Function Declaration and Invocation  

 Example 9-6. Syntax for Functions  

 function_declaration ::=  

 function [ automatic ] [ signed ] [ range_or_type ]  

 function_identifier ;  

 function_item_declaration {function_item_declaration }  

 function_statement  

 endfunction  

 | function [ automatic ] [ signed ] [ range_or_type ]  

 function_identifier (function_port_list ) ;  

 block_item_declaration { block_item_declaration }  

 function_statement  

 endfunction  



 function_item_declaration ::=  

 block_item_declaration  

 | tf_input_declaration ;  

 function_port_list ::= { attribute_instance } 

tf_input_declaration {,  

 { attribute_instance } tf_input_declaration }  

 range_or_type ::= range | integer | real | realtime 

| time  



 When a function is declared, a register with name 

function_identifer is declared implicitly inside Verilog.  

 The output of a function is passed back by setting the value of 

the register function_identifer appropriately.  

 The function is invoked by specifying function name and input 

arguments.  

 At the end of function execution, the return value is placed 

where the function was invoked.  

 The optional range_or_type specifies the width of the internal 

register.  

 If no range or type is specified, the default bit width is 1. 

Functions are very similar to FUNCTION in FORTRAN.  

 Notice that at least one input argument must be defined for a 

function. There are no output arguments for functions 

because the implicit register function_identifer contains the 

output value. Also, functions cannot invoke other tasks. They 

can invoke only other functions.  



Function Examples  
 Parity calculation  

 //Define a module that contains the function calc_parity  

 module parity;  

 ...  

 reg [31:0] addr;  

 reg parity;  

 //Compute new parity whenever address value changes  

 always @(addr)  

 begin  

 parity = calc_parity(addr); //First invocation of calc_parity  

 $display("Parity calculated = %b", calc_parity(addr) );  

 //Second invocation of calc_parity  

 end  



 //define the parity calculation function 

 function calc_parity;  

 input [31:0] address;  

 begin  

 //set the output value appropriately. Use the implicit  

 //internal register calc_parity.  

 calc_parity = ^address; //Return the xor of all address 

bits.  

 end  

 endfunction  

 ...  

 ...  

 endmodule   



 Example 9-8. Function Definition using ANSI C Style 

Argument Declaration  

 //define the parity calculation function using ANSI C Style 

arguments  

 function calc_parity (input [31:0] address);  

 begin  

 //set the output value appropriately. Use the implicit  

 //internal register calc_parity.  

 calc_parity = ^address; //Return the xor of all address 

bits.  

 end  

 endfunction  



Automatic (Recursive) Functions  
 Functions are normally used non-recursively . If a 

function is called concurrently from two locations, the 

results are non-deterministic because both calls operate 

on the same variable space.  

 However, the keyword automatic can be used to declare 

a recursive (automatic) function where all function 

declarations are allocated dynamically for each recursive 

calls.  

 Each call to an automatic function operates in an 

independent variable space.Automatic function items 

cannot be accessed by hierarchical references. 

Automatic functions can be invoked through the use of 

their hierarchical name.  



 Example 9-10. Recursive (Automatic) Functions  

 //Define a factorial with a recursive function  

 module top;  

 ...  

 // Define the function  

 function automatic integer factorial;  

 input [31:0] oper;  

 integer i;  

 begin  

 if (operand >= 2)  

 factorial = factorial (oper -1) * oper; //recursive call  

 else  

 factorial = 1 ;  

 end  

 endfunction  



 // Call the function  

 integer result;  

 initial  

 begin  

 result = factorial(4); // Call the factorial of 7  

 $display("Factorial of 4 is %0d", result); //Displays 24  

 end  

 ...  

 ...  

 endmodule  

 



Constant Functions  
 A constant function[1] is a regular Verilog HDL function, but with 

certain restrictions.  

 These functions can be used to reference complex val ues and can 

be used instead of constants  

 Example:-Constant Functions-shows how a constant function 

can be used to compute the width of the address bus in a module.  

 //Define a RAM model 

 module ram (...);  

 parameter RAM_DEPTH = 256;  

 input [clogb2(RAM_DEPTH)-1:0] addr_bus; //width of bus 

computed  

 //by calling constant//function defined below//Result of clogb2 = 8  

 //input [7:0] addr_bus;  

 --  

 -- 



 //Constant function  

 function integer clogb2(input integer depth);  

 begin  

 for(clogb2=0; depth >0; clogb2=clogb2+1)  

 depth = depth >> 1;  

 end  

 endfunction  

 --  

 --  

 endmodule 



Signed Functions 
 Signed functions allow signed operations to be 

performed on the function return values.  

 Example 8-12 shows an example of a signed function.  

 Example 9-12. Signed Functions  

 module top;  

 //Signed function declaration 

 //Returns a 64 bit signed value  

 function signed [63:0] compute_signed(input [63:0] 

vector);  

 --  

 --  

 endfunction 



 //Call to the signed function from the higher 

module  

 if(compute_signed(vector) < -3)  

 begin  

 --  

 end  

 endmodule 



 Recommended Questions  

 1. Describe the following statements with an example: initial and 

always  

 2. What are blocking and non-blocking assignment statements? 

Explain with examples.  

