




Sri Adichunchanagiri Shikshana Trust®





SJB Institute of Technology
(Affiliated to VTU, Accredited by NAAC with 'A' Grade, Approved by AlCTE- New Delhi, Accredited by NBA) No. 67, BGS Health & Education City, Dr. VishnuvardhanaRoad, Kengeri, Bangalore-560060.



# **Department of Civil Engineering**

## Course Outcomes and CO-PO-PSO Articulation Matrix - Batch 2016-20

#### Semester-I/II

| Subject: | Elemei | nts of Ci                                                                                                                         | ivil En  | gineeri | ng and  | Engin   | eering  | Mecha    | nics  | Subj    | ect Co   | de: 15   | CIV1   | 3/23        |   |
|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|---------|---------|----------|-------|---------|----------|----------|--------|-------------|---|
|          |        |                                                                                                                                   |          |         |         | Cour    | se Ou   | tcomes   |       |         |          |          |        |             |   |
| CO1      | Outli  | ne the                                                                                                                            | various  | fields  | in Civ  | il Eng  | ineerir | ng and i | ts im | portanc | e on in  | ıfrastru | cture. |             |   |
| CO2      | Anal   | yse the                                                                                                                           | force :  | system  | applie  | d to th | e struc | tural m  | embe  | rs unde | r statio | condi    | tion.  |             |   |
| CO3      | Anal   | vse effic                                                                                                                         | ect of f | orces o | on syst | em      |         |          |       |         |          |          |        |             |   |
| CO4      | Eval   | valuate the effect of center of gravity and moment of inertia for given structure.  nalyse the force system and dynamic condition |          |         |         |         |         |          |       |         |          |          |        |             |   |
| CO5      | Anal   | yse the                                                                                                                           | force :  | system  | and d   | ynamic  | condi   | ition    |       |         |          |          |        |             |   |
|          |        |                                                                                                                                   |          |         | (       | O-PO    | -PSO    | Mappi    | ng    |         |          |          |        |             |   |
| ~        |        |                                                                                                                                   |          |         |         | Pe      | os      |          |       |         |          |          |        | <b>PSOs</b> |   |
| Cos      | 1      | 2                                                                                                                                 | 3        | 4       | 5       | 6       | 7       | 8        | 9     | 10      | 11       | 12       | 1      | 2           | 3 |
| CO1      | 2      |                                                                                                                                   |          |         |         |         |         |          |       |         |          |          |        |             |   |
| CO2      | 3      | 3                                                                                                                                 |          |         |         |         |         |          |       |         |          |          |        |             |   |
| CO3      | 3      | 3                                                                                                                                 |          |         |         |         |         |          |       |         |          |          |        |             |   |
| CO4      | 3      | 3                                                                                                                                 |          |         |         |         |         |          |       |         |          |          |        |             |   |
| CO5      | 2      | 2                                                                                                                                 |          |         |         |         |         |          |       |         |          |          |        |             |   |
| Average  | 2.6    | 2.75                                                                                                                              |          |         |         |         |         |          |       |         |          |          |        |             |   |

#### Semester-III

| Subject: 1        | Engine           | ering N                                                                                                                                                                                                                                                                                                                                                        | <b>Mather</b> | natics-l | П        |                               |            |         |         | Subje    | ect Co  | de: 15 M | [AT3]       |                   |                |
|-------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|-------------------------------|------------|---------|---------|----------|---------|----------|-------------|-------------------|----------------|
|                   |                  |                                                                                                                                                                                                                                                                                                                                                                |               |          |          | Cour                          | se Ou      | tcomes  |         |          |         |          |             |                   |                |
| CO1               | comm             | unicat                                                                                                                                                                                                                                                                                                                                                         | ion.          |          |          |                               |            |         |         |          |         | e circı  |             |                   |                |
| CO2               | using            | the Fo                                                                                                                                                                                                                                                                                                                                                         | urier t       | ransfor  | m and    | z-tran                        | sform.     |         |         |          |         | digital  |             |                   | Ssing          |
| CO3               | Emple            | оу арр                                                                                                                                                                                                                                                                                                                                                         | ropriat       | e num    | erical i | method                        | ls to so   | lve alg | ebraic  | and tr   | ansced  | ental e  | quatio      | ns.               |                |
| CO <sub>4</sub>   | field o          | Employ appropriate numerical methods to solve algebraic and transcedental equations.  Apply Green's theorem, Divergence theorem and Stokes theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems.  Determine the extermals of functional and solve the simple problems for calculus of variations. |               |          |          |                               |            |         |         |          |         |          |             |                   |                |
| CO5               | Utiliz           | e the                                                                                                                                                                                                                                                                                                                                                          | concer        | ts of    | functio  | ctional<br>mal an<br>esis and | d their    | r varia | tions i | n the    | applica | for calc | ulus of con | f yaria<br>ımunic | tions<br>atior |
|                   | Syster           | iis, ucc                                                                                                                                                                                                                                                                                                                                                       |               |          |          | -O DO                         | TOO        |         |         | Б-г-, с. |         |          |             |                   | _              |
|                   | Syster           | 115, UC                                                                                                                                                                                                                                                                                                                                                        |               |          | (        | CO-PO                         | _          |         |         | .B-11 0  |         |          |             |                   |                |
|                   | Syster           | ns, ucc                                                                                                                                                                                                                                                                                                                                                        |               |          | (        |                               | -PSO<br>Os |         |         |          |         |          |             | <b>PSOs</b>       |                |
| COs               | Syster 1         | 2                                                                                                                                                                                                                                                                                                                                                              | 3             | 4        | 5        |                               | _          |         |         | 10       | 11      | 12       | 1           | PSOs<br>2         | 3              |
| COs               |                  |                                                                                                                                                                                                                                                                                                                                                                |               |          |          | P                             | _          | Mapp    | ing     |          |         | 12       | 1           |                   | 3              |
|                   | 1                | 2                                                                                                                                                                                                                                                                                                                                                              |               |          |          | P                             | _          | Mapp    | ing     |          |         | 12       | 1           |                   | 3              |
| CO1               | 1 3              | 2 2                                                                                                                                                                                                                                                                                                                                                            |               |          |          | P                             | _          | Mapp    | ing     |          |         | 12       | 1           |                   | 3              |
| CO1               | 1 3 3            | 2 2 2                                                                                                                                                                                                                                                                                                                                                          |               |          |          | P                             | _          | Mapp    | ing     |          |         | 12       | 1           |                   | 3              |
| CO1<br>CO2<br>CO3 | 1<br>3<br>3<br>3 | 2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                               |               |          |          | P                             | _          | Mapp    | ing     |          |         | 12       | 1           |                   | 3              |

| Subject.                 | Streng        | th of M            | 1ateria          | ls                 |        |                 |            |                 |         | Subj     | ect Co  | de: 15       | CV32             |         |        |
|--------------------------|---------------|--------------------|------------------|--------------------|--------|-----------------|------------|-----------------|---------|----------|---------|--------------|------------------|---------|--------|
|                          |               |                    |                  |                    | -4     | Cour            | se Ou      | tcome           | S       |          |         |              |                  |         |        |
| CO1                      | To e<br>tensi | valuate<br>on, she | the s            | trength<br>iding a | of va  | rious :<br>sion | structu    | ral ele         | ments   | interna  | al forc | es suc       | h as c           | отрге   | ssion, |
| CO2                      |               | suggest<br>ufactur |                  | ble ma             | terial | from            | among      | the             | availal | ole in   | the fi  | eld of       | const            | ruction | and    |
| CO3                      |               |                    |                  | ehavio<br>indersta |        |                 |            |                 | ral ele | ments    | under   | the ac       | tion o           | f comp  | ound   |
| CO4                      | To u          | ndersta            | nd the           | basic o            | oncep  | t of an         | alvsis :   | and de          | sign of | memb     | ers su  | biected      | to tor           | sion.   |        |
|                          |               | ndersta            |                  |                    |        |                 |            |                 |         |          |         |              |                  |         |        |
| CO5                      |               | struts.            | ind the          | Dasic              | concep | r or ar         | iai ysis   | מוע טונג        | esign c | n struc  | turai e | tement       | s sucn           | as col  | umus   |
| CO5                      |               |                    | ing the          | Uasic              |        | CO-PO           |            |                 |         | or struc | turai e | tement       | s sucn           | as col  | ums    |
|                          |               |                    | ing the          | Dasic              |        | O-PO            |            |                 |         | of Struc | turai e | rement       | s such           | PSOs    |        |
| COs                      |               |                    | 3                | 4                  |        | O-PO            | -PSO       |                 |         | 10       | 11      | 12           | s such           |         |        |
|                          |               | struts.            |                  |                    | (      | O-PO            | -PSO<br>Os | Марр            | ing     |          |         |              |                  | PSOs    |        |
| COs                      | and s         | struts.            | 3                | 4                  | (      | O-PO            | -PSO<br>Os | Марр            | ing     |          |         | 12           | 1                | PSOs    |        |
| COs                      | 1 3           | 2 3                | 3 2              | 4 3                | (      | O-PO            | Os 7       | Mapp<br>8       | ing     |          |         | 12<br>2      | 1 3              | PSOs    |        |
| COs<br>CO1<br>CO2        | 1 3 3         | 2 3 1              | 3<br>2<br>1      | <b>4</b> 3 2       | (      | 6<br>1          | Os 7       | Mapp<br>8       | ing     |          |         | 12<br>2      | 1<br>3<br>3      | PSOs    |        |
| COs<br>CO1<br>CO2<br>CO3 | 1 3 3 3 3     | 2<br>3<br>1<br>3   | 3<br>2<br>1<br>2 | 4<br>3<br>2<br>3   | (      | 6<br>1          | Os 7       | <b>Mapp 8</b> 1 | ing     |          |         | 12<br>2<br>2 | 1<br>3<br>3<br>3 | PSOs    |        |

| Subject: | Fluid 1 | Mechai  | nics    |         |        |         |          |        |          | Subje    | ect Co  | de: 150  | C <b>V</b> 33 |             |        |
|----------|---------|---------|---------|---------|--------|---------|----------|--------|----------|----------|---------|----------|---------------|-------------|--------|
|          |         |         |         |         |        | Cour    | se Ou    | tcome  | s        |          |         |          |               |             |        |
| CO1      | Poss    | ess a s | ound k  | nowle   | dge of | fundar  | nental   | prope  | rties of | fluids   | and flu | iid con  | tinuun        | 1.          |        |
| CO2      | Com     | pute ar | d solve | e probl | lems o | n hydro | ostatics | , inch | iding p  | ractical | appli   | cations  |               |             |        |
| CO3      | Appl    | y princ | iples o | f math  | ematic | s to re | present  | kiner  | natic c  | oncepts  | relate  | d to flu | id flo        | W           |        |
| CO4      |         | y fund  |         | al law  | s of   | fluid   | mecha    | nics a | nd the   | Bern     | oulli's | princ    | iple f        | or pra      | ctical |
| CO5      | Com     | pute th | e disch | arge tl | hrough | pipes   | and ov   | er not | ches ar  | nd weirs | 5       |          |               |             |        |
|          |         |         |         |         | (      | CO-PO   | -PSO     | Марр   | ing      |          |         |          |               |             |        |
| CO-      |         |         |         |         |        | P       | Os       |        |          |          |         |          |               | <b>PSOs</b> |        |
| COs      | 1       | 2       | 3       | 4       | 5      | 6       | 7        | 8      | 9        | 10       | 11      | 12       | 1             | 2           |        |
| CO1      | 2       | 2       |         |         |        | 2       | 2        |        | 3        |          |         | 2        |               | 2           |        |
| CO2      | 2       | 3       | 2       |         |        | 2       | 2        |        | 2        | 2        |         | 2        |               | 1           |        |
| CO3      | 2       | 3       | 2       | 3       |        | 1       | 1        | 1      | 1        | 1        |         | 2        |               | 1           |        |
| CO4      | 3       | 3       | 3       | 3       |        | 1       | 1        |        | 1        | 1        |         | 2        |               | 3           |        |
| CO5      | 3       | 3       | 3       | 3       |        | 1       | 1        | 1      | 1        | 1        |         | 2        |               | 3           |        |
| Average  | 2.4     | 2.8     | 2.5     | 3       |        | 1.1     | 1.1      | 1      | 1.6      | 1.25     |         | 2        |               | 2           |        |

| Subject: | Basic S | Survey                                                                                                                                                                                        | ing                |        |         |       |       |          |        | Subj    | ect Co | de: 150 | CV34 |             |   |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------|-------|-------|----------|--------|---------|--------|---------|------|-------------|---|
|          |         |                                                                                                                                                                                               |                    |        |         | Cour  | se Ou | tcome:   | s      |         |        |         |      |             |   |
| CO1      | Posse   | ss a so                                                                                                                                                                                       | ound k             | nowled | ge of f | undam | ental | orincip  | les Ge | odetics |        |         |      |             |   |
| CO2      |         | Possess a sound knowledge of fundamental principles Geodetics  Measurement of vertical and horizontal plane, linear and angular dimensions to arrive at solutions to basic surveying problems |                    |        |         |       |       |          |        |         |        |         |      |             |   |
| CO3      |         | apture geodetic data to process and perform analysis for survey problems                                                                                                                      |                    |        |         |       |       |          |        |         |        |         |      |             |   |
| CO4      |         |                                                                                                                                                                                               | obtair<br>ne figur |        |         |       | compu | ite area | is and | Volum€  | s. Rep | resent  | 3D   |             |   |
|          |         |                                                                                                                                                                                               |                    |        | (       | O-PO  | -PSO  | Mapp     | ing    |         |        |         |      |             |   |
|          |         |                                                                                                                                                                                               | 101                |        |         | P     | Os    |          |        |         |        |         |      | <b>PSOs</b> |   |
| COs      | 1       | 2                                                                                                                                                                                             | 3                  | 4      | 5       | 6     | 7     | 8        | 9      | 10      | 11     | 12      | 1    | . 2         | 3 |

| CO1        | 2 |      |     | 2 | 2 |   | TT | 2    | 1 |   |
|------------|---|------|-----|---|---|---|----|------|---|---|
| CO1<br>CO2 | 2 | 1    | 1   | 2 | 2 |   |    | 1    | 2 | - |
| CO3<br>CO4 | 2 | 2    | 2   | 2 | 2 |   |    | 1 1  | 2 |   |
| CO4        | 2 | 2    |     |   |   | 2 |    | 1    | 3 |   |
| Average    | 2 | 1.67 | 1.5 | 2 | 2 | 2 |    | 1.25 | 2 |   |

