

S J B Institute of Technology

SJBIT

BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru-560060

Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi.

Accredited by NAAC, New Delhi with 'A' Grade. Recognized by UGC, New Delhi with 2(f) and 12(B), Certified by ISO 9001-2015

Department of Mathematics

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject:]	Engg.	Mathe	matics	- I						Subj	ect Co	de: 15	MAT	711	
						Cours	e Out	comes							9
CO1								ntiation concep							
CO2	Macla using	aurin's	series. spital's	Calculum Cal	late th Also t	e limit o know	ofa	nting of function use of	n at a	point n	umeri	cally a	nd al	gebra	cally
CO3		yze po r value			ty, and	accele	eration	in two	or thr	ee dim	ension	s using	g the	calcul	us of
CO4								n form ns, Nev					Rec	ognize	and
CO5	1	se mat ir Alge		echniq	ues for	solvii	ng syst	tems of	linear	equat	ions in	the d	iffere	nt are	as of
					C	O-PO-	PSO N	Mappin	ıg						
CO.						P	Os				å å			PSO	S
COs	1	2	3	4	5	6	7	8	9	10	11	12	1_	2	3
CO1	2	3				_									
CO2	3	3					<u> </u>								
CO3	2	3													
CO4	2	3								ļ					
CO5	3	2											ļ	ļ	
Average	2.4	2.8			<u> </u>			<u>}</u>			<u></u>				

Subject:	Engg. Mathematics - II	Subject Code:15MAT21
<u> </u>	Course Outcomes	
CO1	Understanding the method of solving higher order difference of solve electrical circuits, forced oscillations of mass specifical circuits.	ring and elementary heat transfer.
CO2	To able solve partial differential equations in fluid m heat transfer.	
CO3	Evaluate double and triple integrals to find area, volume plane and solid region.	
CO4	Evaluation of beta and gamma function and its applica	ation.
CO5	Use Laplace transform to determine general or comple	ete solutions to linear ODE.

	1					P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	3													
CO3	3	2													
CO4	3	3													
CO5	3	2													
Average	3	2.6													

HOD (

Dr. Padmaja Venugopal, Ph.D.
Professor and Head

Professor and Head
Department of Mathematics
S.J.B. Institute of Technology
67, BGS Health & Education City,
Uttarahalii Road, Kangeri, Bangalore-60.

l Jai Sri Gurudev II Sri Adichunchanagiri Shikshana Trust ®

SJB Institute of Technology

Affiliated to Visvesvaraya Technological University, Belagavi. Approved by AICTE, New Delhi.

Accredited by NAAC, New Delhi with 'A' Grade. Recognized by UGC, New Delhi with 2(f) and 12(B).

Certified by ISO 9001-2015

BGS Health and Education City, Kengeri, Bangalore-560 060

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject:	Engin	eering	g Phys	ics		· • • • • • • • • • • • • • • • • • • •	····	•			Subjec	t Code	:15PI	HY12/	22
						Cou	rse O	utcon	ies						
CO1	1		_			-			_		chanics and te			late th	е
CO2											prime roblems		nders	tand a	nd
CO3	deve	ly Las elop sl e the	kills a	nd to	ical fi use m	bers a odern	nd its instru	applio ments	eation in th	s to im e engir	port kn neering	owledg applica	ge and itions	to and to	
CO4		lerstar licatio					Committee of the commit		s to b	oost th	e techn	ical ski	lls, its	3	
CO5	stud	ents a	t the a d basi	ıt initi	al stag	ges to	devel	lop res	search	orient	g latest ation pr gy to so	rogram	s and		,
	proc	/ICIII3.			(CO-PC)-PS() Maj	ping	•				· · · · · · · · · · · · · · · · · · ·	
COs							POs			·				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													
CO2	2	2													
CO3	2	2													
CO4	2	1													
CO5	2	1		i.											
Average	2	1.6			16 TE										S. S

Heard of the Department
Department of Physics

SJB Institute of Technology BGS Health & Education City Kengeri, Bangalore-560 060