 3. With syntax explain conditional, branching and loop 

statements available in Verilog HDL behavioural description.  

 4. Describe sequential and parallel blocks of Verilog HDL.  

 5. Write Verilog HDL program of 4:1 mux using CASE statement.  

 6. Write Verilog HDL program of 4:1 mux using If-else statement.  

 7. Write Verilog HDL program of 4-bit synchronous up counter.  

 8. Write Verilog HDL program of 4-bit asynchronous down 

counter.  

 9. Write Verilog HDL program to simulate traffic signal controller  

 



Reference / Text Book Details 

Sl.No

. 
Title of Book Author Publication Edition 

1 
Verilog HDL: A Guide to 
Digital Design and Synthesis Samir Palnitkar 

Pearson 

Education 
2nd 

2 
VHDL for Programmable 
Logic Kevin Skahill 

PHI/Pearson 

education 
2nd 

3 
The Verilog Hardware 

Description Language 

Donald E. 

Thomas, Philip 

R. Moorby 

Springer 

Science+Busin

ess Media, 

LLC 

5th 

4 
Advanced Digital Design with 

the Verilog HDL 
Michael D. Ciletti 

Pearson 

(Prentice Hall) 
2nd 

5 Design through Verilog HDL 
Padmanabhan, 

Tripura Sundari 
Wiley Latest 





Module 5:  Useful Modelling Techniques 

Verilog HDL [18EC56] 

1 

By: 
 Mrs. LATHA S 
 Assistant Professor,  
 Dept. of ECE, SJBIT 

 
 ║JAI SRI GURUDEV║  

Sri AdichunchanagiriShikshana Trust (R)  

SJB INSTITUTE OF TECHNOLOGY  
BGS Health & Education City, Kengeri , Bangalore – 60 .  

 

DEPARTMENT OF ELECTRONICS & COMMUNICATION 

ENGINEERING  



Content 
Procedural continuous assignments 

overriding parameters, 

conditional compilation and execution 

useful system tasks 

Logic Synthesis 

Impact of logic synthesis 

Verilog HDL Synthesis 

Synthesis design flow, Verification of Gate-Level 

netlist 

  



Learning Objectives 

 Describe procedural continuous assignment 

statements assign, deassign, force, and release. 

Explain their significance in modeling and 

debugging.  

 Understand how to override parameters by using the 

defparam statement at the time of module 

instantiation.  

 Explain conditional compilation and execution of 

parts of the Verilog description.  

 Identify system tasks for file output, displaying 

hierarchy, strobing, random number generation, 

memory initialization, and value change dump  



Procedural Continuous Assignments  

   Procedural assignments assign a value to a register. 

The value stays in the register until another 

procedural assignment puts another value in that 

register.  

 Procedural continuous assignments behave 

differently. They are procedural statements which 

allow values of expressions to be driven continuously 

onto registers or nets for limited periods of time.  

 Procedural continuous assignments override existing 

assignments to a register or net. They provide an 

useful extension to the regular procedural assignment 

statement.  



 Assign and Deassign  

 
 

 The keywords assign and deassign are used to express the 

first type of procedural continuous assignment.  

 The left-hand side of procedural continuous assignments 

can be only be a register or a concatenation of registers.  

 It cannot be a part or bit select of a net or an array of 

registers.  

 Procedural continuous assignments override the effect of 

regular procedural assignments.  

 Procedural continuous assignments are normally used for 

controlled periods of time. 



D-Flipflop with Procedural Continuous 

Assignments  

  // Negative edge-triggered D-flipflop with asynchronous 

reset  

 module edge_dff(q, qbar, d, clk, reset);  

 // Inputs and outputs  

 output q,qbar;  

 input d, clk, reset;  

 reg q, qbar; //declare q and qbar are registers  

 always @(negedge clk) //assign value of q & qbar at active 

edge of clock.  

 begin  

 q = d;  

 qbar = ~d;  

 end  



 always @(reset) //Override the regular assignments to q and qbar  

 //whenever reset goes high. Use of procedural continuous  

//assignments.  

 if(reset)  

 begin //if reset is high, override regular assignments to q with  

 //the new values, using procedural continuous assignment.  

 assign q = 1'b0;  

 assign qbar = 1'b1;  

 end  

 else  

 begin //If reset goes low, remove the overriding values by 

//deassigning the registers. After this the regular  

 //assignments q = d and qbar = ~d will be able to change  

 //the registers on the next negative edge of clock.  

 deassign q;  

 deassign qbar;  

 end  

 endmodule  



Force and Release  
 Keywords force and release are used to express the 

second form of the procedural continuous assignments.  

 They can be used to override assignments on both 

registers and nets.  

 Force and release statements are typically used in the 

interactive debugging process, where certain registers or 

nets are forced to a value and the effect on other 

registers and nets is noted.  

 It is recommended that force and release statements not 

be used inside design blocks. They should appear only 

in stimulus or as debug statements.  