| Subject: | Engine | ering (                                                                                                                                         | Geolog   | y       |         |        |        |          |        | Subj    | ect Co  | de: 150  | CV35   |             |  |
|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|--------|--------|----------|--------|---------|---------|----------|--------|-------------|--|
|          |        |                                                                                                                                                 |          |         |         | Cou    | se Ou  | tcome    | S      |         |         |          |        |             |  |
| CO1      | Stude  | nts wi                                                                                                                                          | ll able  | to app  | ly the  | knowle | dge of | geolo    | gy and | in Civ  | il Eng  | ineerin  | g      |             |  |
| CO2      | Stude  | ents wi<br>eering                                                                                                                               | II effic | ctively | utilize | earth' | mate   | rials su | ich as | mineral | , rock  | s and w  | ater i | n civil     |  |
| CO3      | Analy  | analyze the natural disasters and their mitigation assess various structural features and geological tools in ground water exploration, Natural |          |         |         |        |        |          |        |         |         |          |        |             |  |
| CO4      | Asse   | s vario                                                                                                                                         | ous str  |         | featur  | es and | geolog | gical to |        |         | Water   | explor   | ation, | Natura      |  |
| CO5      |        |                                                                                                                                                 |          |         |         |        |        |          |        |         | ses the | eir prop | erties |             |  |
|          |        |                                                                                                                                                 |          |         |         | CO-PO  |        |          |        |         |         |          |        |             |  |
| COs      |        |                                                                                                                                                 |          |         |         | P      | Os     |          |        |         |         |          |        | <b>PSOs</b> |  |
| COS      | 1      | 2                                                                                                                                               | 3        | 4       | 5       | 6      | 7      | 8        | 9      | 10      | 11      | 12       | 1      | 2           |  |
| CO1      | 3      |                                                                                                                                                 | 2        |         |         | 2      | 2      |          |        |         |         | 2        |        | 1           |  |
| CO2      | 2      |                                                                                                                                                 |          |         | 2       | 2      | 2      |          |        |         |         | 2        |        | 2           |  |
| CO3      | 2      |                                                                                                                                                 | 2        |         | 2       |        | 2      |          |        |         |         | 2        |        | 1           |  |
| CO4      | 2      |                                                                                                                                                 |          |         | 2       |        | 3      |          |        |         |         | 3        |        | 2           |  |
| CO4      |        |                                                                                                                                                 | 0        |         | 2       |        | 2      |          |        |         |         | 2        | 1      | 1           |  |
| CO5      | 1      |                                                                                                                                                 | 2        |         | 4       |        |        |          |        |         |         | 4        | 1      | 1           |  |

| Subject: | Buildin | ig Mat                                                                                                                                                                            | erials a | and Co  | nstruct | ion     |        |         |        | Subj    | ect Co  | de: 150 | CV36 |             |   |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|---------|--------|---------|--------|---------|---------|---------|------|-------------|---|
|          |         |                                                                                                                                                                                   |          |         |         | Cour    | se Ou  | tcomes  | 3      |         |         |         |      |             |   |
| CO1      | Selec   | t suital                                                                                                                                                                          | ble ma   | terials | for bui | ildings | and ac | lopt su | itable | constru | ction t | echniq  | ues. |             |   |
| CO2      | Adop    | ect suitable materials for buildings and adopt suitable construction techniques.  opt suitable repair and maintenance work to enhance durability of buildings.  CO-PO-PSO Mapping |          |         |         |         |        |         |        |         |         |         |      |             |   |
|          |         |                                                                                                                                                                                   |          |         | (       | O-PO    | -PSO   | Марр    | ing    |         |         |         |      |             |   |
| CO-      |         |                                                                                                                                                                                   |          |         |         | P       | Os     |         |        |         |         |         |      | <b>PSOs</b> |   |
| COs      | 1       | 2                                                                                                                                                                                 | 3        | 4       | 5       | 6       | 7      | 8       | 9      | 10      | 11      | 12      | 1    | 2           |   |
| CO1      | 2       |                                                                                                                                                                                   |          |         |         | 2       | 2      |         |        |         |         | 2       | 2    |             | Γ |
| CO2      | 2       |                                                                                                                                                                                   |          |         |         | 2       | 2      |         |        |         |         | 2       | 2    |             |   |
| Average  | 2       |                                                                                                                                                                                   |          |         |         | 2       | 2      |         |        |         |         | 2       | 2    |             | Γ |

| Subject:        | Buildir | g Mat                                                                                                                                                                                | erials  | Γesting | Labor   | atory  |        |        |     | Subje              | ect Co | de: 150 | CVL37 | 7           |   |
|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--------|--------|--------|-----|--------------------|--------|---------|-------|-------------|---|
|                 |         |                                                                                                                                                                                      |         |         |         | Cour   | se Out | tcomes |     |                    |        |         |       |             |   |
| CO1             | tensio  | n, con                                                                                                                                                                               | npressi | on, she | ear and | torsio | n.     |        |     | eering             |        |         |       |             |   |
| CO2             | Iden    | dentify, formulate and solve engineering problems of structural elements subjected to flexure.  valuate the impact of engineering solutions on the society and also will be aware of |         |         |         |        |        |        |     |                    |        |         |       |             |   |
| CO3             |         |                                                                                                                                                                                      |         |         |         |        |        |        |     | y and a<br>unsuita |        |         |       | f           |   |
|                 |         |                                                                                                                                                                                      |         |         | (       | O-PO   | -PSO   | Марр   | ing |                    |        |         |       |             |   |
| 60              |         |                                                                                                                                                                                      |         |         |         | P      | Os     |        |     |                    |        |         |       | <b>PSOs</b> |   |
|                 |         | 2                                                                                                                                                                                    | 3       | 4       | 5       | 6      | 7      | 8      | 9   | 10                 | 11     | 12      | 1     | 2           | 3 |
| COs             | 1       |                                                                                                                                                                                      | J .     |         |         |        |        |        |     |                    |        |         |       |             | _ |
| CO <sub>1</sub> | 2       | 1                                                                                                                                                                                    | 5       |         |         | 1      |        |        |     |                    |        | 1       | 2     |             |   |

| CO3     | 2 | 1    |   | 2   | 2 | 2 |  | 1 | 2 | 2 |  |
|---------|---|------|---|-----|---|---|--|---|---|---|--|
| Average | 2 | 1.33 | 1 | 1.5 | 2 | 2 |  | 1 | 2 | 2 |  |

| Subject:        | Basic S      | Survey  | ing Pra  | actice  |          |         |         |         |         | Subj     | ect Co  | de: 15 | CVL38   |             |       |
|-----------------|--------------|---------|----------|---------|----------|---------|---------|---------|---------|----------|---------|--------|---------|-------------|-------|
|                 |              |         |          |         |          | Cour    | se Ou   | tcomes  | 3       |          |         |        |         |             |       |
| CO1             | Appl         | y the b | asic pr  | inciple | es of er | igineer | ing su  | veying  | and f   | or linea | ar and  | angula | r meası | ureme       | nts.  |
| CO2             | Com          | prehen  | d effica | ctively | field p  | rocedu  | res req | uired 1 | or a pr | rofessio | onal su | rveyor |         |             |       |
| CO3             | Use<br>oract |         | ques,    | skills  | and co   | nvent   | ional s | survey  | ng in   | strume   | nts ne  | cessar | y for e | engine      | ering |
|                 |              |         |          |         | (        | CO-PC   | -PSO    | Марр    | ing     |          |         |        |         |             |       |
| GO.             |              |         |          |         |          | P       | Os      |         |         |          |         |        |         | <b>PSOs</b> |       |
| COs             | 1            | 2       | 3        | 4       | 5        | 6       | 7       | 8       | 9       | 10       | 11      | 12     | 1       | 2           | 3     |
| CO1             | 2            | 2       |          |         |          |         |         |         |         |          |         | 1      | 1       |             |       |
| CO1             | 2            |         |          |         |          |         |         |         |         | 2        | 2       | 1      | 2       |             |       |
| CO <sub>2</sub> |              |         |          |         |          |         |         | 0       |         |          |         | 1      | 1       |             |       |
| CO2             | 2            |         |          |         |          |         |         |         |         |          |         | 1      | 1       |             |       |

Head of Department
Department of Civil Engineering
5 J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru 560 060

### Semester-IV

| Subject:        | Engine                | ering                                    | Mathe                         | natics-                        | IV                  |                               |                             |                           |                               | Subj                         | ect Co             | de: 15E             | EE41                |                    |              |
|-----------------|-----------------------|------------------------------------------|-------------------------------|--------------------------------|---------------------|-------------------------------|-----------------------------|---------------------------|-------------------------------|------------------------------|--------------------|---------------------|---------------------|--------------------|--------------|
|                 |                       |                                          |                               |                                |                     | Cou                           | rse Ou                      | tcome                     | S                             |                              |                    |                     |                     |                    |              |
| CO1             | and r                 | nultist                                  | ep nun                        | erical                         | metho               | $d_{S}$ .                     |                             |                           |                               | ing in t                     |                    |                     |                     |                    | -            |
| CO2             | Solve                 | probl                                    | ems of<br>system              | quanti<br>and I                | um me<br>Legren     | chanic<br>dre's p             | s emplolynon                | oying<br>nials re         | Bessel <sup>l</sup><br>lating | s funct<br>to sphe           | ion rel            | lating to           | o cylin             | drical<br>te svst  | polar<br>ems |
| CO3             | Unde<br>theor<br>aero | rsta <sub>n</sub> d<br>y and<br>foil the | the an<br>electro<br>cory flu | alyticit<br>magner<br>iid flov | tic theo<br>v visua | ential f<br>ory De<br>dizatio | ields, i<br>scribe<br>n and | esidue<br>confor<br>image | s and p<br>mal an<br>proces   | ooles of<br>d biling<br>sing | f comp<br>ear tra  | olex po<br>nsform   | tentials<br>ation a | in fie<br>rising   | ld<br>in     |
| CO4             | Solve<br>proba        | problability                             | ems or                        | proba                          | ability of          | distribi<br>ochasti           | itions                      | relating                  | g to dig                      | gital sig<br>with m          | nal pr<br>ultivar  | ocessin<br>iate co  | g, dete<br>rrelatio | ermine<br>on       | join         |
| CO5             | or re                 | jecting                                  | alidity<br>the hy<br>lated to | pothes                         | is, defi<br>ete par | ne tr <sub>ar</sub><br>ameter | sition<br>rando             | probal<br>m pro           | bility n                      | ı samp<br>ıatrix o           | ling di<br>of a Ma | stributi<br>Irkov c | on in a<br>hain ai  | accepti<br>nd solv | ng<br>'e     |
|                 |                       |                                          |                               |                                |                     | CO-PO                         | -PSO                        | Mapp                      | ing                           |                              |                    |                     |                     |                    |              |
| COs             |                       |                                          |                               |                                |                     | P                             | Os                          |                           |                               |                              |                    |                     |                     | <b>PSOs</b>        |              |
| COS             | 1                     | 2                                        | 3                             | 4                              | 5                   | 6                             | 7                           | 8                         | 9                             | 10                           | 11                 | 12                  | 1                   | 2                  | 3            |
| CO <sub>1</sub> | 3                     | 2                                        |                               |                                |                     |                               |                             |                           |                               |                              |                    |                     |                     |                    |              |
| CO2             | 3                     | 2                                        |                               |                                |                     |                               |                             |                           |                               |                              |                    |                     |                     |                    |              |
| CO3             | 3                     | 2                                        |                               |                                |                     |                               |                             |                           |                               |                              |                    |                     |                     |                    |              |
| CO4             | 3                     | 2                                        |                               |                                |                     |                               |                             |                           |                               |                              |                    |                     |                     |                    |              |
| CO5             | 3                     | 2                                        |                               |                                |                     |                               |                             |                           |                               |                              |                    |                     |                     |                    |              |
| Average         | 3                     | 2                                        |                               |                                |                     |                               |                             |                           |                               |                              |                    |                     |                     |                    |              |

| Subject:          | Analys        | is of I    | )etermi             | nate S  | tructur  | es       |         |           |          | Subj     | ect Co   | de: 150                     | CV42    |          |      |
|-------------------|---------------|------------|---------------------|---------|----------|----------|---------|-----------|----------|----------|----------|-----------------------------|---------|----------|------|
|                   |               |            |                     |         |          | Cour     | se Ou   | tcome.    | S        |          |          |                             |         |          |      |
| CO <sub>1</sub>   | Evalu         | ate the    | forces              | in det  | termina  | ate trus | ses by  | metho     | od of jo | oints ar | nd secti | ions.                       |         |          |      |
| CO2               | Evalu<br>meth |            | e defle             | tion o  | f canti  | lever,   | simply  | suppo     | rted an  | d over   | hangin   | g beam                      | ns by G | lifficre | nt . |
| CO3               |               |            | the end<br>of truss |         |          |          | ~       | theor     | ems an   | d its ap | oplicati | ons to                      | detern  | nine th  | le   |
| CO4               | Deter         | mine 1     | he stre             | ss resu | ltants   | in arch  | es and  | cables    |          |          |          |                             |         |          |      |
| CO5               | Unde          | rstand     | the col             | cept 0  | of influ | ence l   | ines an | d cons    | truct tl | he ILD   | diagra   | m for t                     | he mo   | ving l   | oads |
|                   |               |            |                     |         |          |          |         |           |          |          |          |                             |         |          |      |
|                   |               |            |                     |         | (        | CO-PC    | -PSO    | Mapp      | ing      |          |          |                             |         |          |      |
| -                 |               | _          |                     |         | (        |          | os      | Mapp      | ing      |          |          |                             |         | PSOs     |      |
| Cos               | 1             | 2          | 3                   | 4       | 5        |          |         | Mapp<br>8 | ing<br>9 | 10       | 11       | 12                          | 1       | PSOs     | _    |
| Cos<br>CO1        | 1 3           | <b>2</b> 3 | 3                   | 4 2     |          | P        | os      |           |          | 10       | 11       | 12                          | 1 3     |          | _    |
|                   | _             |            | 3<br>1<br>1         | _       |          | P        | os      |           |          | 10       | 11       | 12<br>1<br>1                | 1 3 3   |          | _    |
| CO1               | 3             | 3          | 1                   | 2       |          | P        | os      |           |          | 10       | 11       | 12<br>1<br>1                |         |          | _    |
| CO1               | 3             | 3          | 1                   | 2 2     |          | P        | os      |           |          | 10       | 11       | 12<br>1<br>1<br>1           | 3       |          | _    |
| CO1<br>CO2<br>CO3 | 3 3 3         | 3 3        | 1                   | 2 2 2   |          | P        | os      | 8 1 1 1 1 |          | 10       | 11       | 12<br>1<br>1<br>1<br>1<br>1 | 3       |          | 3    |

| Subject:        | Applied Hydraulics                          | Subject Code: 15CV43                                                    |
|-----------------|---------------------------------------------|-------------------------------------------------------------------------|
|                 | Course O                                    | utcomes                                                                 |
| CO <sub>1</sub> | values in prototype by analyzing the corres | hematical modeling and compute the parametric ponding model parameters. |
| CO <sub>2</sub> | Design the open channels of various cross   | sections including economical channel sections.                         |

Page 5 of 19

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahalli Road, Kengeri
Bengaluru 560 060.