Subject:	Engine	ering	Phys	ics La	b						Subjec	t Code:	15PI	IYL17	/27
						Cou	rse O	utcon	nes	<u> </u>			***		
CO1	Deve	lop sk	ills to	impart	pract	ical kn	owled	ge in 1	eal tin	ne solu	tion.				
CO2	Unde resul	rstand ts with	princ	iple, co	oncept	, work	ing an	d applesign	ication	n of nev	w techno	ology an	nd con	npariso wledge	n of e.
CO3	Gain	know	ledge o	of new	conce	ept in t	he sol	ution o	of prac	tical or	iented p	roblems		30 .5 20	
CO4	Unde engir	erstand neering	meas g studi	uremei es.	nt tech	nolog	y, usag	ge of n	ew ins	strumen	its and r	eal time	appli	cations	in
				•	C	O-PO)-PSC) Maj	pping	·				· · · ·	
Cos					C		O-PSC Pos) Maj	pping					PSOs	
Cos	1	2	3	4	5) Maj	pping 9	10	11	12	1	PSOs	3
Cos CO1	1 3	2	3	4 2					T.		11	12	1		r
	1 3 3	2	3						T.		11	12	1		r
CO1		2	3	2					T.		11	12	1		r
CO1	3	2	3	3					T.		11	12	1		r

HOD

Head of the Department

Department of Physics
SJB Institute of Technology
BGS Health & Education City
Kengeri, Bangalore-560 060

S J B Institute of Technology

BGSHealth&EducationCity, Dr. Vishnuvardhan Road, Kengeri, Bengaluru-560060

Department of Chemistry

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject:	Engg.	Chemi	stry							Subje	ct Cod	e:15Cl	HE12/	22	
	4							comes							
CO1	Electr	ochem	ical an	d conc	entrati	on cells	s. Class	sical &	mode	n batte	eries ar	nd fuel	cells.		
CO2	prope and e	rties o lectro l	f metal ess pla	s to de ting.	evelop	resista	nce to	corros	ion, w	ear, tea	r, impa	act etc.	by el	of sur	ating
CO3	peopl	e. Utili	zation	of sola	r energ	gy for c	differer	nt usefi	ıl form	s of en	ergy.		ving s	standar	is of
CO4	Repla	cemen	t of co	nventic	onal ma	aterials	by po	lymers	for vai	rious aj	oplicati	ons.			
CO5	Boile	r troub	oles; se nd appl	ewage	treatm	ent an	d desa	linatio	n of so	ea wat	er. Ov	er viev	ving (of synt	nesis,
					(CO-PO	-PSO	Mapp	ing						,
CO								POs		. <u></u>			r		
COs	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3														
CO2	3											ļ	<u> </u>		
CO3	1											ļ			
CO4	2														
CO5							2								
Average	1.8						2		<u> </u>					1	

Subject:	Engine	ering	Chemi	stry L	ab					Subje	et Cod	e:15CI	HELI	7/27	
							se Ou					<u> </u>			
CO1	Will using	have the	ne knov quantit	vledge ties of	in, Ha materia	indling als invo	differently distributed for the different distributed for the distributed for the different distributed for the distributed fo	ent type or quic	es of ins	strume: ccurate	nts for result	analysi s	s of n	nateria	S
CO2	Analy using	yze and	d Carry arative	ing ou	e quant	tities of	f mater	ials inv	olved:	timation for goo	on of co	oncerne lts	d in 1	materia	ls
	8 822					CO-PC)-P3U		ing						
								POs				·•	<u> </u>		
COs	1	2	3	4	5	6	7	8	9	10	11	12		 	
CO1	2			1					ļ				-	 	
CO2	2			11			<u></u>	_							-
Average	2			1		1				1	1				

Head of the Department Department of Chemistry SJB Institute of Techonology BGS Health & Education City Kengeri, Bangalore - 560 060

					CO)-P()-	PSO	Mapp	ing		والمستودون			-	-
					است. از به بهایزیانی برزای د		08							PSON	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1					1	2					1	وتراحمت حور بوجوم		
CO2	1					1	2					1			
CO3						· 1	2					1			
CO4	1					1	2					1	A		
Average	1					1	2					2		<u> </u>	