Force and Release on registers  

 A force on a register overrides any procedural 

assignments or procedural continuous assignments on 

the register until the register is released.  

 The register variables will continue to store the forced 

value after being released, but can then be changed by a 

future procedural assignment.  

 To override the values of q and qbar in Example 5-1 for 

a limited period of time, we could do the following:  



 module stimulus;  

 ...  

 //instantiate the d-flipflop  

 edge_dff dff(Q, Qbar, D, CLK, RESET);  

 ...  

 initial  

 begin  

 //these statements force value of 1 on dff.q between time 50 

and  

 //100, regardless of the actual output of the edge_dff.  

 #50 force dff.q = 1'b1; //force value of q to 1 at time 50.  

 #50 release dff.q; //release the value of q at time 100.  

 end  

 ...  

 endmodule  



Force and Release on nets  
 Force on nets overrides any continuous assignments until the 

net is released. The net will immediately return to its normal 

driven value when it is released. A net can be forced to an 

expression or a value.  

 module top;  

 ...  

 assign out = a & b & c; //continuous assignment on net out  

 ...  

 initial  

 #50 force out = a | b & c;  

 #50 release out;  

 end  

 ...  

 endmodule  



 In the example above, a new expression is forced on the 

net from time 50 to time 100. 

 From time 50 to time 100, when the force statement is 

active, the expression a | b & c will be re-evaluated and 

assigned to out whenever values of signals a or b or c 

change.  

 Thus, the force statement behaves like a continuous 

assignment except that it is active for only a limited 

period of time.  



Overriding Parameters  

 Parameters can be defined in a module definition, as 

was discussed earlier in Section 3.2.8, Parameters. 

 However, during compilation of Verilog modules, 

parameter values can be altered separately for each 

module instance.  

 This allows us to pass a distinct set of parameter values 

to each module during compilation regardless of 

predefined parameter values.  

 There are two ways to override parameter values: 

through the defparam statement or through module 

instance parameter value assignment.  



Defparam Statement  

 Example 5-2. Defparam Statement  

 //Define a module hello_world  

 module hello_world;  

 parameter id_num = 0; //define a module 

identification number = 0  

 initial //display the module identification 

number  

 $display("Displaying hello_world id number = 

%d", id_num);  

 endmodule  



 //define top-level module  

 module top;  

 //change parameter values in the instantiated 

modules  

 //Use defparam statement  

 defparam w1.id_num = 1, w2.id_num = 2;  

 //instantiate two hello_world modules  

 hello_world w1();  

 hello_world w2();  

 endmodule  



 In Example 5-2, the module hello_world was defined with a 

default id_num = 0. However, when the module instances w1 

and w2 of the type hello_world are created, their id_num 

values are modified with the defparam statement. If we 

simulate the above design, we would get the following output 

 Displaying hello_world id number = 1  

 Displaying hello_world id number = 2  

 Multiple defparam statements can appear in a module. Any 

parameter can be overridden with the defparam statement. 

The defparam construct is now considered to be a bad coding 

style and it is recommended that alternative styles be used in 

Verilog HDL code.  

 Note that the module hello_world can also be defined using 

an ANSI C style parameter declaration. Figure 5-3 shows the 

ANSI C style parameter declaration for the module 

hello_world.   



Conditional Compilation and 

Execution  
 A portion of Verilog might be suitable for one 

environment but not for another.  

 The designer does not wish to create two versions of 

Verilog design for the two environments.  

 Instead, the designer can specify that the particular 

portion of the code be compiled only if a certain flag is 

set.This is called conditional compilation.  

 A designer might also want to execute certain parts of 

the Verilog design only when a flag is set at run time. 

This is called conditional execution.  



Conditional Compilation  
  Conditional compilation can be accomplished by using 

compiler directives  

 `ifdef, `ifndef, `else, `elsif, and `endif. Example 5-5 

contains Verilog source code to be compiled 

conditionally.  

 Example 5-5. Conditional Compilation  

 //Conditional Compilation  

 //Example 1  

 'ifdef TEST //compile module test only if text macro TEST is 

defined  

 module test;  

 ...  

 endmodule  



 'else //compile the module stimulus as default  

 module stimulus;  

 ...  

 ...  

 endmodule  

 'endif //completion of 'ifdef directive  



 //Example 2  

 module top;  

 bus_master b1(); //instantiate module unconditionally  

 'ifdef ADD_B2  

 bus_master b2(); //b2 is instantiated conditionally if text macro  

 //ADD_B2 is defined  

 'elsif ADD_B3  

 bus_master b3(); //b3 is instantiated conditionally if text macro  

 //ADD_B3 is defined  

 'else  

 bus_master b4(); //b4 is instantiate by default  

 'endif  

 'ifndef IGNORE_B5  

 bus_master b5(); //b5 is instantiated conditionally if text macro  

 //IGNORE_B5 is not defined  

 'endif  

 endmodule  



 The `ifdef and `ifndef directives can appear 

anywhere in the design.  

 A designer can conditionally compile 

statements, modules, blocks, declarations, 

and other compiler directives.  

 The `else directive is optional.  