| CO3             | Apply | Ener   | gy cor<br>ater su | rface p   | o flow<br>rofiles | in ope | en Chani<br>Gerent c | nel se<br>onditi | ctions, | Calcula | ate End | ergy di  | ssipati | ion,        |     |
|-----------------|-------|--------|-------------------|-----------|-------------------|--------|----------------------|------------------|---------|---------|---------|----------|---------|-------------|-----|
| CO4             | Desig | n turb |                   | or the gi |                   |        | d to kno             |                  |         | ation c | haract  | eristics | under   | differ      | ent |
|                 |       |        |                   |           | (                 | CO-PC  | )-PSO                | Марр             | ing     |         |         |          |         |             |     |
| COs             |       |        |                   |           |                   | P      | Os                   |                  |         |         |         |          |         | <b>PSOs</b> |     |
| COS             | 1     | 2      | 3                 | 4         | 5                 | 6      | 7                    | 8                | 9       | 10      | 11      | 12       | 1       | 2           | 3   |
| CO <sub>1</sub> | 3     | 3      | 3                 | 3         |                   | 2      | 3                    | 2                | 2       |         |         | 2        |         | 2           |     |
| CO2             | 3     | 3      | 3                 | 3         |                   | 2      | 2                    |                  | 2       |         |         | 2        |         | 1           |     |
| CO3             | 2     | 3      | 2                 | 1         |                   | 2      | 2                    |                  | 1       |         |         | 2        |         | 1           |     |
| CO4             | 2     | 3      | 2                 | 2         |                   | 2      | 2                    |                  | 1       |         |         | 2        |         | 2           |     |
| Average         | 2.5   | 3      | 2.5               | 2.25      |                   | 2      | 2.25                 | 2                | 1.5     |         |         | 2        |         | 1.5         |     |

| Subject:   | Concre           | ete Tecl               | hnolog  | gy       |            |                  |             |        |        | Subj     | ect Co  | de: 15       | CV44   |        | 977 |
|------------|------------------|------------------------|---------|----------|------------|------------------|-------------|--------|--------|----------|---------|--------------|--------|--------|-----|
|            |                  |                        |         |          |            | Cour             | se Ou       | tcomes | 3      |          |         |              |        |        |     |
| CO1        | Rela             | te mater               | rial ch | aracteri | stics a    | ınd the          | ir influ    | ence c | n micr | ostru¢t  | ure of  | concre       | te.    |        |     |
| CO2        | Disti            | inguish                | concr   | ete beha | vior b     | ased C           | n its fi    | esh an | d hard | ened pi  | roperti | es.          |        |        |     |
| CO3        |                  | trate pro<br>erties us |         |          |            |                  | pes Of      | concre | e mix  | es for 1 | equire  | d fresh      | and ha | rdened | i   |
|            |                  |                        |         |          | (          | CO-PO            | -PSO        | Mapp   | ing    |          |         |              |        |        |     |
|            |                  |                        |         |          |            | P                | Os          |        |        |          |         |              |        | PSOs   |     |
| CO         |                  |                        |         |          |            |                  |             |        |        |          |         |              |        |        |     |
| COs        | 1                | 2                      | 3       | 4        | 5          | 6                | 7           | 8      | 9      | 10       | 11      | 12           | 1      | 2      | 3   |
| COs<br>CO1 | 1                | <b>2</b>               | 3       | 4 2      | <b>5</b> 2 | 6                | 7           | 8      | 9      | 10       | 11      | <b>12</b>    | 1 2    | 2      | 3   |
|            | 1<br>1<br>1      | 1 1                    | 3       | -        |            | 6<br>1           | 7<br>1<br>1 | 8      | 9      | 10       | 11      | 12<br>1<br>2 | 1      | 2      | 3   |
| CO1        | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>2       | 2       | 2        |            | 6<br>1<br>1<br>1 | 7<br>1<br>1 | 8      | 9      | 10       | 11      | 1            | 1 2    | 2      | 3   |

| Subject:          | Basic C | eotec.      | hnical          | Engine | ering    |                  |         |         |        | Subje              | ect Co  | de: 150  | CV45             |             |       |
|-------------------|---------|-------------|-----------------|--------|----------|------------------|---------|---------|--------|--------------------|---------|----------|------------------|-------------|-------|
|                   |         |             |                 |        |          | Cour             | se Out  | tcomes  |        |                    |         |          |                  |             |       |
| CO1               |         |             |                 |        |          | proce            |         |         | rmine  | index <sub>I</sub> | roperi  | ies of a | any typ          | e of        |       |
| CO2               |         |             | compa<br>proced |        | charac   | teristic         | s Of    | soil a  | nd ap  | ply th             | at kno  | wledge   | e to a           | sSess       | field |
| CO3               |         | page a      |                 |        |          |                  |         |         |        | imate              |         |          |                  |             |       |
| CO4               |         |             |                 |        |          | ters of<br>ulomb |         |         |        | s0ils u            | sing th | e data   | of diff          | erent       | shea  |
| CO5               |         |             | cal pro         |        |          | d to es          | timatio | on of c | OnsOli | dation             | settlen | nent Of  | soil de          | ep0sits     | als   |
|                   |         |             |                 |        | (        | O-PO             | -PSO    | Mapp    | ing    |                    |         |          |                  |             |       |
|                   |         |             |                 |        |          | Di               | Os      |         |        |                    |         |          |                  | DCO         |       |
| CO.               |         |             |                 |        |          | 1,               | 03      |         |        |                    |         |          |                  | <b>PSOs</b> |       |
| COs               | 1       | 2           | 3               | 4      | 5        | 6                | 7       | 8       | 9      | 10                 | 11      | 12       | 1                | 2 2         | 3     |
| COs               | 1 2     | 2           | 3 2             | 4      | <b>5</b> | _                |         | 8       | 9      | 10                 | 11      | 12       | -                |             | 3     |
|                   |         |             | _               | 4      | 5        | _                |         | 8       |        | 10                 | 11      | 12       | 1                | 2           | 3     |
| CO1               | 2       | 2           | 2               | 4      | 5        | _                |         | 8       |        | 10                 | 11      | 12       | 1 2              | 1           | 3     |
| CO1               | 2 3     | 2           | 2               | 4      | 5        | _                | 7       | 8       |        | 10                 | 11      | 12       | 1<br>2<br>2      | 1 1         | 3     |
| CO1<br>CO2<br>CO3 | 3 3     | 2<br>1<br>1 | 2 2 2           | 4      | 5        | _                | 7       | 8       |        | 10                 | 11      | 12       | 1<br>2<br>2<br>2 | 1 1         | 3     |

Comman

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahallı Road, Kengeri
Bengaluru-560 060

| Subject: | Advan | ced Su              | rveyin | g       |          |         |          |          |          | Subj     | ect Co | de: 150  | CV46   |             |   |
|----------|-------|---------------------|--------|---------|----------|---------|----------|----------|----------|----------|--------|----------|--------|-------------|---|
|          |       |                     |        |         |          | Cou     | rse Ou   | tcomes   |          |          |        |          |        |             |   |
| CO1      | Appl  | y the k             | nowle  | dge of  | geome    | tric pr | inciple  | s to arr | ive at s | surveyi  | ng pro | blems    |        |             |   |
| CO2      | Use 1 | modern<br>neering   | instru | ments   | to obta  | ain geo | o-spatia | l data a | and ana  | alyze tl | ne sam | e to ap  | propri | ate         |   |
| CO3      |       | ure geo<br>ronic in |        |         | proces   | s and   | perforn  | n analy  | sis for  | survey   | probl  | ems wi   | th the | use of      |   |
| CO4      | Desig | gn and              | impler | nent th | ne diffe | rent ty | pes of   | curves   | for de   | viating  | type o | of align | ments  |             |   |
|          | W-1   |                     |        |         |          |         | )-PSO    |          |          |          |        |          |        |             |   |
| COs      |       |                     |        |         |          | P       | Os       |          |          |          |        |          |        | <b>PSOs</b> |   |
| COs      | 1     | 2                   | 3      | 4       | 5        | 6       | 7        | 8        | 9        | 10       | 11     | 12       | 1      | 2           | 3 |
| CO1      | 2     | 2                   |        |         |          | 1       | 1        | 1        | 1        |          |        | 1        | 2      |             |   |
| CO2      | 2     | 2                   |        |         |          | 1       |          |          |          |          |        |          | 2      |             |   |
| CO3      | 2     | 1                   |        |         |          |         | 2        | 2        | 2        |          |        | 1        | 2      |             |   |
| CO4      | 2     | 1                   |        |         |          |         | 2        | 2        |          |          |        | 1        | 2      |             |   |
|          | 2     | 1.5                 |        |         |          |         | 1.66     | 1.66     | 1.5      |          |        |          |        |             | - |

| Subject: | Fluid 1 | <b>Mechan</b> | ics La   | borato  | ry     |         |          |        |         | Subj    | ect Co | de: 150  | CVL4  | 7           |      |
|----------|---------|---------------|----------|---------|--------|---------|----------|--------|---------|---------|--------|----------|-------|-------------|------|
|          |         |               |          |         |        | Cour    | se Out   | come   | S       |         |        |          |       |             |      |
| CO1      | Prop    | erties o      | f fluid: | s and t | he use | of vari | ious ins | trume  | nts for | fluid f | low m  | easurer  | nent. |             |      |
| CO2      | Worl    | cing of       | hydra    | ulic ma | chines | under   | variou   | s cond | litions | of wor  | king a | nd their | chara | cterist     | ics. |
|          |         |               |          |         | (      | CO-PO   | -PSO     | Марр   | ing     |         |        |          |       |             |      |
| CO       |         |               |          |         |        | P       | Os       |        |         |         |        |          |       | <b>PSOs</b> |      |
| COs      | 1       | 2             | 3        | 4       | 5      | 6       | 7        | 8      | 9       | 10      | 11     | 12       | 1     | 2           | 3    |
| CO1      | 2       | 2             | 2        | 1       |        | 1       | 1        |        | 2       |         |        | 3        |       | 2           |      |
| CO2      | 3       | 3             | 2        | 1       |        | 2       | 2        |        | 2       |         |        | 3        |       | 2           |      |
| COA      |         |               |          |         |        | -       |          |        | 2       |         |        |          |       | 2           | _    |

| Subject: | Engine      | ering ( | Geolog  | y Labo            | ratory |         |        |        |      | Subje   | ect Co  | de: 15   | CVL48    |             |       |
|----------|-------------|---------|---------|-------------------|--------|---------|--------|--------|------|---------|---------|----------|----------|-------------|-------|
|          |             |         |         |                   |        | Cour    | se Ou  | tcome: | S    | 7/      |         |          |          |             |       |
| CO1      |             |         |         |                   |        |         |        |        |      |         |         |          | ering p  |             |       |
| CO2      | civil       | engine  | ering p | rojects           |        |         |        |        |      |         |         |          | mpleme   |             |       |
| CO3      | rock        | and sat | urated  | zone l            | y usir | ig geop | hysica | l meth | ods. |         |         |          | , depth  |             | d<br> |
| CO4      |             |         |         | drawir<br>iquifer | bound  | laries  |        |        |      | ity dat | a and i | its inte | rpretati | on for      |       |
|          |             |         |         |                   | (      | CO-PO   | -PSO   | Марр   | ing  |         |         |          |          |             |       |
|          |             |         |         |                   |        | P(      | Os     |        |      |         |         |          |          | <b>PSOs</b> |       |
| CO       |             |         |         |                   |        |         |        |        |      |         |         |          |          |             |       |
| COs      | 1           | 2       | 3       | 4                 | 5      | 6       | 7      | 8      | 9    | 10      | 11      | 12       | 1        | 2           | 3     |
| COs      | 1 2         | 2       | 3       | 4                 | 5      | 6 3     | 7 2    | 8      | 9    | 10      | 11      | 12<br>2  | 1 2      | <b>2</b>    | 3     |
|          | 1<br>2<br>2 | 2       | 3       | 4                 | 2      | -       | -      | 8      | 9    | 10      | 11      |          | 1        | 2           | 3     |
| CO1      | _           | 2       | 2       | 2                 |        | -       | 2      | 8      | 9    | 10      | 11      | 2        | 1 2      | 2           | 3     |
| CO1      | 2           | 2       |         |                   |        | -       | 2      | 8      | 9    | 10      | 11      | 2        | 1 2      | 1           | 3     |

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

## Semester-V

| Subject:        | Design | of RC    | Structi     | ıral Ele        | ement       | S           |             |         | Subj      | ect Co  | de: 15  | CV51     |        |   |
|-----------------|--------|----------|-------------|-----------------|-------------|-------------|-------------|---------|-----------|---------|---------|----------|--------|---|
|                 |        |          |             |                 |             | Cour        | se Outcor   | nes     |           |         |         | -        |        |   |
| CO1             | Unde   | rstand t | he des      | ign ph          | ilosop      | hy and 1    | principles  |         |           |         |         |          |        |   |
| CO <sub>2</sub> |        |          |             |                 |             |             | nents subje | cted to | flexure.  | shear a | and tor | sion     |        |   |
| CO3             | Demo   | nstrate  | the pr      | ocedur          | al kno      | wledge      | in designs  | of RC   | structura | l elem  | ents su | ich as s | labs,  |   |
| CO4             | Owns   | profes   | sional      | and et          | hical r     | esponsi     | bility      |         |           |         |         |          |        |   |
|                 |        |          |             |                 |             | СО-РО       | -PSO Ma     | pping   |           |         |         |          |        |   |
| COs             |        |          |             |                 |             | CO-PO<br>PC |             | pping   |           |         |         |          | PSOs   |   |
| COs             | 1      | 2        | 3           | 4               | 5           |             |             | pping 9 | 10        | 11      | 12      | 1        | PSOs 2 | - |
| COs             | 1 2    | 2 2      | 3           | 4               | 5           | PC          | Os          | 9       | 10<br>1   | 11      | 12 2    | 1 3      | PSOs 2 | _ |
|                 | 1 2 3  | _        | 3<br>1<br>2 | 4 1 1           | 5           | P(          | Os 7 8      | 9       | 10        | 11      | -       | 1 3 3    | PSOs 2 | _ |
| CO1             |        | 2        | 1           | 4<br>  1<br>  1 | 5           | 6<br>3      | Os 7 8      | 9       | 10        | 11      | -       | -        | PSOs 2 | _ |
| CO1             | 3      | 2 3      | 1 2         | 4<br>1<br>1     | 5<br>1<br>1 | 6<br>3<br>3 | 7 8 2 2 2   | 9       | 1         | 11      | 2       | 3        | PSOs 2 | 3 |

| Subject:        | Analys | sis of I          | ndeterr | ninate  | Struct  | ures             |         |        |         | Subj     | ect Co  | de: 150  | CV52   |             |      |
|-----------------|--------|-------------------|---------|---------|---------|------------------|---------|--------|---------|----------|---------|----------|--------|-------------|------|
|                 |        |                   |         |         |         | Cour             | se Ou   | tcome  | 8       |          |         |          |        |             |      |
| CO1             |        |                   |         |         |         | ermina<br>ection |         |        | frame   | s havii  | ng vari | able m   | oment  | of ine      | rtia |
| CO2             |        | rmine t<br>bution |         |         | n indet | ermina           | te bear | ns and | frame   | es of no | sway    | and sw   | ay usi | ng mo       | men  |
| CO3             | Cons   | truct tl          | ne bend | ding m  | oment   | diagrai          | m for b | eams   | and fra | ames by  | y Kani  | 's meth  | od     |             |      |
| CO4             | const  | ruct th           | e bend  | ing mo  | ment    | diagran          | n for b | eams a | ınd fra | mes us   | ing fle | xibility | meth   | od          |      |
| CO5             | Anal   | yze the           | beam    | s and i | ndeter  | minate           | frames  | by sy  | stem s  | tiffness | metho   | od       |        |             |      |
|                 |        |                   |         |         | (       | CO-PO            | -PSO    | Mapp   | ing     |          |         |          |        |             |      |
| CO-             |        |                   |         |         |         | P                | Os      |        |         |          |         |          |        | <b>PSOs</b> |      |
| COs             | 1      | 2                 | 3       | 4       | 5       | 6                | 7       | 8      | 9       | 10       | 11      | 12       | 1      | 2           | 3    |
| CO1             | 3      | 3                 | 1       | 1       | 1       | 1                |         |        |         |          |         | 1        | 3      |             |      |
| CO2             | 3      | 3                 | 1       | 1       | 1       | 1                |         |        |         |          |         | 1        | 3      |             |      |
| CO3             | 3      | 3                 | 1       | 1       | 1       | 2                |         |        |         |          |         | 1        | 3      |             |      |
|                 | 3      | 3                 | 1       | 1       | 1       | 1                |         |        |         |          |         | 1        | 3      |             |      |
| CO <sub>4</sub> |        |                   |         |         | ,       | 1                |         |        |         |          |         | 1        | 3      |             |      |
| CO <sub>4</sub> | 3      | 3                 | 1       | 1       | 1       | 1 1              |         |        |         |          |         | 1        | )      |             | 1    |