Subject Ethics &					idia,	Prof	essio	nal		Sub / 28		Code	: 150	СРН	28
					(Cours	e Out	come	8						
CO1	com	petiti	veex	amin	ation	S						eby to	take	up	
CO2	Out	line th	ie sta	te and	d cent	tral po	olicie	s, fun	dame	ental c	luties				<u> </u>
CO3	Exp	lain th	he Ele	ectora	al Pro	cess	& Spe	ecial	provi	sions					
CO4	Out	line th	ne po Soci	wers : eties	and f	unctio	ons of	f Mun	icipa	lities,		haya			
CO5	Eng	ineer	S	····						nd res	pons	ibiliti	es of		
CO6	Exp	lain a	bout	basic	hum	an rig	hts in	India	<u>a</u>				.,,		
					CC)-PO-	PSO .	Mapp	ing					5 66	
Cos						P	os							PSOs	1 2
Cos	1	2	3	4	5	6	7	8	9	10	11	12		2	3
CO1						2						1			
CO2						2				<u> </u>		1			
CO3						2						1			
CO4						2					<u></u>	1			
CO5						2		2				1		<u> </u>	
CO6						2				_		1			
Average						2		2	<u> </u>	<u> </u>		1		<u> </u>	<u> </u>

HOD

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road. Kengeri
Bengaluru-560 060

BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru-560060

Affiliated to Visvesvaraya Technological University, Belagavi. Approved by AICTE, New Delhi.

Accredited by NAAC, New Delhi with 'A' Grade. Recognized by UGC, New Delhi with 2(f) and 12(B). Certified by ISO 9001-2015

Department of Civil Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject: I	Elem	ents o	fCivi	l Eng	ginee	ring	and			Subi	ect C	ode:	SCI	V13/2	23
Engineer	ing N	Aecha	nics							<i></i> ,					
					C	ourse	Outo	comes			1		4		
CO1	Out	line th	e var	ious	fields	s in C	ivil E	Engin	eerin	ig and	1 1ts 11	mpor	tanc	eon	
COI	in fr	astruc	ture												• _
000	Ana	lyse t	he for	rce sy	ystem	appl	ied to	o the	struc	tural	mem	bers	unde	er stat	1C
CO2		dition			_					15.5					
CO3	Ana	lyse e	ffect	of fo	rces	on sy	stem								
504	Eva	luate	heet	ffect	of cer	nter o	f gra	vity a	ınd n	iome	nt of	inerti	a for	give	n
CO4		cture.													
CO5	Ana	alyse t	he fo	rce s	ysten	and	dyna	mic	condi	ition					
						-PO-I									
						Po	S		·					PSOs	
Cos	1	2	3	4	5	6	7_	8	9	10	11	12	1	2	3
CO1	2	2 470													
CO2	3	3				(4)									
CO3	3	3							ļ	ļ					
CO4	3	3						ļ	ļ	ļ	ļ				
CO5	2	2													
Average	2.6	2.75				<u> </u>		<u> </u>	la .	<u></u>		<u> </u>	<u> </u>		

Subject	: Environmental Studies	Subject Code: 15CIV18/ 28
	Course Outcomes	
CO1	Explain the principles of ecology and environ land, and water issues on a global scale	
CO2	Analyze environmental related problems observational skills.	
CO3	Evaluating a relationship between biotic & ab	iotic components
CO4	Apply their ecological knowledge to illustred describe the realities that managers face when	ate and graph a problem and n dealing with complex issues

					CC)-PO-	PSO 1	Mapp	ing						
Cos		P. R					os			•				PSOs	
CUS	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3
CO1	1					1	2					1		2	3
CO2	1					1	2					1			
CO3						· 1	2					1			
CO4	1					1	2					1			
Average	1					1	2					2			

Subject: Ethics &					dia,	Prof	essio	nal	;	Sub / 28	•	Code	e: 15	СРН	28	
								comes								
CO1		nd the	10.000 miles				and l	egal l	iterac	y and	ther	eby to	o take	up		
CO2	Outl	ine th	e stat	te and	l cent	ral po	licie	s, fun	dame	ntal c	luties	<u> </u>				
CO3	Expl	ain th	e Ele	ectora	al Pro	cess &	& Spe	cial p	rovis	sions						
CO4	oper		Socie	eties					2					· · · · ·		
CO5	Eng															
CO6	Exp	Ingineers Explain about basic human rights in India														
					CC	<u>-PO-</u>	PSO]	Mapp	ing				, ,	DCO.		
Cos						P	os			40	44	12	1	PSOs	1 2	
Cos	1	2	3	4	5	6	7_	8	9_	10	11_	12	1	<u></u>	3	
CO1						2		-				1	<u> </u>			
CO2						2						1			 -	
CO3						2						1			├	
CO4						2		2				1			 	
CO5						2	<u> </u>	2		<u> </u>	-	1		 	-	
CO6						2				<u> </u>		1	 	┼		
Average						2	<u> </u>	2		<u>l</u>		1	<u> </u>	<u> </u>	<u></u>	