 A maximum of one `else directive can 

accompany an `ifdef or `ifndef.  

 Any number of `elsif directives can 

accompany an `ifdef or `ifndef. An `ifdef or 

`ifndef is always closed by a corresponding 

`endif.  



 The conditional compile flag can be set by 

using the `define statement inside the Verilog 

file.  

 In the example above, we could define the 

flags by defining text macros TEST and 

ADD_B2 at compile time by using the `define 

statement.  

 The Verilog compiler simply skips the portion 

if the conditional compile flag is not set. A 

Boolean expression, such as TEST && 

ADD_B2, is not allowed with the `ifdef 

statement.  

 



Conditional Execution  

 Conditional execution flags allow the 

designer to control statement execution flow 

at run time.  

 All statements are compiled but executed 

conditionally.  

 Conditional execution flags can be used only 

for behavioral statements.  

 The system task keyword $test$plusargs is 

used for conditional execution.  



 Example 5-6. Conditional Execution with $test$plusargs  

 //Conditional execution  

 module test;  

 ...  

 ...  

 initial  

 begin  

 if($test$plusargs("DISPLAY_VAR"))  

 $display("Display = %b ", {a,b,c} ); //display only if flag is set  

 else  

 //Conditional execution  

 $display("No Display"); //otherwise no display  

 end  

 endmodule  



 Conditional execution can be further controlled by using 

the system task keyword $value$plusargs. 

 This system task allows testing for arguments to an 

invocation option.  

 $value$plusargs returns a 0 if a matching invocation was 

not found and non-zero if a matching option was found.  

 Example 5-7 shows an example of $value$plusargs. 

 Example 5-7. Conditional Execution with 

$value$plusargs  

 //Conditional execution with $value$plusargs  

 module test;  

 reg [8*128-1:0] test_string;  

 integer clk_period;  

 ...  

 ...   



 initial  

 begin  

 if($value$plusargs("testname=%s", test_string))  

 $readmemh(test_string, vectors); //Read test vectors  

 else  

 //otherwise display error message  

 $display("Test name option not specified");  

 if($value$plusargs("clk_t=%d", clk_period))  

 forever #(clk_period/2) clk = ~clk; //Set up clock  

 else  

 //otherwise display error message  

 $display("Clock period option name not specified");  

 end  

 //For example, to invoke the above options invoke simulator with  

 //+testname=test1.vec +clk_t=10  

 //Test name = "test1.vec" and clk_period = 10  

 endmodule  



Time Scales  
 Often, in a single simulation, delay values in 

one module need to be defined by using 

certain time unit, e.g., 1 μs, and delay values 

in another module need to be defined by 

using a different time unit, e.g. 100 ns.  

 Verilog HDL allows the reference time unit for 

modules to be specified with the `timescale 

compiler directive.  



 Usage: `timescale <reference_time_unit> / 

<time_precision>  

 The <reference_time_unit> specifies the unit 

of measurement for times and delays.  

 The <time_precision> specifies the precision 

to which the delays are rounded off during 

simulation.  

 Only 1, 10, and 100 are valid integers for 

specifying time unit and time precision. 

Consider the two modules, dummy1 and 

dummy2, in Example 5-8.  

 



 //Define a time scale for the module dummy1  

 //Reference time unit is 100 nanoseconds 

and precision is 1 ns  

 `timescale 100 ns / 1 ns  

 module dummy1;  

 reg toggle;  

 //initialize toggle  

 initial  

 toggle = 1'b0;  

 //Flip the toggle register every 5 time units  



 //In this module 5 time units = 500 ns = .5 μs  

 always #5  

 begin  

 toggle = ~toggle;  

 $display("%d , In %m toggle = %b ", $time, 

toggle);  

 end  

 endmodule  



 //Define a time scale for the module dummy2  

 //Reference time unit is 1 microsecond and precision is 10 ns  

 `timescale 1 us / 10 ns  

 module dummy2;  

 reg toggle;  

 //initialize toggle  

 initial  

 toggle = 1'b0;  

 //Flip the toggle register every 5 time units  

 //In this module 5 time units = 5 μs = 5000 ns 

 always #5  

 begin  

 toggle = ~toggle;  

 $display("%d , In %m toggle = %b ", $time, toggle);  

 end  

 endmodule  



 The two modules dummy1 and dummy2 are 

identical in all respects, except that the time unit for 

dummy1 is 100 ns and the time unit for dummy2 is 1 

μs.  

 Thus the $display statement in dummy1 will be 

executed 10 times for each $display executed in 

dummy2.  

 The $time task reports the simulation time in terms 

of the reference time unit for the module in which it 

is invoked.  

 The first few $display statements are shown in the 

simulation output below to illustrate the effect of the 

`timescale directive.  



 5 , In dummy1 toggle = 1  

 10 , In dummy1 toggle = 0  

 15 , In dummy1 toggle = 1  

 20 , In dummy1 toggle = 0  

 25 , In dummy1 toggle = 1  

 30 , In dummy1 toggle = 0  

 35 , In dummy1 toggle = 1  

 40 , In dummy1 toggle = 0  

 45 , In dummy1 toggle = 1  

 --> 5 , In dummy2 toggle = 1  

 50 , In dummy1 toggle = 0  

 55 , In dummy1 toggle = 1 

 Notice that the $display statement in dummy2 

executes once for every ten $display statements in 

dummy1. 