| Subject: | Applie | d Geot | technic           | al Eng   | ineerin  | ıg       |         |          |          | Subj            | ect Co  | de: 150  | CV53     |             |     |
|----------|--------|--------|-------------------|----------|----------|----------|---------|----------|----------|-----------------|---------|----------|----------|-------------|-----|
|          |        |        |                   |          |          | Cour     | se Ou   | tcomes   | 3        |                 |         |          |          |             |     |
| CO1      | engir  | eering | projec            | ts       |          |          |         |          |          | progra          |         |          |          |             |     |
| CO2      |        |        | ing of s          |          | listribu | ition at | nd resu | ılting s | ettleme  | ent ben         | eath th | e loade  | d foot   | ings o      | n   |
| CO3      |        |        | stimate<br>behind |          |          |          |         |          | fi slope | s and t         | o com   | oute lat | teral pr | essure      |     |
| CO4      |        |        | etermir<br>I comb |          |          |          |         |          |          | proficie<br>ure | ency ir | ) propo  | rtionin  | g shal      | low |
| CO5      | Capa   | ble of | estima            | ting loa |          |          |         |          |          | d group         | of pil  | es       |          |             |     |
|          |        |        |                   |          |          | CO-PO    | -PSO    | Mapp     | ing      |                 |         |          |          |             |     |
|          |        |        |                   |          |          | P        | Os      |          |          |                 |         |          |          | <b>PSOs</b> |     |
| COs      |        |        |                   |          |          |          |         |          |          |                 |         |          |          |             |     |

| CO1                   | 3   | 2 | 1 | 1 |   | T    | T | T | T  | 1 | 2   | 2   |  |
|-----------------------|-----|---|---|---|---|------|---|---|----|---|-----|-----|--|
| CO2                   | 2   | 2 | 1 | 1 |   |      |   |   | +  |   | 1   | 1   |  |
| CO3                   | 2   | 3 | 1 |   | 1 | <br> |   | + | +- |   | † i | -   |  |
| CO4                   | 3   | 2 |   | 1 |   |      |   |   |    |   | 1   |     |  |
| CO4<br>CO5<br>Average | 3   | 1 | 1 | 1 |   |      |   |   |    |   | ti  |     |  |
| Average               | 2.6 | 2 | 1 | 1 | 1 |      |   |   | 1  | 1 | 1.2 | 1.5 |  |

| Subject:        | Compu | ter Aid  | led Bu | ilding  | Plann    | ing and  | Drav    | ving     |        | Subje   | ct Co  | <b>de:</b> 15 | CV54  |      |   |
|-----------------|-------|----------|--------|---------|----------|----------|---------|----------|--------|---------|--------|---------------|-------|------|---|
|                 |       |          |        |         |          | Cour     | se Ot   | itcomes  |        |         |        |               |       |      |   |
| CO <sub>1</sub> | Gain  | a broad  | unde   | rstandi | ng of    | planni n | g and   | designi  | ng of  | buildin | gs     |               |       |      |   |
| CO2             | Prepa | re, reac | and i  | nterpre | et the   | drawing  | gs in a | profess  | sional | set up  |        |               |       |      |   |
| CO3             | Knov  |          | ocedu  | res of  |          |          |         | ings an  |        |         | orking | and su        | bmiss | ion  |   |
| CO4             | Plan  | and des  | sign a | resider | itial or | public   | build   | ing as p | er the | given r | eauire | ments         |       |      |   |
|                 |       |          |        |         |          |          |         | M appi   |        |         |        |               |       |      |   |
| COs             |       |          |        |         |          | PC       | Os      |          |        |         | 1000   |               |       | PSOs |   |
| COS             | 1     | 2        | 3      | 4       | 5        | 6        | 7       | 8        | 9      | 10      | 11     | 12            | 1     | 2    | 3 |
| CO1             | 2     | 1        | 1      |         | 2        | 1        |         | 2        |        |         |        | 2             | 2     |      |   |
| CO2             | 2     | 2        | 1      |         | 2        | 1        | 7       | 2        | 2      | 1       |        | 2             | 2     |      |   |
| CO3             | 1     |          |        |         | 2        | 1        |         | 1        | 2      | 2       |        | 2             | 2     |      |   |
| CO4             | 2     | 1        |        |         | 2        | 2        |         | 2        | 2      | 2       |        | 2             | 2     |      |   |
|                 | 1.75  | 1.33     |        |         | 2        | 1.25     |         | 1.75     | 2      | 1.67    |        | 2             | 2.    | _    | _ |

| Subject:        | Air pol | lution ar           | nd Con | itrol   |          |          |          |         |         | Subj    | ect Co | de: 150 | CV551   | l           |    |
|-----------------|---------|---------------------|--------|---------|----------|----------|----------|---------|---------|---------|--------|---------|---------|-------------|----|
|                 |         |                     |        |         |          | Cour     | se Ou    | tcome   | S       |         |        |         |         |             |    |
| CO1             |         | tify the<br>conment | -      | source  | es of ai | r pollut | ion an   | d unde  | erstand | their e | ffects | on heal | th and  |             |    |
| CO2             | Eval    | uate the            | dispe  | rsion C | of air p | ollutant | ts in th | ne atmo | osphere | and to  | devel  | oo air  | quality | mode        | ls |
| CO3             | Asce    | rtain an            | d eval | uate sa | amplin   | g techn  | iques    | for atr | nosphe  | ric and | stack  | polluta | nts     |             |    |
| CO4             | Choo    | se and              | design | contr   | ol tech  | niques   | for pa   | rticula | te and  | gaseou  | s emis | sions.  |         |             |    |
|                 |         |                     |        |         | (        | CO-PO    | -PSO     | Марр    | ing     |         |        |         |         |             |    |
| 60              |         |                     |        |         |          | PC       | )s       |         |         |         |        |         |         | <b>PSOs</b> |    |
| COs             | 1       | 2                   | 3      | 4       | 5        | 6        | 7        | 8       | 9       | 10      | 11     | 12      | 1       | 2           | 3  |
| CO1             |         | 1                   |        |         |          | 2        | 2        | 2       |         |         |        | 1       |         | 2           |    |
| CO2             |         |                     |        | 2       |          | 2        | 2        | 2       |         |         |        | 1       |         | 1           |    |
| CO <sub>3</sub> |         | 2                   |        | 2       |          | 1        | 2        | 2       |         |         |        | 1       |         | 2           |    |
| CO4             | 2       | 2                   |        |         |          | 2        | 2        |         |         |         |        | 1       |         | 1           |    |
| Average         | 2       | 1.67                |        | 2       |          | 1.75     | 2        | 2       |         |         |        | 1       |         | 1.5         |    |

| Sub ject: | Railwa | ıys, Ha  | rbours.  | tunne   | ling ar  | nd Airp | orts    |                      |         | Sub je    | ect Co | de: 150   | CV 552  |             |   |
|-----------|--------|----------|----------|---------|----------|---------|---------|----------------------|---------|-----------|--------|-----------|---------|-------------|---|
|           |        |          |          |         |          | Cour    | se Ou   | tcome                | S       | 1         |        |           |         |             |   |
| CO1       | runwa  | ay, taxi | way      |         |          |         |         |                      |         | metric a  |        |           |         |             |   |
| CO2       | deterr | nine the | e haulin | ig Capa | city of  | a locon | otive   |                      |         | a railwa  |        |           |         |             |   |
| CO3       |        |          |          |         |          |         |         | will be<br>for the s |         | elate the | gainec | l knowl   | edge to | identif     | ý |
| CO4       | Apply  | the kr   | owledg   | e gaine | ed to co | nduct s | urveyii | ng, und              | erstand | the tun   | neling | activitie | s       |             |   |
|           |        |          |          |         | (        | CO-PO   | -PSO    | Марр                 | ing     |           |        |           |         |             |   |
| Co        |        |          |          |         |          | P       | Os      |                      |         |           |        |           |         | <b>PSOs</b> |   |
| COs       | 4      | 1 0      | 1 2      | 1       | 5        | 6       | -       | 0                    | 0       | 10        | 11     | 12        | 4       | 1 2         | 2 |

Page9 of 19

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahalli Road, Kengeri
Bengaluru 560 060

| CO1             | 3    | 3   | 3 | 1 | 1 | 1 |   | 1   | 2 |  |
|-----------------|------|-----|---|---|---|---|---|-----|---|--|
| CO2             | 2    | 2   |   |   |   |   | 2 | 2   | 2 |  |
| CO3             | 3    |     |   | 1 | 1 | 1 |   | 2   | 2 |  |
| CO <sub>4</sub> | 3    |     |   | 1 |   |   |   | 1   | 2 |  |
| Average         | 2.75 | 2.5 | 3 | 1 | 1 | 1 | 2 | 1.5 | 2 |  |

| Subject:        | Traffic | Engine  | eering |         |          |         |         |         |        | Subje    | ect Co  | de: 150 | CV561   |             |   |
|-----------------|---------|---------|--------|---------|----------|---------|---------|---------|--------|----------|---------|---------|---------|-------------|---|
|                 | ,_      |         |        |         |          | Cour    | rse Ou  | tcome   | 5      |          |         |         |         |             |   |
| CO1             | Unde    | rstand  | the hu | man fa  | etors a  | and vel | nicular | factors | in tra | ffic eng | gineeri | ng desi | gn      |             |   |
| CO2             | Cond    |         | Gerent | types o | of traff | ic surv | eys an  | d analy | sis of | collect  | ed data | using   | statist | ical        | 4 |
| CO3             |         | n appre |        |         | flow     | theory  | and to  | comp    | rehend | the ca   | pacity  | & sign  | alized  | gii.        |   |
| CO4             | Unde    | rstand  | the ba | sie kno | wledg    | e of In | tellige | ıt Trai | sporta | tion Sy  | stem    |         |         |             |   |
|                 |         |         |        |         | (        | CO-PO   | -PSO    | Mapp    | ing    |          |         |         |         |             |   |
| C               |         |         |        |         |          | P       | os      |         |        |          | 77.7    |         |         | <b>PSOs</b> |   |
| Cos             | 1       | 2       | 3      | 4       | 5        | 6       | 7       | 8       | 9      | 10       | 11      | 12      | 1       | 2           | 3 |
| CO <sub>1</sub> | 3       | 2       |        |         |          |         |         |         |        |          |         | 1       |         | 2           |   |
| CO2             | 3       | 2       |        |         |          |         |         | 1       | 2      |          |         | 1       |         | 2           |   |
| CO3             | 3       | 3       |        |         | 1        |         |         |         |        |          |         | 1       |         | 2           |   |
| CO4             | 2       | 3       | 3      |         |          | 2       |         | 1       |        | 1        |         | 1       |         | 2           |   |
|                 | 2.8     | 2.6     | 3      |         | 1        | 2       |         | 1       | 2      | 1        |         | 1       |         | 2           |   |

| Subject: 1        | Occupa     | tional  | Health  | and S              | afety   |                |                     |                 |         | Subje   | ect Co   | de: 150             | CV564  |              |       |
|-------------------|------------|---------|---------|--------------------|---------|----------------|---------------------|-----------------|---------|---------|----------|---------------------|--------|--------------|-------|
|                   |            |         |         |                    |         | Cour           | se Out              | comes           | 5       |         |          |                     |        |              |       |
| CO1               | Identi     | •       | ards in | the w              | orkpla  | ce that        | pose a              | dange           | r or th | reat to | their sa | afety or            | healt  | h, or th     | nat o |
| CO2               | Contr      | ol uns  | afe or  | unhealt            | thy haz | zards a        | nd proj             | ose m           | ethods  | to elin | ninate   | the haz             | ard    |              |       |
| CO3               |            |         |         |                    |         |                |                     |                 |         |         |          | erbally<br>rted leg |        |              | 1g,   |
| CO4               | worke      | ers, ma | nagers  | s, super           | rvisors |                |                     |                 |         |         |          | respon              |        |              |       |
|                   |            | C .1    |         |                    | inad a  | 4              | 4-5                 |                 | C 41    |         |          |                     | 1 .1   |              | 11 00 |
| CO5               |            |         |         | ons req<br>d safet | y       |                |                     |                 |         | ne envi | ronme    | nt, wor             | кріасє | as we        | il as |
| CO5               |            |         |         |                    | y       | СО-РО          | -PSO                |                 |         | ne envi | ronthe   | nt, wor             | кріасє |              | ar as |
|                   |            |         |         |                    | y       | СО-РО          |                     |                 |         | ne envi | ronme    | nt, wor             | кріасє | PSOs         |       |
| COs               |            |         |         |                    | y       | СО-РО          | -PSO                |                 |         | 10      | 11       | 12                  | кріасе |              |       |
|                   | perso      | nal hea | alth an | d safet            | y (     | CO-PO          | -PSO                | Mapp            | ing     |         |          |                     | приссе | PSOs         |       |
| COs               | person     | nal hea | alth an | d safet            | y (     | CO-PO<br>Po    | -PSO Os 7           | Mapp<br>8       | ing     |         |          | 12                  | 1      | PSOs 2       |       |
| COs               | person 1 2 | nal hea | alth an | d safet            | y (     | CO-PO P0 6 3   | Os 7                | <b>Mapp 8</b> 2 | ing     |         |          | 12 2                | 1      | PSOs 2 2     |       |
| COs<br>CO1<br>CO2 | 1 2 1      | nal hea | alth an | d safet            | y (     | CO-PO PO 6 3 3 | 7<br>3<br>3         | <b>8</b> 2 2    | ing     |         |          | 12<br>2<br>2        | 1      | PSOs 2 2 2 2 |       |
| COs CO1 CO2 CO3   | 1 2 1 1 1  | nal hea | alth an | d safet            | y (     | PO-PO PO 3 3 2 | PSO   7   3   3   2 | <b>8</b> 2 2 2  | ing     |         |          | 12<br>2<br>2<br>1   | 1      | PSOs 2 2 2 3 | 3     |

| Subject:        | Geotechnical Engineering Laboratory               | Subject Code: 15CVL57    |
|-----------------|---------------------------------------------------|--------------------------|
| ,               | Course Outcor                                     | nes                      |
| CO <sub>1</sub> | Physical and index properties of the Soil         |                          |
| CO <sub>2</sub> | Classify based on index properties and field iden | tification               |
| CO3             | To determine OMC and MDD, plan and assess f       | Tield compaction program |
| CO4             | Shear strength and consolidation parameters to a  |                          |
| CO5             | In-situ shear strength characteristics (SPT- Dem- | onstration)              |

|         |   |     |       |   |       | CO-PO | -PSO | Mapp | ing |    |    |     |     |             |   |
|---------|---|-----|-------|---|-------|-------|------|------|-----|----|----|-----|-----|-------------|---|
| COs     |   |     | 71000 |   |       |       | Os   |      |     |    |    |     |     | <b>PSOs</b> |   |
| COS     | 1 | 2   | 3     | 4 | 5     | 6     | 7    | 8    | 9   | 10 | 11 | 12  | 1   | 2           | 3 |
| CO1     | 3 | 3   | 3     |   | - 111 | 2     | 1    | 3    | 3   | 1  |    | 2   | 3   |             |   |
| CO2     | 3 | 2   | 2     |   |       | 1     | 1    | 3    | 3   | 1  |    | 2   | 3   |             |   |
| CO3     | 3 | 2   | 3     |   |       |       |      | 3    | 3   |    |    | 2   | 3   |             |   |
| CO4     | 3 | 2   | 3     |   |       |       |      | 3    | 3   |    |    | 3   | 2   |             |   |
| CO5     | 3 | 2   | 3     |   |       |       |      | 2    | 2   |    |    | 3   | 2   |             |   |
| Average | 3 | 2.2 | 2.8   |   |       | 1.5   | 1    | 2.8  | 2.8 | 1  |    | 2.4 | 2.6 |             |   |