HOD

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

Department of Information Science and Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject: I	rogra	mmir	g in (C & Da	ta Str	ructur	es		<u>.</u> .	Sub	ect C	Code:	15PC	D13/	23	
			<u> </u>	1.0		ourse		come	S	·	•					
CO1	Achi	eve K	nowl	edge o	n con	nputer	s and	basic	conc	epts o	fnetv	vorks.				
CO2	Appl	ly the	basic	princi	ples c	of desi	gn an	d dev	elopn	nent o	f C Pr	ogran	ming			
CO3	Desi	gn an	d deve	elopme	ent of	modu	ılar pı	rogran	nming	g skill:	s.	, •				
CO4	Dem	onstra	ate Ar	rays a	nd Str	ings i	n C p	rograi	mmin	g con	cepts.					
CO5	Illus	Demonstrate Arrays and Strings in C programming concepts. lustrate the basic concepts of Structures, unions, Pointers and Preprocessor Directives. CO-PO-PSO Mapping														
Cos	Pos															
Cus	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2		***								2	3	2	
CO2	3	3	2	3									2	3	3	
CO3	2	3	3	2	2								2	2	3	
CO4	2	3	3	2									2	2	3	
CO5	3	2	2	2			***************************************						2	3	2	
Average	2.6	2.6	2.6	2.25	2								2	2.6	2.6	

Subject:	Comp	puter I	Progra	mmin	g Lab)				Sub	ect (Code:	15C	PL16	6/26	
	**			-	Co	urse	Outc	omes				ii feachtii		e router) esta		
CO1		lerstand ements			_	-	ole ap	plica	tions	in C u	sing	condi	tiona	1		
CO2		Demonstrate and implement applications using arrays and strings Apply knowledge on functions, recursions, pointers and structures.														
CO3	App	Apply knowledge on functions, recursions, pointers and structures.														
	CO-PO-PSO Mapping															
C						Pos				~			309	PSO	S	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2	2									3	3	2	
CO2	3	3	2	2									3	3_	3	
CO3	3	3	3	3	1								3	3	3	
Average	3.0	2.67	2.33	2.33	1.0					328			3	3.0	2.67	

HOD

HOD
Head of the Department
Dept. of Information Science & Engineering
S.J.B. Institute of Technology
Kengeri, Bangalore-560 060.

S J B Institute of Technology

BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru-560060

Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Accredited by NAAC, New Delhi with 'A' Grade, Recognized by UGC, New Delhi with 2(f) and 12(B), Certified by ISO 9001-2015

Department of Computer Science and Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject: I	rogra	ımmir	ıg in C	2 & Da	ıta Str	uctur	es	~		Sub	ject C	ode:	15PC	D13/	/23_
								come	_		. 21 € ++ 1			⊢	
CO1	Achi	eve K	inowl	edge o	n com	puter	s and	basic	conc	epts o	fnetv	vorks.			
CO2	Appl	ly the	basic	princi	ples o	f desi	gn an	d dev	elopn	nent o	C Pr	ogram	ming	,.	
CO3				elopmo	100										
CO4		-	•	rays a		F2 (F)		3-2-7			52,00	_			
CO5	Illus	2 2 2	he bas	sic con				0.00	• •		5		proce	essor	
na		· · · · · ·			CO-	PO-l	PSO	Mapp	ing						
			-			Po)S							PSOs	. —
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2		-								2	3	2
CO2	3	3	2	3							-		2	3	3
CO3	2	3	3	2	2					1			2	2	3
CO4	2	3	3	2			4 W.	. (FE)	ļ. 	1	***		2	2	3
CO5	3	2	2	2	· : ·						-		2	3	2
Average	2.6	2.6	2.6	2.25	2								2	2.6	2.6