Useful System Tasks 

 We discuss system tasks [1] for file output, displaying 

hierarchy, strobing, random number generation, memory 

initialization, and value change dump. 

 File Output  

 Output from Verilog normally goes to the standard output 

and the file verilog.log. It is possible to redirect the output 

of Verilog to a chosen file.  

 Opening a file  

 A file can be opened with the system task $fopen.  

 Usage: $fopen("<name_of_file>"); [2]  

 Usage: <file_handle> = $fopen("<name_of_file>"); 



 The task $fopen returns a 32-bit value called a 

multichannel descriptor.[3]  

 Only one bit is set in a multichannel descriptor.  

 The standard output has a multichannel descriptor with 

the least significant bit (bit 0) set.  

 Standard output is also called channel 0. The standard 

output is always open.  

 Each successive call to $fopen opens a new channel 

and returns a 32-bit descriptor with bit 1 set, bit 2 set, 

and so on, up to bit 30 set.  

 Bit 31 is reserved. The channel number corresponds to 

the individual bit set in the multichannel descriptor. 

Example 9-9 illustrates the use of file descriptors. 



File Descriptors 
 //Multichannel descriptor  

 integer handle1, handle2, handle3; //integers are 32-bit 

values  

 //standard output is open; descriptor = 32'h0000_0001 (bit 0 

set)  

 initial  

 begin  

 handle1 = $fopen("file1.out"); //handle1 = 32'h0000_0002 

(bit 1 set)  

 handle2 = $fopen("file2.out"); //handle2 = 32'h0000_0004 

(bit 2 set)  

 handle3 = $fopen("file3.out"); //handle3 = 32'h0000_0008 

(bit 3 set)  

 end 



Writing to files 
 The system tasks $fdisplay, $fmonitor, $fwrite, and $fstrobe 

are used to write to files. 

 Note that these tasks are similar in syntax to regular system 

tasks $display, $monitor, etc., but they provide the 

additional capability of writing to file We will consider only 

$fdisplay and $fmonitor tasks.  

 Usage:  $fdisplay(<file_descriptor>, p1, p2 ..., pn);  

 $fmonitor(<file_descriptor>, p1, p2,..., pn); 

 p1, p2, …, pn can be variables, signal names, or quoted 

strings. 

 A file_descriptor is a multichannel descriptor that can be a 

file handle or a bitwise combination of file handles. Verilog 

will write the output to all files that have a 1 associated with 

them in the file descriptor.  



 //All handles defined in Example 9-9  

 //Writing to files  

 integer desc1, desc2, desc3; //three file descriptors  

 initial  

 begin  

 desc1 = handle1 | 1; //bitwise or; desc1 = 32'h0000_0003  

 $fdisplay(desc1, "Display 1");//write to files file1.out & stdout  

 desc2 = handle2 | handle1; //desc2 = 32'h0000_0006  

 $fdisplay(desc2, "Display 2");//write to files file1.out & 

file2.out  

 desc3 = handle3 ; //desc3 = 32'h0000_0008  

 $fdisplay(desc3, "Display 3");//write to file file3.out only  

 end 



 Closing files  

 Files can be closed with the system task 

$fclose.  

 Usage: $fclose(<file_handle>);  

 //Closing Files  

 $fclose(handle1);  

 A file cannot be written to once it is closed. 

The corresponding bit in the multichannel 

descriptor is set to 0. The next $fopen call 

can reuse the bit. 



Displaying Hierarchy 

 Hierarchy at any level can be displayed by means of 

the %m option in any of the display tasks, $display, 

$write task, $monitor, or $strobe task, as discussed 

briefly in Section 4.3, Hierarchical Names.  

 This is a very useful option. For example, when 

multiple instances of a module execute the same 

Verilog code, the %m option will distinguish from 

which module instance the output is coming.  

 No argument is needed for the %m option in the 

display tasks. See Example 9-10. 



Displaying Hierarchy 
 //Displaying hierarchy information  

 module M;  

 ...  

 initial  

 $display("Displaying in %m");  

 endmodule  

 //instantiate module M  

 module top;  

 ...  

 M m1();  

 M m2();  

 //Displaying hierarchy information  

 M m3();  

 endmodule 



 The output from the simulation will look like 

the following:  

 Displaying in top.m1  

 Displaying in top.m2  

 Displaying in top.m3  

 This feature can display full hierarchical 

names, including module instances, tasks, 

functions, and named blocks. 



Strobing 
 Strobing is done with the system task keyword $strobe. 

This task is very similar to the $display task except for a 

slight difference.  

 If many other statements are executed in the same time 

unit as the $display task, the order in which the 

statements and the $display task are executed is 

nondeterministic.  

 If $strobe is used, it is always executed after all other 

assignment statements in the same time unit have 

executed. 