| Subject: (      | Concre | te and  | Highw    | ay Ma   | aterials | Labor    | atory   |           |        | Subje   | ect Co | de: 150 | CVL58 | 3           |   |
|-----------------|--------|---------|----------|---------|----------|----------|---------|-----------|--------|---------|--------|---------|-------|-------------|---|
|                 |        |         |          |         |          | Cour     | se Ou   | tcomes    |        |         |        |         |       |             |   |
| CO1             | Cond   | uct ap  | propria  | te labo | oratory  | experi   | ments   | and int   | erpret | the res | ults   |         |       |             |   |
| CO <sub>2</sub> | Dete   | rmine t | he qual  | ity_an  | d suita  | bility ( | of cem  | ent       |        |         |        |         |       |             |   |
| CO3             |        |         | ropriate |         |          |          |         |           |        |         |        |         |       |             |   |
| CO4             | Dete   | rmine s | trengtl  | and o   | quality  | of con   | crete   |           |        |         |        |         |       |             |   |
| CO5             | Test   | the roa | d aggr   | egates  | and bi   | tumen    | for the | ir suita  | bility | as road | mater  | rial    |       |             |   |
| CO6             | Test   | the soi | for its  | suital  | oility a | s sub g  | rade s  | oil for p | avem   | ents    |        |         |       |             |   |
|                 |        |         |          |         | (        | CO-PO    | -PSO    | Mappi     | ng     |         |        |         |       |             |   |
| <u> </u>        |        |         |          |         |          | P        | os      |           |        |         |        |         |       | <b>PSOs</b> |   |
| Cos             | 1      | 2       | 3        | 4       | 5        | 6        | 7       | 8         | 9      | 10      | 11     | 12      | 1     | 2           | 3 |
| CO1             | 2      |         |          | 1       |          | 1        | 1       | 2         | 1      | 2       |        | 2       | 2     | 1           |   |
| CO2             | 2      | C P     |          |         |          | 2        | 2       | 2         |        | 1       |        | 1       | 3     | 1           |   |
| CO3             | 2      |         | 2        |         |          | 1        | 1       | 1         | 1      |         |        | 1       | 3     | 1           |   |
| CO4             | 2      |         | 2        | 1       |          | 1        | 1       | 1         | 1      |         |        | 1       | 3     | 1           |   |
| CO5             | 2      | 1       |          |         |          | 2        | 2       | 1         |        |         |        | 1       | 2     | 1           |   |
| CO6             | 2      | 1       |          |         |          | 2        | 2       | 1         |        |         |        | 1       | 2     | 1           |   |
| Average         | 2      | 1       | 2        | 1       |          | 1.5      | 1.5     | 1.33      | 1      | 1.5     |        | 1.67    | 2     | 1           |   |

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

## Semester-VI

| Subject:        | Constru     | iction M         | fanag <del>e</del> i | nent ar | ıd Entı | epreneu  | ırship   |           |          | Subje             | ect Co | de: 15       | CV 61   |             |   |
|-----------------|-------------|------------------|----------------------|---------|---------|----------|----------|-----------|----------|-------------------|--------|--------------|---------|-------------|---|
|                 |             |                  |                      |         |         | Cour     | se Ou    | tcomes    | 3        |                   |        |              |         |             |   |
| CO1             | Unde        | rstand           | the cor              | struct  | ion m   | anagem   | ent pr   | ocess     |          |                   |        |              |         |             |   |
| CO2             |             | rstand arging    |                      |         | -       | f issues | that a   | re enco   | ountere  | d by ev           | ery p  | rofessio     | onal in |             |   |
| CO3             | Fulfil      | l the pr         | ofessi               | onal ol | bligati | ons eff  | ectivel  | y with    | global   | outloo            | k      |              |         |             |   |
|                 |             |                  |                      |         | - (     | CO-PO    | -PSO     | Mann      | inσ      |                   |        |              |         |             |   |
| CO <sub>8</sub> |             |                  |                      |         | •       |          | Os<br>Os | Марр      | ing      |                   |        |              |         | <b>PSOs</b> |   |
| COs             | 1           | 2                | 3                    | 4       | 5       |          |          | Mapp<br>8 | ing<br>9 | 10                | 11     | 12           | 1       | PSOs 2      | 3 |
| COs             | 1 2         | 2                | <b>3</b>             | 4       |         | P        |          |           |          | 10                | 11     | 12           | 1       | PSOs 2 2    | 3 |
|                 | 1<br>2<br>1 | 2<br>1<br>1      | 3<br>1<br>2          | 4       |         | P        |          |           |          | 10<br>1<br>1      | 11     | 12<br>1<br>1 | 1       | 2           | 3 |
| CO1             | 1<br>2<br>1 | 2<br>1<br>1<br>2 | 1                    | 4       |         | 6<br>1   | Os 7     | 8         |          | 10<br>1<br>1<br>2 | 11 1 1 | 12<br>1<br>1 | 1       | 2           | 3 |

| Subject: | Design         | of Ste      | el Stru | ctural  | Eleme   | nts     |          |         |         | Subj         | ect Co   | de: 150  | CV62     |             |    |
|----------|----------------|-------------|---------|---------|---------|---------|----------|---------|---------|--------------|----------|----------|----------|-------------|----|
|          |                |             |         |         |         | Cou     | rse Ou   | tcome   | š       |              |          |          |          |             |    |
| CO1      |                |             |         | ge of S |         |         |          | _       |         | Disadv<br>el | antage   | s of Ste | eel stri | actures     | ,  |
| CO2      | Unde           | rstand      | the Co  | ncept   | of Bolt | ted and | l Weld   | ed con  | nection | ns           |          |          |          |             |    |
| CO3      | Unde<br>splice |             | the Co  | ncept   | of Des  | ign of  | compr    | ession  | memb    | ers, bu      | ilt-up c | olumn    | s and    | column      | ıs |
| CO4      | Unde           | rstand      | the Co  | ncept   | of Des  | ign of  | tensior  | mem     | bers, s | imple s      | lab bas  | se and   | gusset   | ed base     | ð  |
| CO5      | Unde           | rstand      | the Co  | ncept   | of Des  | ign of  | laterall | ly supp | orted   | and un-      | suppo:   | rted ste | el bea   | .ms         |    |
|          |                |             |         |         | (       | CO-PO   | -PSO     | Mapp    | ing     |              |          |          |          |             |    |
| CO       |                | Marches and |         |         |         | P       | Os       |         |         |              |          |          |          | <b>PSOs</b> |    |
| COs      | 1              | 2           | 3       | 4       | 5       | 6       | 7        | 8       | 9       | 10           | 11       | 12       | 1        | 2           | 3  |
| CO1      | 2              |             |         |         |         | 1       | 2        | 3       |         |              |          | 2        | 3        |             |    |
| CO2      | 3              | 3           | 3       |         |         |         |          | 3       |         |              |          | 2        | 3        |             |    |
| CO3      | 3              | 3           | 3       |         |         |         |          | 3       |         |              |          | 2        | 3        |             | Г  |
| CO4      | 3              | 3           | 3       |         |         |         |          | 3       |         |              |          | 2        | 3        |             | Г  |
|          |                | 2           | 3       |         |         |         |          | 3       |         |              |          | 2        | 3        |             |    |
| CO5      | 3              | 3           | )       |         | 1       |         |          |         |         |              |          |          |          |             |    |

| ubject:         | Highwa | y Engil | neering          |         |         |                 |         |          |        | Subje   | ect Co  | de: 150  | CV63   |           |     |
|-----------------|--------|---------|------------------|---------|---------|-----------------|---------|----------|--------|---------|---------|----------|--------|-----------|-----|
|                 |        |         |                  |         |         | Cour            | se Out  | tcomes   |        |         |         |          |        |           |     |
| CO1             | neces  | sary fi | eld inv          | estigat | ion for | gener           | ation o | f requi  | red da |         |         |          |        |           |     |
| CO2             |        |         | engin<br>Onstruc | -       | proper  | ties of         | the ma  | aterials | and s  | uggest  | the sui | tability | of the | same      | for |
| CO3             |        |         |                  |         |         |                 |         |          |        | ent and |         |          |        |           |     |
| CO <sub>4</sub> | Evalu  | ate the | highw            | ay ecc  | nomic   | s by fe         | w sele  | ct met   | hods a | nd also | will h  | ave a b  | asic k | nowled    | lge |
| CO4             | of var | ious h  | ighway           | finan   | cing co | oncepts         |         |          |        |         |         |          |        |           |     |
|                 | of var | rious h | ighway           | finan   |         | oncepts<br>O-PO |         |          |        |         |         |          |        |           |     |
|                 | of var | rious h | ighway           | finan   |         |                 | -PSO    |          |        |         |         |          |        | PSOs      |     |
| CO <sub>5</sub> | of var | rious h | ighway<br>3      | finan 4 |         | О-РО            | -PSO    |          |        | 10      | 11      | 12       |        |           |     |
|                 | of var |         |                  |         |         | O-PO<br>PO      | -PSO    | Mapp     | ing    |         |         |          |        |           |     |
| COs             | 1      | 2       |                  |         |         | O-PO<br>PO      | -PSO    | Mapp     | ing    |         |         |          |        | PSOs<br>2 | 3   |

Page **12** of **19** 

| CO4     | 3   | 3    |   |   |   |   | 1 2 | 1 | 2 |
|---------|-----|------|---|---|---|---|-----|---|---|
| Average | 2.5 | 2.25 | 3 | 2 | 1 | 2 | 1.5 | 1 | 2 |

| Subject:                | Water 8 | Supply                                                                                                                                                                                                        | and Tre            | atment   | Engine  | ering                      |                |        |              | Subj     | ect Co   | de: 150  | CV64   |            |       |
|-------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|---------|----------------------------|----------------|--------|--------------|----------|----------|----------|--------|------------|-------|
|                         |         |                                                                                                                                                                                                               |                    |          |         | Cour                       | se Ou          | tcome  | 5            |          |          |          |        |            |       |
| CO1                     | Estin   | nate av                                                                                                                                                                                                       | verage a           | nd pea   | ık wate | er dem                     | and for        | a con  | munit        | у        |          |          |        |            |       |
| CO2                     | Evalu   | iate av                                                                                                                                                                                                       | vailable<br>a comm | source   |         |                            |                |        |              |          | ely an   | d make   | appro  | priate     |       |
| CO3                     |         | Evaluate water quality and environmental significance of various parameters and plan suitable treatment system  Design a comprehensive water treatment and distribution system to purify and distribute water |                    |          |         |                            |                |        |              |          |          |          |        |            |       |
| CO4                     | Desig   | gn a co                                                                                                                                                                                                       | omprehe            | ensive   | water   | treatm                     | ent and        | distri | bution       | system   | to nu    | rify and | dietri | bute w     | /ater |
| CO4                     |         |                                                                                                                                                                                                               | red qua            |          |         |                            |                |        |              | 2,72.011 | , so par | my and   | GISTI  | oute i     | atti  |
| CO4                     |         |                                                                                                                                                                                                               |                    |          | andard  | S                          |                | Марр   |              |          | , so pu  |          | distri |            | atei  |
|                         |         |                                                                                                                                                                                                               |                    |          | andard  | S<br>CO-PO                 |                |        |              |          |          |          |        | PSOs       |       |
| CO <sub>8</sub>         |         |                                                                                                                                                                                                               |                    |          | andard  | S<br>CO-PO                 | -PSO           |        |              | 10       | 11       | 12       | 1      |            |       |
|                         |         | requi                                                                                                                                                                                                         | red qua            | lity sta | andard  | S<br>CO-PO<br>Po           | -PSO<br>Os     | Марр   | i <b>n</b> g |          |          |          | 1      | PSOs       |       |
| CO <sub>8</sub>         | to the  | requi                                                                                                                                                                                                         | red qua            | lity sta | andard  | CO-PO                      | -PSO<br>Os     | Марр   | i <b>n</b> g |          |          |          | 1      | PSOs 2     |       |
| COs                     | 1 2     | requi                                                                                                                                                                                                         | red qua            | lity sta | andard  | CO-PO<br>PO<br>6<br>2      | -PSO<br>Os 7   | Марр   | i <b>n</b> g |          |          |          | 1      | PSOs 2 2   |       |
| CO <sub>8</sub> CO1 CO2 | 1 2 2   | 2 2 2 2                                                                                                                                                                                                       | red qua            | lity sta | andard  | CO-PO<br>PO<br>6<br>2<br>2 | P-PSO Os 7 2 2 | Марр   | i <b>n</b> g |          |          |          | 1      | PSOs 2 2 2 |       |

| Subject: | Solid W | aste M                                                                           | lanagen  | nent     |          |         |         |        |         | Subj     | ect Co | de: 150 | CV 651 |             |   |
|----------|---------|----------------------------------------------------------------------------------|----------|----------|----------|---------|---------|--------|---------|----------|--------|---------|--------|-------------|---|
|          |         |                                                                                  |          |          |          | Cou     | rse Ou  | tcomes | \$      | 111      |        |         |        |             |   |
| CO1      | Analy   | ze exi                                                                           | isting s | olid w   | aste ma  | anagei  | nent sy | stem a | nd to i | identify | their  | drawba  | icks   |             |   |
| CO2      | Evalu   | ate dif                                                                          | ferent   | eleme    | nts of s | solid v | vaste m | anager | nent sy | ystem    |        |         |        |             |   |
| CO3      | Sugg    | est suit                                                                         | table so | cientifi | c meth   | ods fo  | r solid | waste  | manag   | ement    | elemei | ıts     |        |             |   |
| CO4      | Desig   | Design suitable processing system and evaluate disposal sites  CO-PO-PSO Mapping |          |          |          |         |         |        |         |          |        |         |        |             |   |
|          |         |                                                                                  |          |          | (        | CO-PC   | )-PSO   | Марр   | ing     |          |        |         |        |             |   |
| CO       |         |                                                                                  |          |          |          | P       | Os      |        |         |          |        |         |        | <b>PSOs</b> |   |
| COs      | 1       | 2                                                                                | 3        | 4        | 5        | 6       | 7       | 8      | 9       | 10       | 11     | 12      | 1      | 2           | 3 |
| CO1      | 2       | 2                                                                                |          |          |          | 2       | 2       |        | 2       |          |        | 2       |        | 2           |   |
| CO2      | 2       | 2                                                                                |          |          |          | 2       | 3       | 2      | 2       |          |        | 2       |        | 2           |   |
| CO3      | 2       | 2                                                                                |          |          |          | 2       | 3       | 2      | 2       |          |        | 2       |        | 2           |   |
| CO4      | 2       | 2                                                                                |          |          |          | 2       | 2       | 2      | 2       |          |        | 2       |        | 2           |   |
| Average  | 2       | 2                                                                                |          |          |          | 2       | 2.5     | 2      | 2       |          |        | 2       |        | 2           |   |