Subject:	Comp	puter l	rogra	mmin	g Lab)				Sub	ject (ode:	15C	PL16	/26	
· · · · · · · · · · · · · · · · · · ·							Oute	omes						,		
CO1		lerstand ements			2 - 		ole ap	plica	tions	in C u	sing	condi	tiona	l 		
CO2	NOOCO MA SON	emonstrate and implement applications using arrays and strings oply knowledge on functions, recursions, pointers and structures.														
CO3	Арр	Apply knowledge on functions, recursions, pointers and structures. CO-PO-PSO Mapping														
	•				CO-P	O-P	SO M	lappi	ng	ţii			ii ii	,		
						Pos		• • •			:		. <u> </u>	PSO	S	
Cos	1	2	3	4	5	6_	7	8	9	10	11	12	1	2	3	
CO1	3	2	2	2									3	3	2	
CO2	3	3	2	2			\$ \$40						3	3	3	
CO3	3	3	3	3	1								3_	3	3	
Average	3.0	2.67	2.33	2.33	1.0							<u></u>	3	3.0	2.67	

Head of the Department
Dept. of Computer Science and Engineering
SJB INSTITUTE OF TECHNOLOGY
BGS Health & Education City.
No. 67, Uttarahalli Road, Kengeri,
Bengaluru-560 060.

S J B Institute of Technology

BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru-560060

Affiliated to Visvesvaraya Technological University, Belagavi. Approved by AICTE, New Delhi.

Accredited by NAAC, New Delhi with 'A' Grade. Recognized by UGC, New Delhi with 2(f) and 12(B). Certified by ISO 9001-2015

Department of Mechanical Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject: I	ELEM	ENTS	OF M	ECHA	NICA	L EN	GINE	ERIN	G	Subj	ect Co	de:15E	ME14	1/24	
						Cou	rse Ou	tcome	S	 				'', 	
CO1	poller	S.	differer			energ	gy and	their	conver	sation	proces	ss and	differ	ent typ	es of
CO2	Demo	onstrate	the va	rious t	urbine	s and I	C engi	nes.		· 	· · · · · · ·			•	
CO3	Discu	ss Met	al remo	oval pr	ocess	using I	athe.	drilling	Milli	ng Rob	otics a	nd Aut	omatic	n.	·
CO4	Fair u	inderst	anding	of app	licatio	n and i	isage o	of vario	us eng	ineerin	g mate	rials.		 -	
CO5	Expla	in the	refrige	ration	and air	-condi	tioning	syster	ns		<u> </u>				
Cos					(O-PSO Os	Mapp	ing					PSOs	
Cos	1	. 2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	2	2						58.00							
CO3	3	3			200										
CO4	3	2													
CO5	2	3		W POWER SHAPE											
Average	2.6	2.4													

		<u>88</u> 8 35 <u>30</u> 6														
Subject:	COMP	UTER	AIDE	D ENC	INEE	RING	DRAW	ING		Subje	ect Coc	le:15C	ED14	/24		
· · · · · · · · · · · · · · · · · · ·							rse Ou									
CO1	conv	p the u entions	of Eng	gineerii	ng Dra	wing,	Orthogo	raphic	project	ions of	points	& line	es.			
CO2	angle	rstand		_	70											
CO3		Understand the Orthographic projections of plane surfaces in different positions by change of position method using first angle projections. Understand the Orthographic projections of prisms, pyramids, regular tetrahedron, Hexahedron,														
CO4	Understand the Orthographic projections of prisms, pyramids, regular tetrahedron, Hexahedron, cylinders and cones in different positions using first angle projections. Identify the Development of lateral surfaces of prisms, pyramids, cylinders and cones.															
CO5	Ident and I	ify the sometr	Develo	opment ection (of Poly	gons.				amids,	cylind	ers and	cones			
					()-PSO	Mahh	ıng					PSOs		
α.						P	Os	0		1 40			4	1308	3	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	<u> </u>	3	
CO1	3															
CO2	1	3						<u> </u>	<u></u>	<u> </u>	<u></u>			<u></u>	L	