 Thus, $strobe provides a synchronization mechanism to 

ensure that data is displayed only after all other 

assignment statements, which change the data in that 

time step, have executed.  



 Example 5-11. Strobing  

 //Strobing  

 always @(posedge clock)  

 begin  

 a = b;  

 c = d;  

 end  

 always @(posedge clock)  

 $strobe("Displaying a = %b, c = %b", a, c); // display 

values at posedge 

 In Example 9-11, the values at positive edge of clock will 

be displayed only after statements a = b and c = d 

execute.  

 If $display was used, $display might execute before 

statements a = b and c = d, thus displaying different 

values. 



Random Number Generation 
 Random number generation capabilities are required for 

generating a random set of test vectors.  

 Random testing is important because it often catches hidden 

bugs in the design.  

 Random vector generation is also used in performance 

analysis of chip architectures.  

 The system task $random is used for generating a random 

number.  

 Usage: $random;   

 $random(<seed>);   

 The value of <seed> is optional and is used to ensure the 

same random number sequence each time the test is run. 

The <seed> parameter can either be a reg, integer, or time 

variable. The task $random returns a 32-bit signed 

integer.  



Random Number Generation 
 //Generate random numbers and apply them to a simple ROM  

 module test;  

 integer r_seed;  

 reg [31:0] addr;//input to ROM  

 wire [31:0] data;//output from ROM  

 ...  

 ROM rom1(data, addr);  

 initial  

 r_seed = 2; //arbitrarily define the seed as 2.  

 always @(posedge clock)  

 addr = $random(r_seed); //generates random numbers  

 ...  

 <check output of ROM against expected results>  

 ...  

 endmodule 



 Generation of Positive and Negative Numbers by 

$random Task  

 reg [23:0] rand1, rand2;  

 rand1 = $random % 60; //Generates a random 

number between -59 and 59  

 rand2 = {$random} % 60; //Addition of concatenation 

operator to  

 //$random generates a positive value between //0 

and 59.  



 Initializing Memory from File 

 We discussed how to declare memories in Section 3.2.7, Memories.  

 Verilog provides a very useful system task to initialize memories 

from a data file.  

 Two tasks are provided to read numbers in binary or hexadecimal 

format.  

 Keywords $readmemb and $readmemh are used to initialize 

memories.  

 Usage:  $readmemb("<file_name>", <memory_name>); 

$readmemb("<file_name>", <memory_name>, <start_addr>);   

 $readmemb("<file_name>", <memory_name>, <start_addr>,   

 <finish_addr>);   

 Identical syntax for $readmemh.   

 The <file_name> and <memory_name> are mandatory; 

<start_addr> and <finish_addr> are optional.  

 Defaults are start index of memory array for <start_addr> and end of 

the data file or memory for <finish_addr>.  

   



Initializing Memory 
 module test;  

 reg [7:0] memory[0:7]; //declare an 8-byte memory  

 integer i;  

 initial  

 begin  

 //read memory file init.dat. address locations given in memory  

 $readmemb("init.dat", memory);  

 module test;  

 //display contents of initialized memory  

 for(i=0; i < 8; i = i + 1)  

 $display("Memory [%0d] = %b", i, memory[i]);  

 end  

 endmodule   



 The file init.dat contains the initialization data. 

Addresses are specified in the data file with 

@<address>. Addresses are specified as 

hexadecimal numbers. Data is separated by 

whitespaces. Data can contain x or z. 

Uninitialized locations default to x. A 

sample file, init.dat, is shown below.  

 @002  

 11111111 01010101  

 00000000 10101010  

 @006  

 1111zzzz 00001111  



 When the test module is simulated, we will 

get the following output:  

 Memory [0] = xxxxxxxx  

 Memory [1] = xxxxxxxx  

 Memory [2] = 11111111  

 Memory [3] = 01010101  

 Memory [4] = 00000000  

 Memory [5] = 10101010  

 Memory [6] = 1111zzzz  

 Memory [7] = 00001111  

 



Value Change Dump File (VCD) 
 A value change dump (VCD) is an ASCII file that contains 

information about simulation time, scope and signal 

definitions, and signal value changes in the simulation run.  

 All signals or a selected set of signals in a design can be 

written to a VCD file during simulation.  

 Postprocessing tools can take the VCD file as input and 

visually display hierarchical information, signal values, and 

signal waveforms.  

 Many postprocessing tools as well as tools integrated into the 

simulator are now commercially available.  

 For simulation of large designs, designers dump selected 

signals to a VCD file and use a postprocessing tool to debug, 

analyze, and verify the simulation output.  



Debugging and Analysis of Simulation with 

VCD File 

 System tasks are provided for selecting module 

instances or module instance signals to dump 

($dumpvars), name of VCD file ($dumpfile), starting and 

stopping the dump process ($dumpon, $dumpoff), and 

generating checkpoints ($dumpall).  

 The uses of each task are shown in Example 9-15. 

 //specify name of VCD file. Otherwise,default name is  

 //assigned by the simulator.  

 



 initial  

 $dumpfile("myfile.dmp"); //Simulation info 

dumped to myfile.dmp  

 //Dump signals in a module  

 initial  

 $dumpvars; //no arguments, dump all signals 

in the design  

 initial  

 $dumpvars(1, top); //dump variables in 

module instance top.  