| Subject: 1 | Matrix | Metho                                                                                                                                                                                                                                | d of S | truCtur | al Ana | lysis   |         |       |        | Subj    | ect Co  | de: 15C    | V652   |             |    |
|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------|---------|---------|-------|--------|---------|---------|------------|--------|-------------|----|
|            |        |                                                                                                                                                                                                                                      |        |         |        | Cour    | se Ou   | tcome | 5      |         |         |            |        |             |    |
| CO1        |        | ate the                                                                                                                                                                                                                              |        |         | stems  | to appl | ication | of co | ncepts | of flex | ibility | and Sti    | ffness | matric      | eS |
| CO2        |        |                                                                                                                                                                                                                                      |        |         |        |         |         |       |        |         |         | kibility : | and st | ffness      |    |
| CO3        |        | atrices as applied to continuous beams, rigid frames and trusses lentify, formulate and solve engineering problems by application of concepts of direct iffness method as applied to continuous beams and trusses  CO-PO-PSO Mapping |        |         |        |         |         |       |        |         |         |            |        |             |    |
|            |        |                                                                                                                                                                                                                                      |        |         | (      | O-PO    | -PSO    | Марр  | ing    |         |         |            |        |             |    |
| ~~         |        |                                                                                                                                                                                                                                      |        |         |        | PO      | Os      |       |        |         |         |            |        | <b>PSOs</b> |    |
| COs        | 1      | 2                                                                                                                                                                                                                                    | 3      | 4       | 5      | 6       | 7       | 8     | 9      | 10      | 11      | 12         | 1      | 2           | 3  |
| CO1        | 3      | 3                                                                                                                                                                                                                                    |        | 1       | 1      | 1       |         |       |        |         |         | 2          | 3      |             |    |
| CO2        | 3      | 3                                                                                                                                                                                                                                    | 1      | 2       | 1      | 2       |         | 1     |        |         |         | 1          | 3      |             |    |
| CO3        | 3      | 3                                                                                                                                                                                                                                    |        | 1       | 2      | 1       |         |       |        |         |         | 1          | 3      |             |    |
| Average    | 3      | 3                                                                                                                                                                                                                                    | 1      | 1.67    | 1.33   | 1.33    |         | 1     |        |         |         | 1.33       | 3      |             |    |

| Subject:        | Ground | d Impr              | oveme             | nt Tec  | hnique          |                     |                    |                   |                    | Subj     | ect Co  | de: 15  | CV654  | 4           |      |
|-----------------|--------|---------------------|-------------------|---------|-----------------|---------------------|--------------------|-------------------|--------------------|----------|---------|---------|--------|-------------|------|
|                 |        |                     |                   |         |                 | Colli               | se Ou              | tcome             | S                  |          |         |         |        |             |      |
| CO1             | Give   | solutio             | ns to             | solve v | arious          | proble              | ms ass             | ociated           | with               | soil for | rmatio  | ns havi | ng les | s stren     | oth  |
| CO2             | Use 6  | effiectiv<br>rement | ely the           | e vario | us met          | hods 0              | f grout            | nd imp            | rovem              | ent tec  | hnique  | s deper | nding  | upon t      | he   |
| CO3             | Utiliz | e prop<br>omy in    | erly th<br>the de | e local | ly aVa<br>found | ilable r<br>lations | nateria<br>of vari | ls and<br>lous ci | technio<br>vil eng | ques fo  | or grou | nd imp  | roven  | ient so     | that |
|                 |        |                     |                   |         |                 |                     |                    | Марр              |                    |          |         |         |        |             |      |
| COs             |        |                     |                   |         |                 | P                   | Os                 |                   |                    |          |         |         | -      | <b>PSOs</b> |      |
| COS             | 1      | 2                   | 3                 | 4       | 5               | 6                   | 7                  | 8                 | 9                  | 10       | 11      | 12      | 1      | 2           | 3    |
| CO1             | 3      | 2                   |                   |         | 2               |                     |                    |                   |                    |          |         |         | 1      |             |      |
| ~~~             | 3      |                     | 2                 |         | 2               |                     |                    |                   |                    |          |         |         | 1      |             |      |
| CO <sub>2</sub> | 1 2    |                     | _                 |         |                 |                     |                    |                   |                    |          |         |         |        |             |      |
| CO2             | 2      | 1                   |                   |         | 2               |                     |                    |                   |                    |          |         |         | 1      |             | -    |

| Subject: | Softwa | e Appl | ication | Lab |   |        |        |       |   | Subj   | ect Co  | de: 150 | CVL6   | 7           |   |
|----------|--------|--------|---------|-----|---|--------|--------|-------|---|--------|---------|---------|--------|-------------|---|
|          |        |        |         |     |   | Cou    | rse Ou | tcome | S |        |         |         |        |             |   |
| CO1      |        | ency d |         |     |   | erform |        |       |   | mpling | g theor | em in t | ime ar | nd          |   |
| CO       |        |        |         |     |   |        | Os     |       |   |        |         |         |        | <b>PSOs</b> |   |
| COs      | 1      | 2      | 3       | 4   | 5 | 6      | 7      | 8     | 9 | 10     | 11      | 12      | 1      | 2           | 3 |
| CO1      | 3      | 1      |         |     | 3 | 2      |        | 2     | 3 | 1      |         | 2       | 3      | 1           |   |
| Average  | 3      | 1      |         |     | 3 | 2      |        | 2.    | 3 | 1      |         | 2.      | 3      | 1           |   |

| Subject:        | Extensi | ve Surv                                                                                                                                                                                                                                  | vey Pro | ject /Ca            | amp     |         |          |          |         | Subj    | ect Co  | de: 150            | CVL68  | 3           |     |  |
|-----------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|---------|---------|----------|----------|---------|---------|---------|--------------------|--------|-------------|-----|--|
|                 |         |                                                                                                                                                                                                                                          |         |                     |         | Cour    | rse Ou   | tcome    | s       |         |         |                    |        |             |     |  |
| CO1             | Appl    | y Surv                                                                                                                                                                                                                                   | eying   | knowle              | dge an  | d tools | s effect | tively 1 | for the | project | S       |                    | 200    |             |     |  |
| CO2             | towa    |                                                                                                                                                                                                                                          | nmon    |                     |         |         |          |          |         |         |         | working<br>mical a |        |             | ıl  |  |
| CO3             |         |                                                                                                                                                                                                                                          |         |                     |         |         |          |          |         | _       | zationa | l conte            | xt, go | al setti    | ng, |  |
| CO4             | Profe   | rime management, communication and presentation skills  Professional etiquettes at workplace, meeting and general  Establishing trust-based relationships in teams & Organizational environment                                          |         |                     |         |         |          |          |         |         |         |                    |        |             |     |  |
| CO5             | Estal   | Professional etiquettes at workplace, meeting and general<br>Establishing trust-based relationships in teams & Organizational environment<br>Orientation towards conflicts in team and organizational environment, Understanding sources |         |                     |         |         |          |          |         |         |         |                    |        |             |     |  |
| CO6             |         |                                                                                                                                                                                                                                          |         | ds conf<br>lict res | olution | styles  | and te   | chniqu   | es      | environ | ment,   | Unders             | tandin | g sour      | ces |  |
|                 |         |                                                                                                                                                                                                                                          |         |                     |         | CO-PC   | -PSO     | Mapp     | ing     |         |         | - 100              |        |             |     |  |
| Con             |         |                                                                                                                                                                                                                                          |         |                     |         | P       | os       |          |         |         |         |                    |        | <b>PSOs</b> |     |  |
| Cos             | 1       | 2                                                                                                                                                                                                                                        | 3       | 4                   | 5       | 6       | 7        | 8        | 9       | 10      | 11      | 12                 | 1      | 2           | 3   |  |
| CO1             | 2       |                                                                                                                                                                                                                                          |         |                     | 2       | 2       | 2        |          |         |         |         | 2                  | 2      | 2           |     |  |
| CO <sub>2</sub> | 2       | 2                                                                                                                                                                                                                                        |         |                     | 2       | 2       | 2        |          |         |         |         | 2                  | 2      | 2           |     |  |
|                 | 2       |                                                                                                                                                                                                                                          |         |                     | 2       | 2       | 2        |          |         | 2       | 2       | 1                  | 2      | 2           |     |  |
| CO <sub>3</sub> |         | _                                                                                                                                                                                                                                        |         |                     |         | 2       | 2        | 2        |         |         |         | 2                  | 2      | 2           |     |  |
| CO <sub>3</sub> | 2       |                                                                                                                                                                                                                                          |         |                     |         |         |          |          | _       |         |         |                    |        |             |     |  |
|                 | 2 2     |                                                                                                                                                                                                                                          | -       |                     |         | 2       | 2        | 2        |         |         |         | 2                  | 2      | 2           |     |  |
| CO4             | -       |                                                                                                                                                                                                                                          |         |                     |         | 2 2     | 2 2      | 2        |         |         |         | 2 2                | 2      | 2           | -   |  |

Head of Department
Department of Civil Engineering
SJBInstitute of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

### Semester-VII

| Subject:        | Munici | pal and                                                                                                                                                                            | Indust  | rial Wa | iste Wa | ter Eng | gineering | 3     |         | Subj      | ect Co | de: 15 | CV71 |             |     |  |
|-----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|-----------|-------|---------|-----------|--------|--------|------|-------------|-----|--|
|                 |        |                                                                                                                                                                                    |         |         |         | Cou     | rse Ou    | tcome | S       |           |        |        |      |             |     |  |
| CO1             | Desig  | an mur                                                                                                                                                                             | nicipal | and in  | dustria | 1 sewa  | ige treat | tment | olant.  |           |        |        |      |             |     |  |
| CO2             | Estin  | nate the                                                                                                                                                                           | e degre | e and   | type of | treatr  | nent for  | dispo | sal. re | use and   | recve  | le     |      |             | _   |  |
| CO3             | Anal   | yze wa                                                                                                                                                                             | ste wa  | ter cha | racteri | stics   |           |       | Dui, 10 | LISO GIIG | 100,0  |        |      |             |     |  |
| CO4             | Reco   | ecognize the common physical, chemical and biological unit operations encountered in eatment processes  Ommunicate with the stake holders on sewage and industrial effluent issues |         |         |         |         |           |       |         |           |        |        |      |             |     |  |
| CO5             | Com    | ommunicate with the stake holders on sewage and industrial effluent issues                                                                                                         |         |         |         |         |           |       |         |           |        |        |      |             |     |  |
|                 |        |                                                                                                                                                                                    |         |         |         |         | )-PSO     |       |         |           |        |        |      |             |     |  |
| Cos             |        |                                                                                                                                                                                    |         |         |         | F       | Pos       |       |         |           |        |        |      | <b>PSOs</b> |     |  |
| Cus             | 1      | 2                                                                                                                                                                                  | 3       | 4       | 5       | 6       | 7         | 8     | 9       | 10        | 11     | 12     | 1    | 2           | T 3 |  |
| CO1             | 2      | 2                                                                                                                                                                                  | 2       |         |         |         |           |       |         |           |        |        |      |             | 1   |  |
| CO <sub>2</sub> | 2      | 2                                                                                                                                                                                  |         |         |         |         | 2         |       |         |           |        |        |      | 2           | -   |  |
| CO3             | 2      | 2                                                                                                                                                                                  |         |         |         | 1       |           |       |         |           |        |        |      | 2           |     |  |
| CO4             | 2      | 2                                                                                                                                                                                  | 2       |         |         | 1       | 1         |       |         |           |        |        |      | 2           |     |  |
|                 |        |                                                                                                                                                                                    |         |         |         |         | -         |       |         | 2         |        | 1      |      |             |     |  |
| CO5             |        |                                                                                                                                                                                    |         |         |         |         |           |       |         |           |        |        |      |             |     |  |

| Subject:        | Power          | Systen                                                                                                    | n Prote  | ection  |         |     |        |       |   | Subj | ect Co | <b>de:</b> 150 | CV72 |             |   |
|-----------------|----------------|-----------------------------------------------------------------------------------------------------------|----------|---------|---------|-----|--------|-------|---|------|--------|----------------|------|-------------|---|
|                 |                |                                                                                                           |          |         |         | Cou | rse Ou | tcome | 3 |      |        |                |      |             |   |
| CO1             | Analy<br>India | yze and<br>n stand                                                                                        | al frame | e using | g relev | ant |        |       |   |      |        |                |      |             |   |
| CO <sub>2</sub> | Analy          | Analyze and Design Steel roof truss, plate girder and gantry girder using IS 800:2007.  CO-PO-PSO Mapping |          |         |         |     |        |       |   |      |        |                |      |             |   |
|                 |                |                                                                                                           |          |         |         |     |        |       |   |      |        |                |      |             |   |
| COs             |                |                                                                                                           |          |         |         | P   | Os     |       |   |      |        |                |      | <b>PSOs</b> |   |
| COS             | 1              | 2                                                                                                         | 3        | 4       | 5       | 6   | 7      | 8     | 9 | 10   | 11     | 12             | 1    | 2           | 3 |
| CO1             | 3              | 3                                                                                                         | 3        |         |         |     |        | 3     |   |      |        | 2              | 3    |             |   |
| CO2             | 3              | 3                                                                                                         | 3        |         |         |     |        | 3     |   |      |        | 2              | 3    |             |   |
| Average         | 3              | 3                                                                                                         | 3        |         |         |     |        | 3     |   |      |        | 2              | 3    |             |   |

| Subject: | Hydrol | ogy ar                                                                                                                                           | nd Irriga | ation I  | Engine  | ering    |         |         |         | Subj   | ect Co | ode: 150 | CV73  |             |   |
|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------|----------|---------|---------|---------|--------|--------|----------|-------|-------------|---|
|          |        |                                                                                                                                                  |           |          |         | Cour     | se Out  | comes   | 3       |        |        |          |       |             |   |
| CO1      | Apply  | the k                                                                                                                                            | nowled    | ge of    | hydrol  | ogical   | cycle c | ompor   | nents a | nd its | import | ance     |       |             |   |
| CO2      |        |                                                                                                                                                  | precip    |          |         |          |         |         |         |        | *****  |          |       |             |   |
| CO3      | Asses  | s runo                                                                                                                                           | ff and    | develo   | p unit  | hydrog   | graphs  |         |         |        |        |          |       |             |   |
| CO4      | Apply  | the v                                                                                                                                            | arious    | metho    | ds of i | rrigatio | n for d | ifferen | t field | condit | ions   |          |       |             |   |
| CO5      | Estim  | ate qu                                                                                                                                           | antity o  | of irrig | ation v | water a  | nd freq | uency   | of irri | gation | water  | for vari | ous c | rops        |   |
| CO6      | Desig  | estimate quantity of irrigation water and frequency of irrigation water for various crops estign the components canal systems  CO-PO-PSO Mapping |           |          |         |          |         |         |         |        |        |          |       |             |   |
|          |        |                                                                                                                                                  |           |          | (       | CO-PO    | -PSO    | Маррі   | ing     |        |        |          |       |             |   |
|          |        |                                                                                                                                                  |           |          |         | P        | Os      |         |         |        |        |          |       | <b>PSOs</b> |   |
| COs      | 1      | 2                                                                                                                                                | 3         | 4        | 5       | 6        | 7       | 8       | 9       | 10     | 11     | 12       | 1     | 2           | 3 |
| CO1      | 1      | 1                                                                                                                                                |           |          |         | 2        | 2       |         |         |        |        | 1        |       | 1           |   |
| CO2      | 2      | 1                                                                                                                                                | 1         |          |         | 1        | 1       |         |         |        |        | 2        |       | 2           |   |
| CO3      | 2      | 2                                                                                                                                                |           |          |         | 1        | 1       |         |         |        |        | 1        |       | 1           |   |
| CO4      | 2      |                                                                                                                                                  |           |          |         | 2        | 2       |         |         |        |        | 2        |       | 2           |   |
| CO5      | 2      | 2                                                                                                                                                | 2         |          |         | 2        | 2       |         |         |        |        | 2        |       | 2           |   |
| CO6      | 2      | 2                                                                                                                                                | 2         |          |         | 2        | 2       |         |         |        |        | 2        |       | 2           |   |
|          |        |                                                                                                                                                  | 1.67      | _        | _       | 1.67     | 1.67    | _       |         | _      | _      | 1.67     |       | 1.67        |   |