CO3			3	3		1	
CO4				3		1	
CO5				3		1	
Average	3	3	3	3		1	

Subject: Works	shop Pra	actice								Sub	ject C	ode:	15WS	L16/2	6
					(ours	e Out	come	3				· · · · · · ·	3-10-10-10-10-10-1	
CO1	Den	onstr	ate an	d proc	duce o	differe	nt typ	es of	fitting	mode	els.	***************************************			
CO2	appl	icatio	ns.			. <u></u>								standir	ng of their
CO3	196 SWATTE			_		ding o				metal	& we	lded jo	oints.		
CO4	Und	erstan	d the	Basic	s of V	Vorks	hop p	ractic	es.						
	······································				CO	-PO-l	PSO!	Mapp	ing		18 St. 61				
~~					2	P	Os							PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2											3		
CO2	3			2									3		
CO3	3	2								<u> </u>		2	3		
CO4	3	2											3		
Average	3	2		2			<u> </u>	<u> </u>		<u> </u>		2	3		

Department of Mechanical Engineering
SJB Institute of Technology
Kengeri, Bengaluru-560 060

|| Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R)

SJB Institute of Technology

(A Constituent of BGS &SJB Group of Institutions and Hospitals)
BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Affiliated to Visvesvaraya Technological University, Belagavi.

2(f) and 12(B) recognized by UGC, New Delhi.

Accredited by NAAC. Accredited by NBA. Certified by ISO 9001-2015.

Department of Electrical & Electronics Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II (Aca. Year 2015-16)

Subject: I	Basic E	lectri	cal En	ginee	ring					Subi	ect C	ode:1	5ELE	15/25	
					-	ourse	Outo	omes					Senior Commence Commence		
CO1	Under to solv	stand ve pro	the b	asic o s relat	concepted to	ots of DC a	DC c	ircuit	s and	Magr	etic c	circuit	s and	also	able
CO2	Analy alternatives these	sis of ating	f Sing quan	le Ph	ase a	nd thr	ee ph	ase A	C Ci	rcuits	and and	the repotent	prese	ntation meter	n of s in
CO3	Expla deterr	in th	e cor perfor	nstruc	tion, e para	basic	priners of e	ciple lectric	of op	peration achine	on, ap	plicat	ions	and	also
CO4	Practi dome	ce El	ectric	al Sa								electri	cal w	iring	and
			-		CO	-PO-I	PSO N	Mappi	ing					70	
COs						PC)s							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													- 7
CO2	3	2				2						100			
CO3	3	2				2									Tiens.
CO4	2					2		2		17					
Average	2.75	2				2		2			1	A gile		1,54	

Co-ordinator Mr. Kubera U

HOD Dr. Babu N V

HOD
Dept. of EEE
S J B Institute of Technology
BGS Health & Education City,
Kengeri, Bengaluru-560 060.

S J B Institute of Technology

BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru-560060

Affiliated to Visvesvaraya Technological University, Belagavi. Approved by AICTE, New Delhi.

Accredited by NAAC, New Delhi with 'A' Grade. Recognized by UGC, New Delhi with 2(f) and 12(B). Certified by ISO 9001-2015

Department of Electronics and Communication Engineering

Course Outcomes and CO-PO-PSO Articulation Matrix

Semester-I/II

Subject:	Basic	c Ele	ctro	nics						1	•	Code: 15/25				
					(Cours	e Ou	tcome	es		-					
CO1	Abil	ity to a	apply	the ap	plicati	ons o	fdiode	e in re	ctifier	s, filte	r circu	its and	BJT			
CO2	8					_		_	_			e amp		2.50	1,000	
CO3	Undo digit	erstan	d the letronic	basic o	concep	ots of	numb	er syst	ems .	Design	diffe	rent b	uildin	g bloc	ks in	
CO4		alyse the functioning of flip-flops. Describe the architecture and interfacing of crocontroller derstand the functioning of a communication system, analyse different modulation														
CO5		crocontroller Inderstand the functioning of a communication system, analyse different modulation chnologies. Understand the basic principles of different types of Transducers. CO-PO-PSO Mapping														
					CO	-PO-	PSO :	Mapp	oing							
Cos						P	os							PSOs		
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2						-				355 1	2			
CO2	2	2	2										2			
CO3	2	2	2										2			
CO4	2	2											2			
CO5	2	2		_									2			
Average	2	2	2										2			

HOD Head

Dept. of Electronics & Communication Eng-SJB Institute of Technology Bengaluru-560060