 //Number 1 indicates levels of hierarchy. 

Dump one  

 //hierarchy level below top, i.e., dump 

variables in top,  

 //but not signals in modules instantiated by 

top.  

 initial  

 $dumpvars(2, top.m1);//dump up to 2 levels 

of hierarchy below top.m1  

 initial  

 $dumpvars(0, top.m1);//Number 0 means 

dump the entire hierarchy  

 



 // below top.m1  

 //Start and stop dump process  

 initial  

 begin  

 $dumpon; //start the dump process.  

 #100000 $dumpoff; //stop the dump process after 100,000 

time units  

 end  

//Create a checkpoint. Dump current value of all VCD 

variables  

 initial  

 $dumpall;  

 The $dumpfile and $dumpvars tasks are normally specified at 

the beginning of the simulation. The $dumpon, $dumpoff, and 

$dumpall control the dump process during the simulation.[5]  

 



Questions  

 1) Using assign and deassign statements, design a 

positive edge-triggered D-flipflop with asynchronous 

clear (q=0) and preset (q=1). 

 2) Using primitive gates, design a 1-bit full adder FA. 

Instantiate the full adder inside a stimulus module. Force 

the sum output to a & b & c_in for the time between 15 

and 35 units. 



Questions 
 What will be the output of the $display statement 

shown below? 

 module top; 

 A a1(); 

 endmodule 

 module A; 

 B b1(); 

 endmodule 

 module B; 

 initial 

 $display("I am inside instance %m"); 

 endmodule 



Questions 

 Identify the files to which the following display 

statements will write: 

 //File output with multi-channel descriptor 

 module test; 

 integer handle1,handle2,handle3; //file handles 

 //open files 

 initial 

 begin 

 handle1 = $fopen("f1.out"); 

 handle2 = $fopen("f2.out"); 

 handle3 = $fopen("f3.out"); 

 end 



Questions 
 //Display statements to files 

 initial 

 begin 

 //File output with multi-channel descriptor 

 #5; 

 $fdisplay(4, "Display Statement # 1"); 

 $fdisplay(15, "Display Statement # 2"); 

 $fdisplay(6, "Display Statement # 3"); 

 $fdisplay(10, "Display Statement # 4"); 

 $fdisplay(0, "Display Statement # 5"); 

 end 

 endmodule 

 



Logic Synthesis with Verilog HDL  
 Define logic synthesis and explain the benefits of logic 

synthesis.  

 Identify Verilog HDL constructs and operators accepted in 

logic synthesis. Understand how the logic synthesis tool 

interprets these constructs.  

 Explain a typical design flow, using logic synthesis. Describe 

the components in the logic synthesis-based design flow.  

 Describe verification of the gate-level netlist produced by logic 

synthesis.  

 Understand techniques for writing efficient RTL descriptions.  

 Describe partitioning techniques to help logic synthesis 

provide the optimal gate-level netlist.  

 Design combinational and sequential circuits, using logic 

synthesis.  

 



What Is Logic Synthesis?  
 Simply speaking, logic synthesis is the process of 

converting a high-level description of the design into an 

optimized gate-level representation, given a standard 

cell library and certain design constraints.  

 A standard cell library can have simple cells, such as 

basic logic gates like and, or, and nor, or macro cells, 

such as adders, muxes, and special flip-flops.  

 A standard cell library is also known as the technology 

library.  

 Logic synthesis always existed even in the days of 

schematic gate-level design, but it was always done 

inside the designer's mind.  



 The designer would first understand the architectural 

description. Then he would consider design constraints 

such as timing, area, testability, and power. 

 The designer would partition the design into high-level 

blocks, draw them on a piece of paper or a computer 

terminal, and describe the functionality of the circuit. This 

was the high-level description.  

 Finally, each block would be implemented on a hand-

drawn schematic, using the cells available in the 

standard cell library.  

 The last step was the most complex process in the 

design flow and required several time-consuming design 

iterations before an optimized gate-level representation 

that met all design constraints was obtained.  





Verilog HDL Synthesis  
 The term RTL(Register transfer level ) is used for an HDL 

description style that utilizes a combination of data flow and 

behavioral constructs.  

 Logic synthesis tools take the register transfer-level HDL 

description and convert it to an optimized gate-level netlist.  

 Verilog and VHDL are the two most popular HDLs used to 

describe the functionality at the RTL level. In this chapter, 

we discuss RTL-based logic synthesis with Verilog HDL.  

 Behavioral synthesis tools that convert a behavioral 

description into an RTL description are slowly evolving, but 

RTL-based synthesis is currently the most popular design 

method. Thus, we will address only RTL-based synthesis in 

this chapter  



Verilog Constructs  



Verilog Operators  
 Almost all operators in Verilog are allowed for logic 

synthesis.  

 Table 14-2 is a list of the operators allowed. Only 

operators such as === and !== that are related to x and z 

are not allowed, because equality with x and z does not 

have much meaning in logic synthesis.  