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahalli Road, Kengeri
Bengaluru 560 060

| ~anject.                                      | Design                                                                                                                                                                                                                                                                                                         | of Bri   | dges             |        |             |                     |                        |                 |                | Subj       | ect Co   | <b>de:</b> 15          | CV741                 |             |   |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|--------|-------------|---------------------|------------------------|-----------------|----------------|------------|----------|------------------------|-----------------------|-------------|---|
|                                               |                                                                                                                                                                                                                                                                                                                |          |                  |        |             |                     |                        | tcome           |                | ile estate |          |                        |                       |             |   |
| CO1                                           |                                                                                                                                                                                                                                                                                                                |          |                  |        | load ca     |                     |                        |                 | es             |            |          |                        |                       |             |   |
| CO2                                           |                                                                                                                                                                                                                                                                                                                |          |                  |        | b and       |                     |                        | es              |                |            |          |                        |                       |             |   |
| CO3                                           |                                                                                                                                                                                                                                                                                                                |          |                  |        | ulvert,     |                     |                        |                 |                |            |          |                        |                       |             |   |
| CO4                                           | Desig                                                                                                                                                                                                                                                                                                          | gn Piers | s and a          | butme  | nts and     | use b               | earings                | s, hinge        | es and         | expans     | sion joi | nts                    |                       |             |   |
|                                               |                                                                                                                                                                                                                                                                                                                |          |                  |        | C           | O-PO                | -PSO                   | Mapp:           | ing            |            |          |                        |                       |             |   |
| COs                                           |                                                                                                                                                                                                                                                                                                                |          |                  |        |             | P                   | Os                     |                 |                |            |          |                        |                       | <b>PSOs</b> |   |
|                                               | 1                                                                                                                                                                                                                                                                                                              | 2        | 3                | 4      | 5           | 6                   | 7                      | 8               | 9              | 10         | 11       | 12                     | 1                     | 2           | 3 |
| CO <sub>1</sub>                               | 3                                                                                                                                                                                                                                                                                                              | 2        | 1                |        |             |                     | 1                      | 3               |                |            |          | 2                      | 3                     | 1           |   |
| CO <sub>2</sub>                               | 3                                                                                                                                                                                                                                                                                                              | 2        | 3                | 2      |             |                     | 1                      | 3               |                |            |          | 2                      | 3                     | 1           |   |
| CO3                                           | 3                                                                                                                                                                                                                                                                                                              | 2        | 3                | 2      |             |                     | 1                      | 3               |                |            |          | 2                      | 3                     | 1           |   |
| CO <sub>4</sub>                               | 3                                                                                                                                                                                                                                                                                                              | 2        | 3                | 2      |             |                     | 1                      | 3               |                |            |          | 2                      | 3                     | 1           |   |
| Average                                       | 3                                                                                                                                                                                                                                                                                                              | 2        | 2.5              | 2      |             |                     | 1                      | 3               |                |            |          | 2                      | 3                     | 1           |   |
| CO <sub>2</sub>                               | Course Outcomes  Identify the basic characteristics of aquifiers Estimate the quantity of ground water by various methods Locate prospective zones of groundwater availability Analyze the suitable techniques for groundwater exploration Select particular type of well to augment the ground water recharge |          |                  |        |             |                     |                        |                 |                |            |          |                        |                       |             | = |
| CO4<br>CO5                                    |                                                                                                                                                                                                                                                                                                                |          |                  |        |             |                     |                        |                 |                |            |          | n cond                 | litions               |             | - |
|                                               |                                                                                                                                                                                                                                                                                                                |          |                  |        | water h     | arves               | ting str               |                 | s base         |            |          | n cond                 | litions               |             |   |
| CO5<br>CO6                                    |                                                                                                                                                                                                                                                                                                                |          |                  |        | water h     | arves               | ting str<br>-PSO       | ucture          | s base         |            |          | n cond                 |                       | <b>PSOs</b> |   |
| CO5                                           |                                                                                                                                                                                                                                                                                                                | mmend    |                  |        | water h     | arves<br>O-PO       | ting str<br>-PSO       | ucture          | s base         |            |          | n cond                 |                       | PSOs 2      | 3 |
| CO5<br>CO6                                    | Reco                                                                                                                                                                                                                                                                                                           | mmend    | l meth           | ods of | water l     | O-PO PO 6           | ting str<br>-PSO<br>Os | ucture:<br>Mapp | s based<br>ing | d on the   | terrai   |                        |                       |             | 3 |
| CO5<br>CO6                                    | Reco                                                                                                                                                                                                                                                                                                           | mmend    | 1 meth           | ods of | water l     | arves<br>O-PO<br>Po | ting str<br>-PSO<br>Os | ucture:<br>Mapp | s based<br>ing | d on the   | terrai   | 12                     | 1                     | 2           | 3 |
| CO5<br>CO6<br>COs                             | Reco                                                                                                                                                                                                                                                                                                           | mmend    | 3 2              | ods of | 5 3 2 2 2   | O-PO PO 6           | ting str<br>-PSO<br>Os | ucture:<br>Mapp | s based<br>ing | d on the   | terrai   | <b>12</b>              | <b>1</b> 2            | 2           | 3 |
| CO5<br>CO6<br>COs<br>CO1<br>CO2               | 1<br>3<br>2                                                                                                                                                                                                                                                                                                    | 2 3      | 3 2 3            | ods of | 5   3   2   | O-PO PO 2 2         | ting str<br>-PSO<br>Os | ucture:<br>Mapp | s based<br>ing | d on the   | terrai   | 12<br>1<br>2           | 1<br>2<br>2           | 2           | 3 |
| CO5<br>CO6<br>COs<br>CO1<br>CO2<br>CO3        | 1<br>3<br>2<br>3                                                                                                                                                                                                                                                                                               | 2 3      | 3<br>2<br>3<br>2 | 4<br>1 | 5 3 2 2 2   | 6<br>2<br>1         | ting str<br>-PSO<br>Os | ucture:<br>Mapp | s based<br>ing | d on the   | terrai   | 12<br>1<br>2<br>2      | 1<br>2<br>2<br>1      | 1           | 3 |
| CO5<br>CO6<br>COs<br>CO1<br>CO2<br>CO3<br>CO4 | 1 3 2 3 2 2                                                                                                                                                                                                                                                                                                    | 2 3 2    | 3<br>2<br>3<br>2 | 4<br>1 | 5 3 2 2 3 3 | PO-PO PO 6 2 2 1 3  | ting str<br>-PSO<br>Os | ucture:<br>Mapp | s based<br>ing | d on the   | terrai   | 12<br>1<br>2<br>2<br>2 | 1<br>2<br>2<br>1<br>2 | 1           | 3 |

| Subject:        | Urban | Transp    | ortatio | n and   | Planni  | ng      |         |         |        | Subj     | ect Co   | de: 150 | CV75 | 1           |   |
|-----------------|-------|-----------|---------|---------|---------|---------|---------|---------|--------|----------|----------|---------|------|-------------|---|
|                 |       |           |         |         |         | Cour    | se Ou   | tcomes  | 5      |          |          |         |      |             |   |
| CO <sub>1</sub> | Anal  | yse the   | data r  | equirec | for tr  | anspor  | tation  | planniı | ng     |          |          |         |      |             |   |
| CO <sub>2</sub> | Forn  | nulate tr | anspo   | rtation | projec  | t plann | ing an  | d deve  | lopme  | nt       |          |         |      |             |   |
| CO3             | Pred  | ict futur | e trin  | distrib | ution r | ate for | the stu | ıdy are | a      |          |          |         |      |             |   |
| CO4             | Deve  | elop mo   | dal sp  | lit and | trip as | signme  | nt tecl | nniques | for va | arious 1 | travel r | atterns | 3    |             |   |
| CO5             |       | late the  |         |         |         |         |         |         |        |          |          |         |      |             |   |
|                 |       |           |         |         | (       | O-PO    | -PSO    | Mapp    | ing    |          |          |         |      |             |   |
| 000             |       |           |         |         |         | P       | Os      |         |        |          |          |         |      | <b>PSOs</b> |   |
| COs             | 1     | 2         | 3       | 4       | 5       | 6       | 7       | 8       | 9      | 10       | 11       | 12      | 1    | 2           | 3 |
| CO1             | 2     | 2         |         |         |         |         |         |         |        |          |          |         |      |             |   |
| CO2             |       | 2         |         |         |         |         |         |         |        |          |          |         |      | 3           |   |
| CO3             | 2     | 3         |         |         |         |         |         |         |        |          |          |         |      |             |   |
| CO4             |       |           | 3       |         |         |         |         |         |        |          |          |         |      | 2           |   |
| CO5             |       |           |         | 3       |         |         |         |         |        |          |          |         |      | 2           |   |
| Average         | 2     | 2.33      | 3       | 3       |         |         |         |         |        |          |          |         |      | 2.33        |   |

| Subject: | Enviro | nment                                                                                                                                                         | al Eng  | ineerin | g Labo  | oratory |          |         |       | Subj    | ect Co  | de: 15                                  | CVL7 | 6 |          |  |
|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|----------|---------|-------|---------|---------|-----------------------------------------|------|---|----------|--|
|          |        |                                                                                                                                                               |         |         |         | Cou     | rse Ou   | tcome.  | S     |         |         |                                         |      |   |          |  |
| CO1      | Anaj   | vse &                                                                                                                                                         | Estima  | te the  | various | naran   | neters i | present | in wa | ter and | waste   | water                                   |      |   |          |  |
| CO2      | Com    | pare th                                                                                                                                                       | e resul | t with  | Codal   | provisi | ions.    |         |       |         | ,, 4500 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      | _ |          |  |
| CO3      |        |                                                                                                                                                               |         |         |         |         |          | ent for | water | and wa  | ste wa  | ter                                     |      |   | _        |  |
| CO4      |        | Evaluate type of treatment, degree of treatment for water and waste water  Conduct investigations on water, wastewater, air and noise using modern equipment. |         |         |         |         |          |         |       |         |         |                                         |      |   |          |  |
| CO5      | Form   | Formulate the problem statement and remedial solutions for their project work.                                                                                |         |         |         |         |          |         |       |         |         |                                         |      |   |          |  |
|          |        |                                                                                                                                                               |         |         |         | CO-PO   |          |         |       |         |         |                                         |      |   |          |  |
| COs      |        |                                                                                                                                                               |         | PSOs    |         |         |          |         |       |         |         |                                         |      |   |          |  |
| COS      | 1      | 2                                                                                                                                                             | 3       | 4       | 5       | 6       | 7        | 8       | 9     | 10      | 11      | 12                                      | 1    | 2 | 3        |  |
| CO1      |        | 2                                                                                                                                                             |         |         |         |         |          |         |       |         |         |                                         |      | 2 |          |  |
| CO2      |        |                                                                                                                                                               |         |         |         |         |          | 3       |       |         |         |                                         |      | 2 | $\vdash$ |  |
| CO3      |        | 2                                                                                                                                                             |         |         |         |         |          |         |       |         |         |                                         |      | 2 | $\vdash$ |  |
| CO4      |        |                                                                                                                                                               |         | 2       |         |         |          |         |       |         |         |                                         |      | 2 |          |  |
| CO5      |        |                                                                                                                                                               |         |         |         | 2       |          |         |       |         |         |                                         |      | 2 |          |  |
| Average  |        | 2                                                                                                                                                             |         | 2       |         | 2       |          | 3       |       |         |         |                                         |      | 2 |          |  |

| Subject:        | Compl | iter Ai | ded De  | etailing | of Str  | uctures  | 3      |        |         | Subj    | ect Co | de: 15 | CVL7 | 7 |   |  |
|-----------------|-------|---------|---------|----------|---------|----------|--------|--------|---------|---------|--------|--------|------|---|---|--|
|                 |       |         |         |          |         | Cour     | se Ou  | tcome  | S       |         |        |        |      |   |   |  |
| CO1             | Anal  | yse the | data f  | urnishe  | ed for  | detailin | ng.    |        |         |         |        |        |      |   |   |  |
| CO2             | Prepa | re the  | detaile | d struc  | tural c | lrawing  | s base | d on c | odal pi | rovisio | 15     |        |      |   |   |  |
|                 |       |         |         |          | (       | O-PO     | -PSO   | Mapp   | ing     |         |        |        |      |   |   |  |
| CO.             |       |         |         |          |         | P        | Os     |        |         | 10.000  |        |        | PSOs |   |   |  |
| COs             | 1     | 2       | 3       | 4        | 5       | 6        | 7      | 8      | 9       | 10      | 11     | 12     | 1    | 2 | 3 |  |
| CO1             | 2     |         |         |          |         |          |        |        |         |         |        |        | 2    |   |   |  |
| CO <sub>2</sub> | 2     |         |         |          |         |          |        | 2      |         |         |        |        | 2    |   |   |  |
| Average         | 2     |         |         |          |         |          |        | 2      |         |         |        |        | 2    |   |   |  |

| Subject: | Pro ject                                                     | Phase                                                                                                                                      | I +Pro | ject S | eminar  |       |              |         |         | Subj    | ect Co | de: 150  | VP78  | 3      |   |  |
|----------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------|-------|--------------|---------|---------|---------|--------|----------|-------|--------|---|--|
|          |                                                              |                                                                                                                                            |        |        |         | Cou   | rse Ou       | tcomes  |         |         |        |          |       |        |   |  |
| CO1      |                                                              | ificatio<br>nable                                                                                                                          |        |        | k probl | ems b | y comp       | rehensi | ve lite | erature | reviev | v and fo | rmula | te the |   |  |
| CO2      | the su                                                       | esign the methodology and selection of suitable materials for the experimental work or design<br>the suitable methodology for the analysis |        |        |         |       |              |         |         |         |        |          |       |        |   |  |
| CO3      | Choose the appropriate approach for the condition of project |                                                                                                                                            |        |        |         |       |              |         |         |         |        |          |       |        |   |  |
| CO4      | Form                                                         | Form a group to function effectively in a diverse teams and multidisciplinary settings                                                     |        |        |         |       |              |         |         |         |        |          |       |        |   |  |
|          |                                                              |                                                                                                                                            |        |        | (       | CO-PC | <b>D-PSO</b> | Mappi   | ng      |         |        |          |       |        |   |  |
| CO       |                                                              |                                                                                                                                            |        |        |         | P     | Os           |         |         |         |        |          | PSOs  |        |   |  |
| COs      | 1                                                            | 2                                                                                                                                          | 3      | 4      | 5       | 6     | 7            | 8       | 9       | 10      | 11     | 12       | 1     | 2      | 3 |  |
| CO1      | 2                                                            |                                                                                                                                            |        |        |         | 1     | 1            |         | 2       | 1       |        | 1        | 2     | 2      |   |  |
| CO2      | 1                                                            | 2                                                                                                                                          |        |        |         |       | 1            | 1       | 2       | 2       |        | 1        | 2     | 2      |   |  |
| CO3      | 2                                                            | 1                                                                                                                                          |        |        | 1       | 1     | 2            | 2       | 2       | 2       |        | 2        | 2     | 2      |   |  |
| CO4      | 1                                                            |                                                                                                                                            |        |        |         |       |              | 1       |         | 3       |        | 3        | 2     | 2      |   |  |
|          | 1.5                                                          | 1.5                                                                                                                                        |        |        | 1       | 1     | 1.33         | 1.33    | 2       | 2       |        | 1.75     | 2.    | 2.     |   |  |