 While writing expressions, it is recommended that you 

use parentheses to group logic the way you want it to 

appear.  

 If you rely on operator precedence, logic synthesis tools 

might produce an undesirable logic structure.  



Interpretation of a Few Verilog 

Constructs  
 Having described the basic Verilog constructs, let us try to 

understand how logic synthesis tools frequently interpret 

these constructs and translate them to logic gates.  

 Assign statement  

 The assign construct is the most fundamental construct used 

to describe combinational logic at an RTL level. Given below 

is a logic expression that uses the assign statement.  

 assign out = (a & b) | c;  

 This will frequently translate to the following gate-level 

representation:  



 If a, b, c, and out are 2-bit vectors [1:0], then 

the above assign statement will frequently 

translate to two identical circuits for each 

bit.  

 



 If arithmetic operators are used, each arithmetic operator is 

implemented in terms of arithmetic hardware blocks available 

to the logic synthesis tool. A 1-bit full adder is implemented 

below.  

 assign {c_out, sum} = a + b + c_in;  

 Assuming that the 1-bit full adder is available internally in the 

logic synthesis tool, the above assign statement is often 

interpreted by logic synthesis tools as follows:  



 If a multiple-bit adder is synthesized, the synthesis tool 

will perform optimization and the designer might get a 

result that looks different from the above figure.  

 If a conditional operator ? is used, a multiplexer circuit 

is inferred.  

 assign out = (s) ? i1 : i0;  

 It frequently translates to the gate-level representation 

shown in Figure 14-3.  



 The if-else statement 

 Single if-else statements translate to multiplexers where 

the control signal is the signal or variable in the if clause. 

 if(s) 

 out = i1; 

 else 

 out = i0; 

 The above statement will frequently translate to the gate-

level description shown in Figure 14-3. In general, 

 multiple if-else-if statements do not synthesize to large 

multiplexers 



 The case statement 

 The case statement also can used to infer multiplexers. 

The above multiplexer would have been inferred from 

the 

 following description that uses case statements: 

 case (s) 

 1'b0 : out = i0; 

 1'b1 : out = i1; 

 endcase 

 Large case statements may be used to infer large 

multiplexers. 



 for loops 

 The for loops can be used to build cascaded 

combinational logic. For example, the following for loop 

builds an 

 8-bit full adder: 

 c = c_in; 

 for(i=0; i <=7; i = i + 1) 

 {c, sum[i]} = a[i] + b[i] + c; // builds an 8-bit ripple adder 

 c_out = c; 



 The always statement 

 The always statement can be used to infer sequential and 

combinational logic.  

 For sequential logic, the always statement must be 

controlled by the change in the value of a clock signal clk. 

 always @(posedge clk) 

 q <= d; 

 This is inferred as a positive edge-triggered D-flipflop with d 

as input, q as output, and clk as the clocking signal. 

 Similarly, the following Verilog description creates a level-

sensitive latch: 

 always @(clk or d) 

 if (clk) 

 q <= d; 



Synthesis Design Flow-RTL to Gates 



An Example of RTL-to-Gates 
 Design specification 

 A magnitude comparator checks if one number is greater 

than, equal to, or less than another number. Design a 4- 

 bit magnitude comparator IC chip that has the following 

specifications: 

 The name of the design is magnitude_comparator 

 Inputs A and B are 4-bit inputs. No x or z values will appear 

on A and B inputs 

 Output A_gt_B is true if A is greater than B 

 Output A_lt_B is true if A is less than B 

 Output A_eq_B is true if A is equal to B 

 The magnitude comparator circuit must be as fast as possible. 

Area can be compromised for speed. 



 RTL description 

 The RTL description that describes the magnitude comparator 

is shown in Example 14-1. This is a technology independent 

description. The designer does not have to worry about the 

target technology at this point. 

 Example 14-1. RTL for Magnitude Comparator 

 //Module magnitude comparator 

 module magnitude_comparator(A_gt_B, A_lt_B, A_eq_B, A, 

B);//Comparison output 

 output A_gt_B, A_lt_B, A_eq_B; 

 //4-bits numbers input 

 input [3:0] A, B; 

 assign A_gt_B = (A > B); //A greater than B 

 assign A_lt_B = (A < B); //A less than B 

 assign A_eq_B = (A == B); //A equal to B 

 endmodule 



Reference / Text Book Details 

Sl.No

. 
Title of Book Author Publication Edition 

1 
Verilog HDL: A Guide to 
Digital Design and Synthesis Samir Palnitkar 

Pearson 

Education 
2nd 

2 
VHDL for Programmable 
Logic Kevin Skahill 

PHI/Pearson 

education 
2nd 

3 
The Verilog Hardware 

Description Language 

Donald E. 

Thomas, Philip 

R. Moorby 

Springer 

Science+Busin

ess Media, 

LLC 

5th 

4 
Advanced Digital Design with 

the Verilog HDL 
Michael D. Ciletti 

Pearson 

(Prentice Hall) 
2nd 

5 Design through Verilog HDL 
Padmanabhan, 

Tripura Sundari 
Wiley Latest 