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahalli Road, Kengeri
Bengaluru 560 060

### Semester-VIII

| Subject: | Quanti | ity Surv                                                                                         | eying/  | and C   | ontract  | s Man   | ageme    | nt      |        | Subj  | ect Co | <b>de:</b> 15 | CV81 |      |   |
|----------|--------|--------------------------------------------------------------------------------------------------|---------|---------|----------|---------|----------|---------|--------|-------|--------|---------------|------|------|---|
|          |        |                                                                                                  |         |         |          | Cou     | rse Ou   | tcome   | S      |       |        |               |      |      |   |
| CO1      | Deve   | elop det                                                                                         | ailed a | and abs | stract e | stimate | es for I | Buildin | gs and | roads |        |               |      |      |   |
| CO2      |        | valuate valuation reports of buildings terpret contract documents of Domestic Construction works |         |         |          |         |          |         |        |       |        |               |      |      |   |
| CO3      |        |                                                                                                  |         |         |          |         |          | onstruc | tion w | orks  |        |               |      |      |   |
|          |        |                                                                                                  |         |         |          | CO-PO   |          |         |        |       |        |               |      |      |   |
| COs      |        | POs                                                                                              |         |         |          |         |          |         |        |       |        |               |      |      |   |
| COS      | 1      | 2                                                                                                | 3       | 4       | 5        | 6       | 7        | 8       | 9      | 10    | 11     | 12            | 1    | 2    | 3 |
| CO1      | 2      | 2                                                                                                |         |         |          |         |          |         | 1      | 2     |        | 2             | 2    | 2    |   |
| CO2      | 2      | 1                                                                                                |         |         |          |         |          | 1       |        |       | 1      | 1             | 2    | 2    |   |
| CO3      | 2      |                                                                                                  |         |         |          |         |          | 1       | 1      | 2     | 1      | 1             | 1    | 1    |   |
| Average  | 2      | 1.5                                                                                              |         |         |          |         |          | 1       | 1      | 2     | 1      | 1.33          | 1.67 | 1.67 |   |

| Subject: | Design | of Pre                                                                                                            | e-Stress | sed Cor  | crete   | Elemen   |        |          | Subj  | ect Co     | de: 15  | CV82 |     |      |   |  |
|----------|--------|-------------------------------------------------------------------------------------------------------------------|----------|----------|---------|----------|--------|----------|-------|------------|---------|------|-----|------|---|--|
|          |        |                                                                                                                   |          |          |         | Cour     | se Oı  | ıtcomes  |       | diameter ( |         |      |     |      |   |  |
| CO1      | Appl   | y the k                                                                                                           | nowle    | lge in ( | ınders  | tanding  | conc   | ept of F | SC.   |            |         |      |     | -1.0 |   |  |
| CO2      | Anal   | yse the                                                                                                           | forces   | in the   | PSC t   | nembei   | rs.    |          |       |            |         |      |     |      |   |  |
| CO3      | Estin  | ate the                                                                                                           | e losses | and d    | eflecti | On of F  | SC m   | embers.  |       |            |         |      |     |      |   |  |
| CO4      | Desig  | Design PSC members subjected to flexure.  Evaluate the anchorage zone stresses and design of shear and end block. |          |          |         |          |        |          |       |            |         |      |     |      |   |  |
| CO5      | Evalu  | late the                                                                                                          | e ancho  | orage z  | one st  | resses a | and de | sign of  | shear | and en     | d block | ζ.   |     |      |   |  |
|          | 015    |                                                                                                                   |          |          | (       | :О-РО    | -PSO   | Mappi    | ng    |            |         |      |     |      |   |  |
| CO-      |        | CO-PO-PSO Mapping POs                                                                                             |          |          |         |          |        |          |       |            |         |      |     |      |   |  |
| COs      | 1      | 2                                                                                                                 | 3        | 4        | 5       | 6        | 7      | 8        | 9     | 10         | 11      | 12   | 1   | 2    | 3 |  |
| CO1      | 1      | 1                                                                                                                 |          |          |         | 2        |        |          |       |            |         | 2    | 2   |      |   |  |
| CO2      | 3      | 3                                                                                                                 | 2        | 1        |         | 2        |        | 1        |       | 1          |         | 2    | 3   |      |   |  |
| CO3      | 2      | 3                                                                                                                 | 1        | 1        |         | 1        |        | 1        |       |            |         | 1    | 3   |      |   |  |
| CO4      | 3      | 3                                                                                                                 | 1        | 2        |         | 2        |        | 1        |       |            |         | 2    | 3   |      |   |  |
| CO5      | 3      | 3                                                                                                                 | 3        | 1        |         | 2        |        | 2        |       | 1          |         | 1    | 3   |      |   |  |
| Average  | 2.4    | 2.6                                                                                                               | 1.75     | 1.25     |         | 1.8      |        | 1.25     |       | 1          |         | 1.6  | 2.8 |      |   |  |

| Subject: | Paveme | ent De                                                                                                                                   | sign    |          |         |          |         |          |         | Subj   | ect Co     | de: 150 | CV833 | 3           |   |  |
|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|----------|---------|----------|---------|--------|------------|---------|-------|-------------|---|--|
|          |        |                                                                                                                                          |         |          |         | Cour     | se Ou   | tcomes   | 3       |        |            |         |       |             |   |  |
| CO1      | Analy  | se stre                                                                                                                                  | sses, s | strai_ns | and de  | flectio  | ns usin | g vario  | ous the | ories  |            |         |       |             |   |  |
| CO2      | Desig  | n of pa                                                                                                                                  | aveme   | nts as p | per coo | lal pro  | visions |          |         |        |            |         |       |             |   |  |
| CO3      | Evalu  | ate the                                                                                                                                  | perfo   | rmance   | e of pa | Vemen    | ts unde | er extre | me en   | vironm | ental o    | Onditio | ons   |             |   |  |
| CO4      | Predic | Predict the failure behavior of flexible and rigid pavements  Develop pavement maintenance solutions based on site specific requirements |         |          |         |          |         |          |         |        |            |         |       |             |   |  |
| CO5      | Devel  | op pav                                                                                                                                   | emen    | t maint  | enance  | soluti   | ons ba  | sed on   | site sp | ecific | require    | ments   |       |             |   |  |
| CO6      | Analy  | se the                                                                                                                                   | field s | Survey   | data fo | r airfic | eld pav | ements   | 3       |        | -5/15/17/- |         |       |             |   |  |
|          |        |                                                                                                                                          |         |          | (       | CO-PO    | -PSO    | Mapp     | ing     |        |            |         |       |             |   |  |
|          |        |                                                                                                                                          |         |          |         | P        | Os      |          |         |        |            |         |       | <b>PSOs</b> |   |  |
| COs      | 1      | 2                                                                                                                                        | 3       | 4        | 5       | 6        | 7       | 8        | 9       | 10     | 11         | 12      | 1     | 2           | 3 |  |
| CO1      | 2      | 3                                                                                                                                        |         |          |         |          |         |          |         |        |            |         |       | 2           |   |  |
| CO2      | 3      |                                                                                                                                          | 3       |          |         |          |         |          |         |        |            |         |       | 2           |   |  |
| CO3      |        | 3                                                                                                                                        |         |          | 2       |          |         | 2        |         |        |            |         |       | 2           |   |  |
| CO4      | 2      | 2                                                                                                                                        |         |          |         |          |         |          |         |        |            |         |       | 2           |   |  |
| CO5      | 2      |                                                                                                                                          |         |          |         |          |         |          |         |        |            |         |       | 2           |   |  |
| CO6      | 2      | 2                                                                                                                                        | 1       |          |         |          |         |          |         |        |            |         |       | 2           |   |  |
| Average  | 2.16   | 2.5                                                                                                                                      | 2       |          | 2       |          |         | 2        |         |        |            |         |       | 2           |   |  |

Page 18 of 19

Head of Department
Department of Civil Engineering
SJBInstit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

| Subject: | Interns | hip/P                                                                                                                                                                 | rofessio | nal P | ractice  |        |           |         |          | Subj | ect Co                 | de: 150     | CV84        |             |   |  |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------|--------|-----------|---------|----------|------|------------------------|-------------|-------------|-------------|---|--|
|          |         |                                                                                                                                                                       |          |       |          | Cou    | ırse Ou   | Itcome  | S        |      |                        |             |             |             |   |  |
| CO1      | Unde    | rstanc                                                                                                                                                                | I the im | porta | nce of I | ndusti | ry Instit | tute In | teractio | on . |                        |             |             |             |   |  |
| CO2      |         |                                                                                                                                                                       | oractica |       |          |        |           |         |          |      | ering.                 |             |             |             | _ |  |
| CO3      |         |                                                                                                                                                                       |          |       |          |        |           |         |          |      |                        |             |             |             |   |  |
| CO4      | Reco    | nalyzing Skills to solve the problems encountered in the field.  cognize the need for lifelong learning processes through critical reflection of internship periences |          |       |          |        |           |         |          |      |                        |             |             |             |   |  |
|          |         |                                                                                                                                                                       |          |       | (        | O-PO   | D-PSO     | Manr    | inσ      |      |                        |             |             |             | _ |  |
|          |         | CO-PO-PSO Mapping POs                                                                                                                                                 |          |       |          |        |           |         |          |      |                        |             |             |             |   |  |
| COs      |         |                                                                                                                                                                       |          |       |          | P      |           | Pr      |          |      |                        |             |             | <b>PSOs</b> |   |  |
| COs      | 1       | 2                                                                                                                                                                     | 3        | 4     | 5        | 6      |           | 8       | 9        | 10   | 11                     | 12          | 1           | PSOs 2      | 3 |  |
| COs      | 1       | 2                                                                                                                                                                     | 3        | 4     | 5        | -      | Os        |         |          | 10 2 | 11 1                   | <b>12</b> 2 | 1           | 1           | 3 |  |
|          | 2       | 2                                                                                                                                                                     | 3        | 4     | 5        | 6      | Os 7      | 8       | 9        |      | 11<br>1<br>1           |             | 1           | 1           | 3 |  |
| CO1      | 2 2     |                                                                                                                                                                       | 1 2      | 1     |          | 6      | Os 7      | 8       | 9        | 2    | 11<br>1<br>1           | 2           | 1<br>2<br>2 | 2<br>1      | 3 |  |
| CO1      | ~       | 2                                                                                                                                                                     | 1        | 1     |          | 6      | Os 7      | 8       | 9 3 1    | 2    | 11<br>1<br>1<br>1<br>2 | 2 2         |             | 1<br>2      | 3 |  |

| Subject: | Project                                                                                                                                         | Phase                                                                                                                                                                                                                | II |                  |       |        |        |         |           | Subj     | ect Co | de: 150 | CVP85  |             |       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------|-------|--------|--------|---------|-----------|----------|--------|---------|--------|-------------|-------|
|          |                                                                                                                                                 |                                                                                                                                                                                                                      |    |                  |       | Cou    | rse Ou | tcome.  | s         |          |        |         |        |             |       |
| CO1      |                                                                                                                                                 | ificatio<br>inable                                                                                                                                                                                                   |    |                  | probl | ems by | comp   | rehens  | sive lite | rature   | review | and fo  | ormula | te the      |       |
| CO2      |                                                                                                                                                 |                                                                                                                                                                                                                      |    | dology<br>dology |       |        |        | table r | nateria   | ds for t | he exp | erimen  | tal wo | rk or d     | esign |
| CO3      | Develop and demonstrate the project models to meet the needs of the society                                                                     |                                                                                                                                                                                                                      |    |                  |       |        |        |         |           |          |        |         |        |             |       |
| CO4      | Apply appropriate techniques and tools to develop the solutions to the complex problems addressing society after understanding the limitations. |                                                                                                                                                                                                                      |    |                  |       |        |        |         |           |          |        |         |        |             |       |
| CO5      |                                                                                                                                                 | addressing society after understanding the limitations.  Communicate effectively to address complex engineering problems with proper documentations, reports and presentations through ICT tools.  CO-PO-PSO Mapping |    |                  |       |        |        |         |           |          |        |         |        |             |       |
|          | _                                                                                                                                               |                                                                                                                                                                                                                      |    |                  |       |        |        | Mapp    | ing       |          |        |         |        | ~~          |       |
| COs      |                                                                                                                                                 | ,                                                                                                                                                                                                                    |    |                  | ,     | . P    | Os     |         |           | ,        |        |         |        | <b>PSOs</b> |       |
|          | 1                                                                                                                                               | 2                                                                                                                                                                                                                    | 3  | 4                | 5     | 6      | 7      | 8       | 9         | 10       | 11     | 12      | 1      | 2           | 3     |
| CO1      | 2                                                                                                                                               | 2                                                                                                                                                                                                                    |    |                  |       |        |        |         |           |          |        |         | 2      | 2           |       |
| CO2      | 2                                                                                                                                               | 2                                                                                                                                                                                                                    |    |                  |       |        |        |         |           |          |        |         | 2      | 2           |       |
| CO3      |                                                                                                                                                 |                                                                                                                                                                                                                      | 2  |                  |       |        | 2      |         |           |          |        | 2       | 2      | 2           |       |
| CO4      |                                                                                                                                                 |                                                                                                                                                                                                                      |    | 3                |       |        |        |         | 2         |          |        | 2       |        |             |       |
| ~~=      |                                                                                                                                                 |                                                                                                                                                                                                                      |    |                  | 2     |        |        |         |           | 2        |        |         |        |             |       |
| CO5      |                                                                                                                                                 |                                                                                                                                                                                                                      |    |                  |       |        |        |         |           |          |        |         |        |             |       |

| Subject:        | Semina | ar       |         |        |         |         |                   |        |         | Subj    | ect Co   | de: 150  | CVS8  | 6           |   |  |
|-----------------|--------|----------|---------|--------|---------|---------|-------------------|--------|---------|---------|----------|----------|-------|-------------|---|--|
|                 |        |          |         |        |         | Cou     | rse Out           | comes  | 5       |         |          |          |       |             |   |  |
| CO1             | Ident  | ificatio | n of se | eminar | topic   | on rece | ent deve          | elopme | nts in  | Civil a | ınd alli | ed brat  | nches |             |   |  |
| CO <sub>2</sub> | Prepa  | re a co  | mpreh   | ensive | report  | based   | On the            | Litera | ture re | view    |          |          |       |             |   |  |
| CO3             |        |          |         | _      | entatio | ns thr  | he com<br>ough IC | T tool | s       | ring pr | oblems   | s with p | roper |             |   |  |
|                 |        |          |         |        |         | _       | )-PSO             | Mapp   | ing     |         |          |          |       |             |   |  |
| CO.             |        |          |         |        |         | P       | Os                |        |         |         |          |          |       | <b>PSOs</b> |   |  |
| COs             | 1      | 2        | 3       | 4      | 5       | 6       | 7                 | 8      | 9       | 10      | 11       | 12       | 1     | 2           | 3 |  |
| CO1             | 2      |          |         |        |         | 1       | 2                 |        | 1       |         |          | 2        | 2     | 1           |   |  |
| CO2             | 2      | 1        |         |        |         | 1       | 1                 |        |         |         |          |          | 2     | 1           |   |  |
| CO3             |        |          |         |        |         |         |                   |        |         | 3       |          | 3        |       | 2           |   |  |
| Average         | 2      | 1        |         |        |         | 1       | 1.5               |        | 1       | 3       |          | 2.5      | 2     | 1.25        |   |  |

Comment